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Abstract

Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mix-
ture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover
(LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium
and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat
ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for
the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data,
the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class.
� 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Urban areas are currently among the most rapidly
changing land cover (LC) types on the Earth. Urban cities
are the loci of human population and activities, and are
therefore sites of significant natural resource transforma-
tion (Lambin et al., 2001). Remote sensing (RS) has been
widely used to provide a timely and synoptic view of urban
LC (Kumar et al., 2011b; Yang and Lo, 2002). More often
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than not, the accuracy of urban LC mapping is limited by
the presence of mixed pixels (Kumar et al., 2008). Deriving
accurate, quantitative measures over urban area remains a
fundamental research challenge due to the great spatial and
spectral variability of the materials (Forster, 1985; Lu and
Weng, 2004; Xian and Crane, 2005). In highly variable
scenes, spatial heterogeneity (in the types and conditions)
of endmembers of urban surface materials is problematic
at multiple spatial scales, resulting in a high percentage
of mixed pixels in most moderate to low spatial resolution
imagery and occasionally, even limiting the utility of high
spatial resolution imagery (Myint et al., 2004; Small,
2005; Somers et al., 2011).

There are two principal approaches to retrieve informa-
tion on LC from multispectral (MS) satellite images. The
most common approach to characterise LC from RS data
is hard classification; assigning all pixels in the image to
rved.
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mutually exclusive classes such as built-up, water, vegeta-
tion, etc. (Carlson and Sanchez-Azofeifa, 1999; Kumar
et al., 2011c; Powell et al., 2007) generating a thematic
map at the resolution of the bands. This approach is prob-
lematic for several reasons – firstly, most urban LC classes
are not spectrally distinct resulting in considerable confu-
sion between classes (Small, 2005). Secondly, physical com-
position of the classes may vary due to different building
materials and different construction practices and therefore
cross regional comparisons between urban areas are limited
(Small, 2005). This method depends on the assumption that
two signals corresponding to one cover type are much more
similar to each other than the two signals from different
cover types (Settle, 2006). Another approach is linear
unmixing – the linear mixture model (LMM), which allows
a number of different LC types to be present, each contrib-
uting a fraction of its (unique, fixed) spectrum where frac-
tion corresponds to the area occupied by that LC type
which is obtained by inverting the model to produce esti-
mates of those fractional abundances. The spectral signa-
ture (endmember) for each class may be obtained from
the image itself (Bateson et al., 2000; Boardman, 1995;
Kumar et al., 2008, 2012; Plaza et al., 2004; Settle, 2006;
Winter and Winter, 2000) or from libraries of reference
spectra (Dennison and Roberts, 2003). The selection of
endmembers involves identifying both the number and type
of endmembers and their corresponding spectral signa-
tures. Various approaches for selecting endmembers have
been proposed (refer Plaza et al., 2004, 2005; Martinez
et al., 2006; Miao and Qi, 2007; Dobigeon et al., 2009,
etc.). However, the use of fixed endmember spectra does
not take into account the variation in endmember spectral
signatures caused by differential illumination conditions,
spatial and temporal variability in the scene components
resulting in significant fraction estimate errors.

The pixel-to-pixel variability in an image can be
explained in two different ways as described by Settle
(2006). Firstly, the main distinction is between pixels of dif-
ferent LC types, with further variation coming from
within-class variability. Secondly, there is no within-class
variability, but the variations in reflectance within the pix-
els arise from pixel-to-pixel variations in the fractional cov-
erage. This could lead us to infer that if the intrinsic scale of
the pixel is smaller than the changes in LC type, hard clas-
sification is justified, while unmixing is appropriate when
the case is reverse, given the underlying class membership
model. The fundamental reason for this variability is the
issue of scale and hence toggling between the two models
for addressing the variability in surface reflectance may
not be appropriate. The phenomenon of variability is pre-
valent at a fine scale and it is unreasonable to ignore the
effect of variability in pure LC classes at sufficiently high
resolution while observing the same at a moderate or
coarse resolution (Settle, 2006). Standard LMM assumes
a fixed number of representative endmembers and the
entire image is modeled in terms of those spectral compo-
nents. However, urban environments are particularly
difficult to model because a single endmember cannot
account for considerable spectral variation within a class
as they exhibit high degrees of spectral heterogeneity on
fine scales. The procedure is limited because the selected
endmember spectra may not effectively model all the ele-
ments in the image, or a pixel may be modeled by endmem-
bers that do not actually correspond to the materials
located in its field of view and result in decreased accuracy
of the estimated fractions (Sabol et al., 1992). Thus, for
each pixel, it may sometimes be more appropriate to recog-
nise that a distribution of possible coverage may be derived
for each class. The width of this distribution is a function
of the degree of intra-class spectral variation (variability
within the endmember class) present and will impact on
the use of the sub-pixel classification output.

Various attempts have been made to address endmem-
ber variability. Somers et al. (2011) presented a detailed
review of the available methods and results of endmember
variability reduction in spectral mixture analysis based on
the hypothesized five principles which are reviewed at the
end of Section 3 (after the conceptual framework of VEC-
LS algorithm). In recent times, numerous solutions (Som-
ers et al., 2010a,b) to account endmember variability
have been proposed including the hierarchical Multiple
Endmember Spectral Mixture Analysis (MESMA, Roberts
et al., 1998) applied to map urban LC in Bonn, Germany,
with a Hymap (126 spectral bands) and 4 levels of classifi-
cation using 1521 endmembers obtained using EAR,
MASA and COB (Franke et al., 2009). MESMA was also
applied on Landsat ETM+ with four endmembers (vegeta-
tion, impervious surface, soil and water) for Manaus, Bra-
zil (Powell et al., 2007). Foody and Doan (2007) reported
the impact of intra-class spectral variability on the estima-
tion of sub-pixel LC class composition concluding that
class variation has an impact on the accuracy of sub-pixel
class composition estimation, as it violates the assumption
that a class can be represented by a single endmember. Set-
tle (2006) attempted to derive an improved representation
of error term in the mixture model, taking account of the
variability of the endmember spectra and of sub-pixel var-
iation in fraction abundance of surface cover. Song (2005)
proposed a Bayesian spectral mixture analysis (BSMA)
model to understand the impact of endmember variability
on the deviation of sub-pixel vegetation fractions in an
urban environment. This approach is similar to iterative
mixture analysis, i.e., each pixel is unmixed with randomly
selected combinations of endmember signatures, repre-
sented by probability density functions. BSMA accounts
the probabilities of spectral signatures instead of assuming
equal probabilities for all endmembers. Bateson et al.,
(2000) constructed endmember bundles to produce mini-
mum and maximum fraction images bounding the correct
cover fractions and specifying error due to endmember var-
iability. Recently, a pre-screened and normalised MESMA
which includes a new endmember selection strategy and an
integration of the normalised spectral mixture analysis
(NSMA) and MESMA for estimating impervious surface
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area fraction was proposed by Yang et al., (2010). The
methods proposed above are different in their approaches,
underlying principles and assumptions. They have been
tested on different datasets and there is no proper guideline
as to which method and spatial resolution would be most
suitable for optical RS data for a regional level urban area
classification while taking into account the intra and inter
class variability, i.e., similarity among endmember classes
(Zhang et al., 2006).

Here, we propose a novel technique – variable endmem-

ber constrained least square (VECLS) for addressing the
endmember variability in an image. The methodology for
classification allows the signals within a class to vary from
pixel to pixel about a mean spectrum. Each class is then
represented by the mean and by a variance-covariance
matrix that captures the statistical variability around the
mean, and allocation decisions are based on a modified
form of statistical pattern matching. Many instances of a
particular endmember are chosen from the image to take
into account its variability. This inter-class variance is
accounted by constructing a covariance matrix that varies
around the selected endmember mean. The algorithm is
first applied on a computer simulated dataset with 4 bands
and 3 classes having small, medium and large variability in
the endmember’s spread. The technique is then tested on
real datasets acquired from IKONOS, Landsat ETM+
and MODIS sensors taking 2, 3 and 4 classes. The method
is compared with a situation when there are no variances in
the endmembers, i.e., covariance within an endmember is
zero. The results are validated with a high resolution clas-
sified map using correlation, root mean square error
(RMSE), and bidirectional function (BDF) plots. The
overall methodology is as depicted in Fig. 1.

The paper is organised as follows. Section 2 discusses
the general linear model and the framework for VECLS
algorithm is described in Section 3. Section 4 presents data
and methods, followed by results and discussion in Sec-
tion 5 and 6 respectively, with concluding remarks in
Section 7.

2. Linear model

Linear unmixing assumes that a satellite signal is mod-
eled as a weighted sum of a limited number of basic signals,
where each of these signals is characteristic of one of a
number of LC types contributing to the signal. If there
are M spectral bands and N classes, then associated with
each pixel is a M-dimensional vector y whose components
are the gray values corresponding to the M bands. Let E =
[e1, . . ., en-1, en, en+1,. ., eN] be a M � N matrix, where {en}
is a column vector representing the spectral signature (end-
member) of the nth target material. For a given pixel, the
abundance or fraction of the nth target material present
in a pixel is denoted by an, and these values are the compo-
nents of the N-dimensional abundance vector a. Assuming
LMM (Shimabukuro and Smith, 1991), the observation
vector y is related to E by
y ¼ Eaþ g ð1Þ

where g accounts for the measurement noise. We further
assume that the components of the noise vector g are
zero-mean random variables that are i.i.d. (independent
and identically distributed). Therefore, the covariance ma-
trix of the noise vector is r2I, where r2 is the variance, and
I is M � M identity matrix. Two constraints imposed on
the abundances in Eq. (1) are the non-negativity and
sum-to-one given as

an P 0; 8n : 1 6 n 6 N ð2Þ

and

XN

n¼1

an ¼ 1 ð3Þ

This allows proportions of each pixel to be partitioned
between classes. The conventional approach (Nielsen,
2001) to extract the abundance values is to minimise
jjy� Eajj, and the Unconstrained Least Squares estimate
for the abundance is

a ¼ ðET EÞ�1
ET y ð4Þ

Imposing the unity constraint on the abundance values
while minimising jjy� Eajj, gives the Constrained Least
Squares (CLS) estimate of the abundance as,

a ¼ ðET EÞ�1ðET y� k
2

1Þ ð5Þ

where

k ¼ 2ð1T ðET EÞ�1
ET y� 1Þ

1T ðET EÞ�1
1

ð6Þ
3. Conceptual framework for Variable Endmember

Constrained Least Square (VECLS)

Intra-class variability of remotely sensed data is often
too high or too low for unmixing a single pixel (Petrou
and Foschi, 1999). In such situations, the endmember of
a particular class are not strictly unique vectors and there
is always a variation within that class. Therefore, we mod-
ify Eq. (1) to represent variable endmembers as random
vectors, and introduce the following statistical LMM

y
�
¼
XN

n¼1

en
�

an
�

ð7Þ

where, fan
�
g is the observed set of M reflectance values and

e
�

is the random vector representing the variable endmem-

ber of class n. The endmembers of each class n are drawn
from a probability distribution defined by the probability
density function (p.d.f.) fnðen

�
Þ. It is reasonable to make

an assumption that endmember p.d.f.s of distinct LC cate-
gories are mutually independent. For example, the spectral
signature distribution of builtup and vegetation can be
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treated independently. As a consequence of the above
assumption, fen

�
ang are also mutually independent. If we

denote en
�

an as yn
�

, Eq. (7) can be rewritten as

y
�
¼
XN

n¼1

yn
�

ð8Þ

and p.d.f. of yn
�

can be shown to be 1
am

n
fnðyn

an
Þ. Since {yn

�
} are

mutually independent, p.d.f. of fy
�
g is given by

pyðyÞ ¼
1

aM
1

f1
y1

a1

� �� �
� 1

aM
2

f1
y2

a2

� �� �
� � � �

� 1

aM
m

f1

ym

am

� �� �
; ð9Þ

where � denotes a convolution operator. Note that p.d.f. of
fy
�
g implicitly depends on the abundance values fan

�
g. Gi-

ven the observation vector y, we define the likelihood func-

tion L as

Lða1
�
; . . . ; an�1

�
; an
�
; anþ1
�
; . . . ; aN

�
Þ

¼ pyðy; a1
�
; . . . ; an�1

�
; an
�
; anþ1
�

. . . ; aN
�
Þ ð10Þ

Here, we estimate abundance values by seeking fan
�
g

which maximises the likelihood function subject to the con-
straint that sum of all abundance values add to 1, which is
the value of fan

�
g that maximises the likelihood function.
This means, given a1
�
; . . . ; an�1

�
; an
�
; anþ1
�
; . . . ; aN

�
, an
�

is the

value for which y has the maximum chance to occur. Also
note that abundance values are deterministic quantities.

We first assume a Gaussian case and then subsequently
move on to a generalised case, where the form of p.d.f.
is not assumed. Let ln and Cn be mean vector and covari-
ance of nth target material, respectively. It is clear from
LMM in Eq. (7) that the distribution of observation (y

�
)

is also Gaussian whose mean and covariance are given by

l ¼
XN

n¼1

an
�

ln
�
;C ¼

XN

n¼1

a2
n
�

Cn ð11Þ

In our framework, in order to find the ML (Maximum
Likelihood) abundances, we maximise the log-likelihood

Lða1
�
; . . . ; an�1

�
; an
�
; anþ1
�
; . . . ; aN

�
; yÞ

¼ � 1

2
logðdet½C�Þ � 1

2
ðy� l

�
ÞT C�1ðy� lÞ ð12Þ

The above approach is based on the assumption that the
underlying distribution of the spectral signatures are
normal.

Next, in what follows we show a framework where no
assumption on the form of p.d.f. is made. Let Z be a matrix
whose column are the means of the spectral signatures, i.e.,
Z ¼ ½l1

�
; . . . ; ln�1

�
; ln
�
; lnþ1
�
; . . . ; lN

�
�: Suppose that the actual

observation is o, then we seek to minimise the deviation
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between o and y
�

subject to constraints given in Eq. (3). We

minimise,

F ða; kÞ ¼ E o�
XN

n¼1

en
�

an
�

 !T

o�
XN

n¼1

en
�

an
�

 !( )

þ k
XN

n¼1

am
�
�1

 !
ð13Þ

where E{.} is the expectation operator and k is the
Lagrangian multiplier for enforcing the constraint on the
abundance. Using (11), it is easy to simplify the expectation
term in expression (13) as follows:

¼E o�lþl�
Xn

n¼1

an
�

yn
�

 !T

þ o�lþl�
Xn

n¼1

an
�

yn
�

 !( )
ð14Þ

¼ E o� lð ÞT ðo� lÞ
� �
þ E l�

XN

n¼1

an
�

yn
�

 !T

l�
XN

n¼1

an
�

yn
�

 !( )
ð15Þ

¼ ðo� lÞT ðo� lÞ þ
XN

n¼1

a2
n
�

Trace½Cn� ð16Þ

Note that in Eq. (16) no cross-correlation terms appear.
Denoting V as the diagonal matrix whose nth diagonal ele-
ment is the trace of Cn (covariance of nth target material),
the objective function F(a) can be written in a more com-
pact form using Z and V as

F ða; kÞ ¼ ðo� ZaÞT ðo� ZaÞ þ aT V aþ kðaT 1� 1Þ ð17Þ
where 1 is a vector whose components are all 1. In order to
find the minima, we first take the first derivative of F(a)
with respect to fang, k and equate it to 0.

@F ða; kÞ
@a

¼ 2ZT Za� 2ZT oþ 2Vaþ k1 ¼ 0 ð18Þ

@F ða; kÞ
@k

¼ aT 1� 1 ¼ 0 ð19Þ

2ZT Za� 2ZT oþ 2Vaþ k1 ¼ 0

a ¼ 2ZT o� k1

2ZT Zþ 2V

¼
ZT o� k

2
1

ZT Zþ V

ð20Þ

a ¼ ZT Zþ V
� 	�1

ZT o� k
2
1

� 	
ð21Þ

Now we derive an explicit expression for k. Denoting
a0 ¼ ðZT Zþ VÞ�1

ZT o, Eq. (20) can be written as

a0 ¼ a0 �
k
2
ðZT Zþ VÞ�1

1 ð22Þ

Multiplying 1T on both sides, we get

1T a ¼ 1T a0 �
k1T ðZT Zþ VÞ�1

1

2
ð23Þ
Note that 1Ta = 1. Therefore the final expression for k is

1T a0 ¼
k
2

1T ðZT Zþ VÞ�1
1 ð24Þ

k ¼ 2ðaT
0

1�1Þ
1T ðZT ZþV Þ�1

1
ð25Þ

In conventional approach, where the endmembers are
assumed to be constant, Z represents the endmember
matrix (V = 0), and the endmembers are obtained by
minimising

ðo� ZaÞT ðo� ZaÞ þ kðaT 1� 1Þ ð26Þ

subject to the constraint that aT 1 ¼ 1. However, in this ap-
proach, we have assumed the endmembers to be variable,
and as a consequence the endmember variability term
namely V has been accounted.

The spectral mixture analysis (SMA) techniques for
addressing endmember variability have been broadly cate-
gorised (Somers et al., 2011) based on five basic principles:
(i) iterative mixture analysis cycle, (ii) spectral feature selec-
tion, (iii) spectral weighting, (iv) spectral transformations,
and (v) spectral modelling. Table 1 compares VECLS with
the existing techniques (Somers et al., 2011) and it is evi-
dent that VECLS is conceptually different as VECLS is
not iterative, does not involve spectral feature selection,
spectral weighting, spectral transformation or even spectral
modelling. Hence VECLS has been placed as a separate
category in the table for comparison. The underlying gen-
esis behind the methods, advantages and disadvantages
are also highlighted.
4. Data and methods

A major problem involved in analysing the quality of
fractional estimation methods is the fact that ground
truth information about the real abundances of materials
at sub-pixel levels is difficult to obtain in real scenarios.
Therefore, simulated dataset were used to illustrate and
explore the effect of class spectral variability on sub-pixel
class composition estimation in a controlled analysis as
single class is difficult to be adequately represented by a
unique endmember which remains an implicit assumption
in unmixing (Asner, 1998; Song and Woodcock, 2003;
Townshend et al., 1992). Advantages are that the exact
endmember fractions are known and in addition, the
non-linear interactions of photons among endmembers
(Kumar et al., 2012) do not exist, simplifying the problem
and allowing better understanding of the impact of end-
member variability.

With real time RS data, the impacts of class spectral var-
iation on sub-pixel class composition estimation has been
illustrated by addressing the spatial variability of LC com-
ponents as a combination of endmembers, and spectral
variability has been addressed by allowing the number
and type of endmembers to vary from pixel to pixel. The
entire methodology is summarized in steps as follows:



Table 1
Comparative analysis of the existing endmember variability spectral mixture analysis techniques with VECLS.

Sl.
no.

Basic principle Techniques Genesis Advantage Disadvantage Observation

1 Iterative mixture
analysis cycle

MESMA (Multiple
Endmember
Spectral Mixture
Analysis, Roberts
et al., 1998)

MESMA allows
multiple endmember for
each component

� Endmembers are
allowed to vary on a
pixel basis
� Each plausible end-

member is accounted
by assigning a best-
fit (lowest RMSE) to
each pixel iteratively

High computation
complexity because of
iterative nature of the
method

Iterative mixture
analysis lead to more
than one possible
combination of pure
spectra and sometimes
results in the same
mixed spectrum which
is a ill posedness
problemAuto MCU (Monte

Carlo Spectral
Unmixing Model,
Asner and Lobell,
2000)

A large number of
endmember
combinations for each
pixel are calculated by
randomly selecting
spectra from a spectral
database to unmix a
pixel (also called fuzzy
unmixing)

The number of model
samples for each of the
possible mixture
combination is used to
compute the probability
and confidence of each
mixture

It propagates
uncertainity in
endmember spectra to
the final subpixel cover
fraction results

Endmember
Bundles (Bateson
et al., 2000)

� From the eigenvec-
tors (obtained
through Principal
Component Analy-
sis) of the image,
bundles of vectors
are identified to rep-
resent the
endmembers.
� A linear program-

ming routine deter-
mines minimum,
mean and maximum
fraction of each
endmember

BSMA (Bayesian
Spectral Mixture
Analysis, Song,
2005)

BSMA is based on
Bayes theorem, it
unmixes each pixel with
randomly selected
combination of
endmembers which are
represented by a p.d.f.

� Accounts for the
probability of spec-
tral signatures,
instead of assuming
equal probabilities
for all endmembers.
� Captures spectral

variability with least
number of
endmembers

SMA gives subpixel
fractions with almost
the same and sometimes
even better accuracy
than from BSMA
except without
uncertainty information
for the estimates

2 Spectral feature
selection (SFS)

� AutoSWIR
(Asner and
Lobell, 2000)
� Residual Analy-

sis based SFS
(Ball et al.,
2007)
� PCA based SFS

(Miao et al.,
2006)
� DCT based SFS

(Li, 2004)
� SZU based SFS

(Somers et al.,
2010b)

� Based on data
reduction by selec-
tion of wavelengths.
� It is robust against

spectral variability,
i.e., it minimises
intra and maximises
inter-class
variability

� Computation com-
plexity is reduced
because of data
dimensionality
reduction.
� Incorporates uncor-

related spectral
information.
� AutoMCU includes

both VIS and NIR
bands for feature
selection, thereby
covering wider wave-
length region

AutoSWIR is
completely dependent
on the availability of
high-fidelity SWIR2
region; originally
designed for semi-arid
region which may not
be always true

SZU was found to be
better than AutoSWIR
and MESMA
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Table 1 (continued)

Sl.
no.

Basic principle Techniques Genesis Advantage Disadvantage Observation

3 Spectral
weighting

Spectral weighting
based technique by
Somers et al.
(2009b)

� It prioritises spectral
bands less sensitive
to endmember vari-
ability by giving
them higher weight
in spectral mixture
analysis.
� The estimated cover

fractions are influ-
enced or determined
by high reflected
energy level in the
reflectance bands of
the pixel.

The highest reflectance
bands for each object
can be easily used to
estimate class
proportions with higher
accuracy.

Assigning weightage to
endmembers based on
dominating wavebands
may sometimes be
nontrivial.

For vegetation studies,
NIR band will
dominate the model and
VIS bands will
dominate marginally.

4 Spectral
transformations
(ST)

� Tied Spectrum
based ST (Asner
and Lobell,
2000).
� Normalised

Spectral Mix-
ture Analysis
(NSMA, Wu,
2004).
� Derivative Spec-

tral unmixing
(DSU, Zhang
et al., 2004).
� First derivative

based ST
(Debba et al.,
2006).
� Wavelet based

ST (Li, 2004)

Instead of original
reflectance data,
transformed / modified
spectral information is
used for spectral
unmixing.

� Landscape features
gets highlighted
because of spectral
band transformation.
� Endmember separa-

bility increases.

Careful calibration /
validation may be
required (for example
for DSU), as derivatives
increase SNR.

Two different
transformation methods
on the same data may
not produce consistent
class proportion results
such as derivative and
wavelet because the
number of spectral
bands for analysis is
only a subset of the
original full spectral
range.

5 Spectral
modelling

� Weighted Linear
Spectral Mix-
ture Analysis
(Example: Soil
Modeling Mix-
ture Analysis –
SMMA by Som-
ers et al., 2009a).
� MODTRAN

radiative trans-
fer model (Eck-
mann et al.,
2008)

Radiative transfer
models are used to
generate endmember
libraries for spectral
mixture analysis.

They provide dynamic
and robust way to
account the spatial and
temporal variability.

Each model is specific to
an application and
cannot be generalised.

SMMA cannot work
for a landscape which
has no soil.

6 Variable
Endmember
Constrained
Least Square
(VECLS)

� Allows the signals within a class to vary
from pixel to pixel about a mean spectrum
� Endmembers are selected both automati-

cally (through N-FINDR) and using super-
vised techniques.
� Through many instances of a particular

endmember, its variability and the inter-
class variance are accounted by the covari-
ance around the selected endmember mean.

� Non-iterative so less
computation
complexity.
� Method does not

involve feature selec-
tion, spectral weight-
ing, and
transformations.
� It is not designed for

any specific endmem-
ber mixture model
and is separately
derived for a Gauss-
ian and a generalised
case (no assumption
of the form of p.d.f.).

The method is applied
for simulated and an
urban landscape. Its
performance on
different landscapes has
to be assessed to
understand the
robustness of the
technique.

The method need to be
applied on different
data sets such as
hyperspectral with
higher number of
classes to assess its
utility.
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Table 2
Mean endmembers and spread around the mean for small, medium and large variability.

Class Mean endmember in
Band 1

Mean endmember in
Band 2

Mean endmember in
Band 3

Mean endmember in
Band 4

Spread to control
variability

1 142 136 135 74 0.001
2 81 69 56 203 7
3 140 132 96 7 20
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Step-1: Geo-correction of RS data.
Step-2: Decide the number of LC classes.
Step-3: Derive individual endmembers from the image.
Step-4: Correlate endmembers to ground conditions (LC

classes).
Step-5: Select many instances of endmembers to account

for the statistical variability.
Step-6: Represent each class by its mean and variance-

covariance matrix.
Step-7: Apply VECLS algorithm.
Step-8: Obtain abundance map for each class.
Step-9: Validate abundance maps with ground truths

using correlation, RMSE, and BDF plots.

4.1. Simulated data

Spectral libraries of three minerals – alunite (endmem-
ber1), buddingtonite (endmember2), and kaolinite (end-
member3) available at http://speclib.jpl.nasa.gov/ were
used to generate simulated data, which comprises of three
classes. Also, to accommodate for the dimensionality con-
straint in unmixing (Settle and Drake, 1993), four simu-
lated spectral wavebands of 100 � 100 dimensions were
considered. The spectral responses of each class in each
waveband were varied (from small to medium to large) in
separate experiments to illustrate the impacts of differences
in intra-class variation.

Initially, means of different classes (Table 2) were taken
to define the class endmember spectra and then used to
generate abundance maps for validating the output of
VECLS algorithm. Here, each pixel was obtained from a
LMM and the endmembers of each category was drawn
from a Gaussian distribution where the mean of each end-
member can be set and the variability can be controlled.

Artificial bands are assumed to be of the form: mean +
Gaussian perturbation given by covariance, i.e.,

� endmember 1 = mean 1 + random perturbation;
� endmember 2 = mean 2 + random perturbation;
� endmember 3 = mean 3 + random perturbation;

where random perturbation is a Gaussian random vari-
able of 0 mean and specific variance. So,

artificial band ¼ abundance1� endmember1

þ abundance2 � endmember2

þ abundance3 � endmember3: ð27Þ
The statistical properties of each simulated band are
given in Table 3. A multitude of LMMs were applied with
different endmembers and a series of sub-pixel class compo-
sition estimates were obtained for a pixel of given spectral
response. The bands were spatially degraded to 50 � 50
dimension (half the spatial resolution of the original image)
and to 10 � 10 dimension (one tenth of the original image
dimension) to study the impact of endmember variability at
different spatial scales. In this way, we could analyse not
only the impact of variable endmembers, but also the
impact of variability in endmembers with respect to change
in spatial resolutions. In another set of experiments, covari-
ance of all the endmembers were made zero, i.e., assuming
each endmember is being represented by only one spec-
trally pure pixel and there is no variation within an end-
member. The idea behind doing this was to compare the
performance of the algorithm in two complementary cases,
namely, when the endmembers have (i) variability, (ii) no
variability.

It was ensured that there are instances of 100% class
proportions in the three abundance maps generated using
simulated data. These pixels were then mapped to the ori-
ginal bands and corresponding pixel values were extracted
as endmembers. User defined means and spread around the
mean could be incorporated into the simulated data and
hence, the endmembers in the 4 bands were cross verified
with the class means. Endmembers were also visualised
using scatterplots (Fig. 2) which shows location of classes
defined by the means in simulated data with small, medium
and large variability, where each class occupies an area of
the feature space. It is obvious that any one point in the
feature space can be associated with a variety of class
compositions.
4.2. Remote sensing data

The VECLS algorithm was assessed for its performance
in unmixing mixed pixels of various spatial and spectral
resolutions. Initially, IKONOS 4 bands MS data of 4 m
spatial resolution were fused with IKONOS 1 m Panchro-
matic (PAN) band using Smoothing Filter based Intensity
Modulation (SFIM) fusion (Liu, 2000) based on compara-
tive analysis of the image fusion results (Kumar et al., 2009,
2011a). Training pixels were taken from the False Colour
Composite (FCC) and supervised classification using Max-
imum Likelihood Classifier (MLC) (Duda et al., 2000;
Richards and Jia, 2006; Zheng et al., 2005) was performed
on the fused data (1 m) to classify the image into 2 classes



Table 3
Statistical properties of the simulated data.

Bands Minimum Maximum Range Mean Variance Variation coefficient (%)

Small variability

1 80.99 142.00 61.02 124.72 353.95 15.09
2 69.03 136.03 67.01 116.51 419.93 17.59
3 55.96 134.95 78.99 102.34 548.70 22.89
4 7.02 202.99 195.97 90.46 2652.17 56.93

Medium variability

1 76.42 149.98 73.56 124.71 358.24 15.18
2 65.08 141.18 76.09 116.50 424.60 17.69
3 50.49 139.45 89.26 102.33 553.69 22.99
4 5.12 205.75 200.63 90.47 2657.12 56.98

Large variability

1 69.36 153.70 84.34 124.78 366.32 15.34
2 59.84 149.93 90.09 116.60 435.10 17.89
3 44.94 147.47 102.54 102.43 560.94 23.12
4 2.87 207.81 204.94 90.33 2661.18 57.11
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(vegetation, non-vegetation), 3 classes (urban, vegetation
and water) and 4 classes (urban, vegetation, water and
open area). The overall accuracy of the classified images
were 98% (2 classes), 96% (3 classes) and 93% (4 classes)
respectively. These classified maps were used as references
to validate the sub-pixel maps obtained using VECLS
and CLS. A series of experiments with varying resolutions
and varying classes (2, 3 and 4) were carried out to illus-
trate the performance of the proposed algorithm. The
details of the data (IKONOS PAN (1 m) and MS (4 m),
Landsat ETM+ MS (25 m) and MODIS 7 bands (250
m)) used are provided in Table 4.

The study area (Fig. 3) is a part of Bangalore City, India
which is highly urbanised with considerable spectral varia-
tion (for example due to buildings with concrete roofs, tiled
roofs, asbestos, asphalt, etc.) that exhibit high degrees of
spectral heterogeneity on fine scales. The scene has dense
buildings, bus stand, railway station, tarred roads with fly-
overs, parks, race course and lakes. There are few open
areas (such as playground, walk ways and vacant land).
This scene was appropriate to judge the performance of
VECLS with highly contrasting and heterogeneous features
at different spatial resolutions. We had little prior knowl-
edge of the appropriate spatial scale for interpreting the
fractions generated for an urban area. Hence, varying the
spatial scale allowed us to investigate the impact of scales
based on size of sampling unit, as well as to consider
how confident are the estimates of LC fractions that might
vary with spatial scale.

Endmembers were extracted from IKONOS MS,
Landsat and MODIS data using N-FINDR algorithm
(Boardman, 1995). The advantage of image endmembers
is that they can be collected at the same scale as the
image, therefore, endmembers are easier to associate with
image features (Rashed et al., 2003) but have some asso-
ciated error, which varies with the scale of the measure-
ment used and the scale of intrinsic spatial variation
(Settle, 2006). The N-FINDR algorithm is briefly given
below.

1. Let N denote the number of classes or endmembers to be
identified.

2. Perform a principal component analysis (PCA)-decom-
position of the data and reduce the dimension of the
data to N � 1. In what follows, we assume that the data
are transformed to N � 1 dimension PCA space.

3. Pick N pixels from the set and compute the simplex vol-
ume generated by the spectra of the N pixels. The vol-
ume of the simplex is proportional to

V ¼ det

1 1 � � � 1

e11 e12 � � � e1M

e21 e22 � � � e2M

� � � � � � � � � � � �
eM�11 eM�12 � � � eM�1M


























ð28Þ

4. Replace each endmember with the spectrum of each
pixel in the dataset and recompute the simplex volume.
If the volume increases, the spectrum of the new pixel is
retained as a potential endmember.

As the endmembers are at the extreme points of the con-
vex hull, the N-FINDR algorithm tries to find out those
pixels whose convex hull generated by their spectrum con-
tains the spectra of all the other pixels achieved by maxi-
mising the volume of the simplex (convex hull). These
steps are executed iteratively considering all the pixels
and the final set of spectra retained are taken to be the end-
members (Winter, 1999).

These endmembers were also identified in the three
FCCs and individual spectral bands of all the sensor data.
Many instances of similar endmembers per class were cho-
sen from the FCC and the scatterplots, and were incorpo-
rated into the VECLS algorithm. VECLS was applied on



Fig. 2. Endmember locations defined by the extreme pixels in small, medium and large variability data sets for three classes.

Table 4
Remote sensing datasets used for validating VECLS algorithm.

Data Spectral
bands

Spatial resolution Dimension Two classes Three classes Four classes

IKONOS PAN and MS
fused

4 1 m 8000 � 8000 Vegetation, non-
vegetation

Urban, vegetation,
water

Urban, vegetation, water,
open area

IKONOS 4 4 m 2000 � 2000 Vegetation, non-
vegetation

Urban, vegetation,
water

–

Landsat 6 30 m resampled to
25 m

320 � 320 Vegetation, non-
vegetation

Urban, vegetation,
water

Urban, vegetation, water,
open area

MODIS 7 250 m 32 � 32 Vegetation, non-
vegetation

Urban, vegetation,
water

Urban, vegetation, water,
open area
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each dataset to obtain the abundance maps for 2, 3 and 4
classes. Since IKONOS has only 4 spectral bands, only 3
target classes could be used due to dimensionality
constraints. The covariance of all the endmembers were
also assumed zero to assess the performance of the
algorithm in the absence of variability. This would give



Fig. 3. False Colour Composite of the study area from (a) IKONOS (PAN and Multispectral fused), (b) IKONOS Multispectral, (c) Landsat ETM+ and
(d) MODIS.

U. Kumar et al. / Advances in Space Research 52 (2013) 2015–2033 2025
the relative benefits of the proposed method and highlight
the advantages of considering variability in endmembers.
5. Results

5.1. Simulated data

Accuracy assessment of the abundance maps for 3 clas-
ses with small, medium and large variability obtained from
VECLS algorithm with reference abundance maps is
depicted in Tables 5–7 respectively. Figs. 4–6 shows the
impact of intra-class variability on the accuracy of unmix-
ing. Note that there are no pixels with abundances from
20% up to 70% in the abundance maps. The scatter in
the relationship between predicted and actual class compo-
sition increases with an increase in the degree of intra-class
spectral variation (from Figs. 4–6 for each class), reducing
the accuracy of the sub-pixel class composition estimates
derived in Table 5. However, these accuracies are far better
when compared to abundance estimation without endmem-
ber variability, also evident from Table 5.

The correlation and RMSE between predicted and
actual/real/reference proportions with spatially degraded
(down sampled) images are shown in Table 6 (at 50% of
the original image size, i.e. 50 � 50) and Table 7 (at 10%
of the original image size, i.e., 10 � 10). It is evident from
these Tables that VECLS has an improved accuracy over
CLS method. That is, the variability in endmembers has
been accounted by the proposed algorithm than assuming
single endmember per class. By degrading the images, it
was observed that the accuracy comes down marginally
and there is no drastic reduction. However, one important
conclusion that can be drawn is that it is difficult to capture
more variability with higher accuracy. Controlled variabil-
ity and the effect of changing resolution resulted in two
important findings: (i) As variability increases, the accu-
racy of classification decreases. In fact, the accuracy of
sub-pixel fraction estimates linearly decreases with intra-
class variability (Barducci and Mecocci, 2005; Settle,
2006). This is rational because higher the intra-class vari-
ability, more is the likelihood that the actual spectral char-
acteristics of the endmembers in a pixel will deviate from
the fixed endmembers. (ii) Down sampling of image pixels
(from high to low resolution) affects the overall accuracy
marginally with linear unmixing when (a) the endmembers
have been identified properly at each original image resolu-
tion with respect to the ground conditions and, (b) the data
fit well into the linear model.



Table 5
Accuracy of prediction derived from low, medium and large variability data compared to absence of endmember variability (single spectra for each
endmember) for 100 � 100 dimension images.

Class VECLS CLS (0 covariance) VECLS CLS (0 covariance)

Correlation coefficient (r) (p < 2.2e�16) RMSE

Small variability

1 0.9998 0.7332 0.0029 0.2312
2 0.9999 0.7403 0.0005 0.2077
3 0.9999 0.7406 0.0004 0.2088

Medium variability

1 0.9948 0.7155 0.0386 0.2506
2 0.9989 0.7380 0.0153 0.2104
3 0.9954 0.7321 0.0308 0.2181

Large variability

1 0.9851 0.7897 0.0563 0.2114
2 0.9968 0.7344 0.0259 0.2712
3 0.9850 0.8076 0.0561 0.1399

Table 6
Accuracy of prediction derived from low, medium and large variability data compared to absence of endmember variability at half the original image
dimension.

Class VECLS CLS (0 covariance) VECLS CLS (0 covariance)

Correlation coefficient (r) (p < 2.2e�16) RMSE

Small variability

1 0.9944 0.7105 0.0039 0.1732
2 0.9988 0.7211 0.0015 0.1223
3 0.9988 0.7213 0.0015 0.1221

Medium variability

1 0.9921 0.7341 0.0089 0.1022
2 0.9973 0.7241 0.0011 0.1210
3 0.9921 0.7222 0.0088 0.1289

Large variability

1 0.9821 0.7879 0.0673 0.0779
2 0.9933 0.7339 0.0079 0.1052
3 0.9841 0.8069 0.0601 0.0649

Table 7
Accuracy of prediction derived from low, medium and large variability data compared to absence of endmember variability at one-tenth of the original
image dimension.

Class VECLS CLS (0 covariance) VECLS CLS (0 covariance)

Correlation coefficient (r) (p < 2.2e�16) RMSE

Small variability

1 0.9911 0.7101 0.0029 0.2111
2 0.9985 0.7199 0.0009 0.2101
3 0.9983 0.7201 0.0011 0.2091

Medium variability

1 0.9889 0.7977 0.0005 0.2061
2 0.9890 0.7810 0.0004 0.2405
3 0.9900 0.7001 0.0414 0.2813

Large variability

1 0.9237 0.7297 0.1841 0.2417
2 0.9122 0.7544 0.1977 0.2106
3 0.9114 0.8076 0.1985 0.1917
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Fig. 4. The impact of small intra-class variability on the accuracy of unmixing using VECLS (a–c) and using CLS without variability (d–f).
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5.2. Remote sensing data

The IKONOS, Landsat ETM+ and MODIS images
were unmixed using VECLS method taking into account
covariance due to variability in endmembers and later, sub-
sequently assuming endmembers with zero covariance for
comparison (Fig. 7). The MODIS unmixed images are
not shown in Fig. 7 due to space constraint. The obtained
abundances were validated using correlation and RMSE as
shown in Tables 8–10.

Figs. 8–10 indicates that, in general, abundances
obtained from VECLS technique are much better than
CLS method. For 2 and 3 classes, with decrease in the
spatial resolution, the accuracy also decreases. However,
this may not be always true when using Landsat and
MODIS data in case of vegetation (Fig. 8) and in case
of vegetation, water and open area for 4 classes
(Fig. 10). The accuracy depends on the actual number
of endmembers present in the image correlated to ground
conditions and also the capability of the spectral bands to
distinguish those objects.

Also, with a very high spatial resolution data such as
IKONOS with 4 m spatial resolution, LMM would not
be always very useful. Ideally, in this case, we may get
abundances as 1 or 0 since there are high chances that
the intrinsic scale of objects on the ground may be of the
order of 1 IKONOS MS pixel. On the other hand, LMM
might work best for low spatial resolution and high spec-
tral resolution (such as MODIS) as evident from Fig. 10
for vegetation, water and open area classes. Since class sep-
arability depends on the number of spectral bands, so the
separation between endmembers of different classes is
important for obtaining higher accuracy. As also evident
from simulated data analysis, increase in variability may
reduce classification accuracy, but degrading the spatial
resolution may not always decrease the accuracies of indi-
vidual classes compared to accuracies obtained from classi-
fication of high spatial resolution data, provided a
minimum residual error linear model with proper endmem-
ber selection is achieved. Urban class was identified with
higher accuracy in IKONOS and Landsat bands compared
to MODIS bands. Usually, urban areas have more hetero-
geneity with contrasting features and variability compared
to other LC classes. Moreover, spatial extent of the urban
objects are typically of high to medium spatial resolution
pixel size, so Landsat data would be appropriate for urban
land use/land cover types of studies while IKONOS data
would be best for micro level urban studies.



Fig. 5. The impact of medium intra-class variability on the accuracy of unmixing using VECLS (a–c) and using CLS without variability (d–f).
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6. Discussion

Soft classification methods have attracted considerable
attention for reducing the mixed pixel problem that is often
encountered in RS applications. The exact nature of the
derived unmixing results is a function of classification algo-
rithm and endmember definitions. Correlation for all the
estimated classes with actual/reference proportion of those
classes greatly improved when endmembers were selected
based on the spectral variability of materials within the
scene. The effect of decreasing correlation between refer-
ence and modelled fractions due to decrease in spatial res-
olution was an expected result for several reasons: (a)
decreasing the pixel size would increase the impact of geo-
location error and this would affect accuracy assessment
while comparing the results with a high spatial resolution
classified reference map; (b) the signal recorded at the sen-
sor for a single pixel is affected by the spectral properties of
surrounding pixels (Forster, 1985; Townshend et al., 2000);
and (c) the process of averaging fractions over larger areas
reduces the variance of each dataset thereby, decreases cor-
relation between fractions, with the assumption that the
means of the two datasets are similar. Actually, similarity
between endmembers results in a high correlation between
the endmember spectra, which in turn leads to an unstable
inverse matrix and a dramatic drop in estimation accuracy
(Gong and Zhang, 1999). Under ideal conditions, most
accurate fractional estimates can be achieved using the
minimum number of endmembers required to account
spectral variability within a mixed pixel (Sabol et al.,
1992). Fractional errors occur either when too few end-
members are used resulting in spectral information that
cannot be accounted by the existing endmembers, or too
many, in which case minor departures between measured
and modelled spectra are often assigned to an endmember
that is used in the model, but not actually present (Roberts
et al., 1998). Urban environments are particularly difficult
for a simple mixture model because a single endmember
cannot account for considerable spectral variation within
a class. In contrast, endmember variability can account
for within-class variability and thus is likely to be more
suitable for urban RS (Franke et al., 2009). Using the
VECLS approach, pixel-scale limits in spectral dimension-
ality were acknowledged while also accounting for consid-
erable spectral variability within a scene. The uncertainties
in endmember fraction estimates that are usually caused by
brightness differences due to the wide FOV (Field of view)
of sensors or particularly due to the complex structure of
urban objects are minimised (Franke et al., 2009). This
work highlights that it is not sufficient to use a spectral



Fig. 6. The impact of large intra-class variability on the accuracy of unmixing using VECLS (a–c) and using CLS without variability (d–f).
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library based on the most representative endmembers of
each category. The ‘purest’ endmember fractions are not
necessarily representative of materials within the scene
and representative spectra may not necessarily be selected
as ‘pure’ endmembers (Song, 2005). An endmember that
is most representative of its class, in this case of endmem-
ber selection may not capture LC with distinct spectra that
occupy small areas within the scene (Powell et al., 2007).
Therefore, accounting endmember variability for each class
is important for estimating correct class proportions.

Usually, two common problems are encountered while
identifying endmembers and performing unmixing. Firstly,
the sub-pixel abundances generated generally do not corre-
spond to a single class of LC materials. For example, in
densely builtup areas, bare soil tend to occur and mix with
roof tiles made up of clay in addition to some surrounding
materials. This results in wrong estimation of LC fractions.
Secondly, when two classes of materials exist as mixtures
within a sub-pixel, such as soil mixed with vegetation, the
chances of identifying proper endmember and correct esti-
mation of fractions reduces. In the absence of pure pixels,
alternative algorithms (Plaza et al., 2002 and Plaza et al.,
2004) can be used for endmember extraction. VECLS can
be applied in other cities and different landscapes with
diverse natural environments to assess its generality. There
are several challenges on which future research can be
based:

(i) Incorporating endmember variability in the absence
of endmembers.

(ii) Integration of spatial, temporal and spectral informa-
tion for reducing endmember variability.

(iii) Combining non-linear mixture models (Kumar et al.,
2012) with VECLS method to account both the
effects of endmember variability and multiple
scattering.

(iv) Development of methods to account for the bidirec-
tional reflectance (Asner et al., 1997), adjacency
effects and atmospheric interferences (Settle, 2005;
Somers et al., 2011).
7. Conclusion

In general, most cases of sub-pixel analysis assume that
classes may be described by unique endmembers. However,
due to class spectral variability, no single spectrum can
describe a class adequately. As a result, distribution of
possible class compositions for each pixel exists, where
accuracy of sub-pixel class abundances are functions of



Fig. 7. Classified output for two classes (vegetation, non-vegetation), three classes (urban, vegetation and water) from IKONOS, and four classes (urban,
vegetation, water and open area) from Landsat ETM+.

Table 8
Accuracy of prediction for IKONOS images for 2 and 3 classes with and without endmember variability.

IKONOS (4 m)

VECLS CLS (0 covariance) VECLS CLS (0 covariance)

2 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Vegetation 0.9951 0.8122 0.0527 0.1745
Non-vegetation 0.9751 0.8222 0.0751 0.1688

3 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Urban 0.9307 0.7998 0.0715 0.2173
Vegetation 0.9461 0.7843 0.0602 0.2207
Water 0.9747 0.7678 0.0321 0.0302
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intra-class spectral variations. In this communication, we
proposed a new method – variable endmember constrained
least square (VECLS) which has the ability to incorporate
the intra-class variability of the spectral signatures in the
unmixing process. The covariance matrix for each endmem-
ber obtained from the original bands was accounted in clas-
sification for the variability in each class. The results of the
algorithm implementation on computer simulated data with
small, medium and large variability resulted in an average
correlation increment of 0.25. The application on RS data
such as IKONOS, Landsat ETM+ and MODIS also showed
promising results with increased average correlation for dif-
ferent number of classes compared to absence of endmember
variability, demonstrating the effectiveness of this approach.



Table 9
Accuracy of prediction for Landsat images for 2, 3 and 4 classes with and without endmember variability.

Landsat (25 m)

VECLS CLS (0 covariance) VECLS CLS (0 covariance)

2 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Vegetation 0.9307 0.7998 0.0744 0.2109
Non-vegetation 0.9461 0.7843 0.0609 0.2346

3 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Urban 0.8905 0.7290 0.1165 0.2846
Vegetation 0.9104 0.7967 0.0935 0.2195
Water 0.9214 0.7519 0.0827 0.2516

4 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Urban 0.8413 0.6714 0.1424 0.3375
Vegetation 0.8525 0.6385 0.1589 0.3787
Water 0.8825 0.6192 0.1205 0.3926
Open area 0.8161 0.6439 0.1749 0.3596

Table 10
Accuracy of prediction for MODIS images for 2, 3 and 4 classes with and without endmember variability.

MODIS (250 m)

VECLS CLS (0 covariance) VECLS CLS (0 covariance)

2 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Vegetation 0.9273 0.7761 0.0911 0.2389
Non-vegetation 0.9137 0.7561 0.0855 0.2522

3 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Urban 0.8621 0.7036 0.1490 0.3054
Vegetation 0.8882 0.7055 0.1229 0.3003
Water 0.8414 0.7165 0.1620 0.2946

4 Class Correlation coefficient (r) (p < 2.2e�16) RMSE

Urban 0.8231 0.6606 0.1777 0.4470
Vegetation 0.8731 0.6804 0.12093 0.3206
Water 0.8930 0.6842 0.1142 0.3292
Open area 0.7971 0.6492 0.2105 0.3629

Fig. 8. Correlation between actual and predicted proportion for two
classes with changing spatial resolutions.

Fig. 9. Correlation between actual and predicted proportion for three
classes with different sensor data.
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Fig. 10. Correlation between actual and predicted proportion for four
classes with different sensor data.
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