|
Assimilation of Endmember Variability in Spectral Mixture Analysis for Urban Land Cover Extraction
|
|
1Energy and Wetlands Research Group, Centre for Ecological Sciences [CES], 2Department of Management Studies, 5Centre for Sustainable Technologies (astra),
6Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP],
Indian Institute of Science, Bangalore – 560012, India.
3International Institute of Information Technology (IIITB), Bangalore-560100, India.
4EADS Innovation Works, Airbus Engineering Centre India, Xylem No 4, Mahadevapura Post, Whitefield Road, Bangalore - 560 048, India.
*Corresponding author: cestvr@ces.iisc.ernet.in
References
- Asner, G.P.,Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens.Env. 64, 234–253, 1998.
- Asner, G. P., Lobell, D. B., A biogeophysical approach for automated SWIR unmixing of soils and vegetation.Remote Sens. Env.74, 99−112, 2000.
- Asner, G. P., Wessman, C. A., Privette, J. L., Unmixing the directional reflectances of AVHRR subpixellandcovers. IEEE Trans. Geosc. Remote Sens. 35, 868−878, 1997.
- Ball, J. E., Bruce, L. M., Younan, N. H., Hyperspectral pixel unmixing via spectral band selection and DC-insensitive singular value decomposition. IEEE Geosc. Remote Sens. Let. 4, 382−386, 2007.
- Barducci, A., Mecocci, A., Theoretical and experimental assesment of noise effects on least-squares spectral unmixing of hyperspectral images. Optical Engineering, 44Art.N° 087008, 2005.
- Bateson, C. A., Asner, G. P., Wessman, C. A., Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEE Trans.Geosc. Remote Sens. 38, 1083–1094, 2000.
- Boardman, J., Analysis, understanding and visualization of hyperspectral data as a convex set in n-space. International SPIE symposium on Imaging Spectrometry, Orlando, Florida, 23–36, 1995.
- Carlson, T. N., Sanchez-Azofeifa, G. A., Satellite remote sensing of land use changes in and around San José, Costa Rica. Remote Sens.Env. 70, 247−256, 1999.
- Debba, P., Carranza, E. J. M., vanderMeer, F. D., Stein, A., Abundance estimation of spectrally similar minerals by using derivative spectra in simulated annealing. IEEE Trans. Geosc. Remote Sens. 44, 3649−3658, 2006.
- Dennison, P. E., Roberts, D. A., Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE.Remote Sens. Env.87, 123–135, 2003.
- Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J. Y., Hero, A. O., Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Signal Process.57, 4355−4368, 2009.
- Duda, R. O., Hart, P. E., Stork, D, G., Pattern classification, New York, A Wiley-Interscience Publication, Second Edition, 2000, ISBN 9814-12-602-0.
- Eckmann, T. C., Roberts, D. A., Still, C. J., Using multiple endmember spectral mixture analysis to retrieve subpixelfire properties from MODIS.Remote Sens. Env.112, 3773−3783, 2008.
- Foody, G. M., Doan, H. T. X., Variability in Soft Classificaiton Prediction and its implications for Sub-pixel Scale Change Detection and Super Resolution Mapping. Photogramm.Engg. Remote Sens. 73(8), 923–933, 2007.
- Forster, B. C., An examination of some problems and solutions in monitoring urban areas from satellite platforms.Int. J.Remote Sens. 6, 139−151, 1985.
- Franke, J., Roberts, D. A., Halligan, K., Menz, G., Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hypespectral imagery for urban environments. Remote Sens.Env. 113, 1712–1723, 2009.
- Kumar, U., Dasgupta, A., Mukhopadhyay, C., Joshi, N. V., Ramachandra T. V., Comparison of 10 Multi-Sensor Image Fusion Paradigms for IKONOS images. Int. J. Res. and Reviews in Computer Sc., 2(1), 42–47, 2011.
- Kumar, U., Kerle, N., Ramachandra T. V., Constrained linear spectral unmixing technique for regional land cover mapping using MODIS data. In: Innovations and advanced techniques in systems, computing sciences and software engineering / ed by KhaledElleithy. Berlin: Springer, 87–95, 2008.
- Kumar, U., Mukhopadhyay, C., Ramachandra, T. V., Pixel based fusion using IKONOS imagery. Int. J. Recent Trends inEngg. (Computer Sc.) 1(1), 178–182, 2009.
- Gong, P., Zhang, A., Noise effect on linear spectral unmixing. J. GIS, 5, 52−57, 1999.
- Kumar, U., Kerle, N., Punia, M., Ramachandra, T. V., Mining Land Cover Information using Multilayer Perceptron and Decision Tree from MODIS data. J. Indian Soc. Remote Sens. 38(4), 592–603, 2011a.
- Kumar, U., Kerle, N., Ramachandra, T. V., Constrained linear spectral unmixing technique for regional land cover mapping using MODIS data. In: Innovations and advanced techniques in systems, computing sciences and software engineering / ed by Khaled Elleithy. Berlin: Springer, pp. 87-95, 2008.
- Kumar, U., Kumar Raja S., Mukhopadhyay, C., Ramachandra, T. V., Hybrid Bayesian Classifier for Improved Classification Accuracy. IEEE Geosc. Remote Sens. Let. 8(3), 473– 476, 2011b.
- Kumar, U., Kumar Raja S., Mukhopadhyay, C., Ramachandra, T. V., A Neural Network Based Hybried Mixture Model to Extract Information from Non-linear Mixed Pixels. Information.3(3), 420– 441, 2012.
- Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J.W., et al., The causes of land-use and land-cover change: Moving beyond the myths. Global Env. Change 11, 261−269, 2001.
- Li, J., Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals. IEEE Trans. Geosc. Remote Sens. 42, 644−649, 2004.
- Liu, J. G., Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens.21(18), 3461–3472, 2000.
- Lu, D.,Weng, Q., Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm.Engg. Remote Sens. 70, 1053−1062, 2004.
- Martinez, P. J., Perez, R. M., Plaza, A., Aguilar, P. L., Cantero, M. C., Plaza, J., Endmember extraction algorithms from hyperspectral images. Annals of Geophysics.49, 93−101, 2006.
- Miao, L., Qi, H., Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosc. Remote Sens. 45, 765−777, 2007.
- Miao, X., Gong, P., Swope, S., Pu, R., Carruthers, R., Anderson, G. L., et al., Estimation of yellow starthistleabindance through CASI-2 hyperspectral imagery using linear spectral mixture models. Remote Sens. Env.101,329−341, 2006.
- Myint, S. W., Lam, N. S. N., Tyler, J. M., Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches. Photogramm.Engg. Remote Sens. 70, 803−812, 2004.
- Nielsen, A. A., Spectral mixture analysis: Linear and semi-parametric full and iterated partialunmixing in multi-and hyperspectral image data. Int. J. Computer Vision 42(1), 17–37, 2001.
- Petrou, M., Foschi, P. G., Confidence in linear spectral unmixing of single pixels. IEEE Trans.Geosc. Remote Sens. 37(1), 624–626, 1999.
- Plaza, A., Martinez, P., Perez, R., Plaza, J., Spatial/Spectral Endmember Extraction by Multidimensional Morphological Operations. IEEE Trans.Geosc. Remote Sens. 40(9), 2025–2041, 2002.
- Plaza, A., Martinez, P., Perez,R., Plaza, J., A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data.IEEE Trans.Geosc.Remote Sens.42(3), pp. 650–663, 2004.
- Plaza, A., Martinez, P., Plaza, J., Perez, R., Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosc. Remote Sens. 43, 466−479, 2005.
- Powell, R. L., Roberts, D. A., Dennison, P. E., Hess, L. L., Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens.Env. 106, 253–267, 2007.
- Rashed, T., Weeks, J. R., Roberts, D. A., Rogan, J., Powell, R. L., Measuring the physical composition of urban morphology using multiple endmember spectral mixturemodels. Photogramm.Engg. Remote Sens. 69(9),1011−1020, 2003.
- Richards, J. A., and Jia, X., Remote Sensing Digital Image Analysis, Springer-Verlag: Berlin, 2006.
- Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R. O., Mapping Chaparral in the Santa Monica Mountains using Multiple Endmember Spectral Mixture Models. Remote Sens.Env.65, 267−279, 1998.
- Sabol, D. E., Adams, J. B., Smith, M. O., Quantitative subpixel spectral detection of targets in multispectral images. J.Geophy. Res. 97(E2), 2659−2672, 1992.
- Settle, J., On the residual term in the linear mixture model and its dependence on the point spread function. IEEE Trans. Geosc. Remote Sens. 43, 398−401, 2005.
- Settle, J., On the Effect of Variable Endmember Spectra in the Linear Mixture Model. IEEE Trans.Geosc. Remote Sens. 44(2), 389–396, 2006.
- Settle, J. J., Drake, N. A., Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14, 1159–1177, 1993.
- Shimabukuro, Y. E., Smith, A. J., The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Trans.Geosc. Remote Sens.29(1), 16–20, 1991.
- Small, C., A global analysis of urban reflectance. Int. J. Remote Sens. 26, 661−681, 2005.
- Somers, B., Asner, G. P., Tits, L., Coppin, P., Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Env.115, 1603−1616, 2011.
- Somers, B., Delalieux, S., Stuckens, J., Verstraeten, W. W., Coppin, P., A weighted Linear Spectral Mixture Analysis approach to address endmember variability in agricultural production systems. Int. J. Remote Sens. 30, 139−147, 2009a.
- Somers, B., Delalieux, S., Verstraeten, W. W., van Aardt, J. A. N., Albrigo, G., Coppin, P., An automated waveband selection technique for optimized hyperspectral mixture analysis. Int. J. Remote Sens. 31, 5549−5568, 2010a.
- Somers, B., Delalieux, S., Verstraeten, W. W., Verbesselt, J., Lhermitte, S., Coppin, P., Magnitude and shape related feature integration in hyperspectral mixture analysis to monitor weeds in citrus orchards. IEEE Trans. Geosc. Remote Sens. 47, 3630−3642, 2009b.
- Somers, B., Verbesselt, J., Ampe,E. M., Sims, N., Verstraeten, W. W., Coppin,P., Spectral mixture analysis to monitor defoliation in mixed aged Eucalyptus globules Labill plantations in southern Australia using Landsat 5TM and EO-1 Hyperion data. Int. J Applied Earth Obs. Geoinf. 12, 270−277, 2010b.
- Song, C., Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens.Env. 95, 248−263, 2005.
- Song, C., Woodcock, C. E., Estimating tree crown size from multiresolution remotely sensed imagery. Photogramm.Engg.Remote Sens. 69(11), 1263–1270, 2003.
- Townshend, J. R. G., Huang, C., Kalluri, S. N. V.,DeFries, R. S., Liang, S., Yang, K., Beware of per-pixel characterisation of land cover. Int. J. Remote Sens. 21, 839–843, 2000.
- Townshend, J. R. G., Justice, C. O., Gurney, C., McManus, J., The impact of misregistration on change detection. IEEE Trans.Geosc. Remote Sens. 30(5), 1054–1060, 1992.
- Winter, M. E., N-Findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the SPIE: Imaging Spectrometry 3753, 266–275,1999.
- Winter, M. E. and Winter, E. M., Comparison of Approaches for Determining End-members in Hyperspectral Data.IEEE Trans.Geosc. Remote Sens. 3, 305–313, 2000.
- Wu, C., Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sens. Env.93, 480−492, 2004.
- Xian, G., Crane, M., Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens.Env.97, 203−215, 2005.
- Yang, F., Matsushita, B., Fukushima, T., A pre-screened and normalised multiple endmember spectral mixture analysis for mapping impervious surface area in Lake Kasumigaura Basin, Japan. ISPRS J.Photogramm. Remote Sens.65, 479–490, 2010.
- Yang, X., Lo, C. P., Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 23(9), 1775–1798, 2002.
- Zhang, J., Rivard, B., Sanchez-Azofeifa, A., Derivative spectral unmixing of hyperspectral data applied to mixtures of lichen and rock. IEEE Trans. Geosc. Remote Sens. 42, 1934−1940, 2004.
- Zhang, J., Rivard, B., Sanchez-Azofeifa, A., Castro-Esau, K., Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery. Remote Sens. Env.105, 129−141, 2006.
- Zheng, M., Cai, Q., Wang, Z., Effect of prior probabilities on maximum likelihood classifier. Geoscience and Remote Sensing Symposium, 2005, IGARS’05, Proceedings 2005 IEEE International, 6, 3753–3756, 2005.
|
|
Citation : Uttam Kumar, S. Kumar Raja, Chiranjit Mukhopadhyay and T.V. Ramachandra., 2013, Assimilation of endmember variability in spectral mixture analysis for urban land cover extraction., Advances in Space Research, Volume 52, Issue 11, 1 December 2013, Pages 2015-2033.
|