|
A Multi-layer Perceptron based Non-linear Mixture Model to estimate class abundance from mixed pixels |
|
Uttam Kumar1, 2, S. Kumar Raja5, C. Mukhopadhyay1 and T.V. Ramachandra2, 3, 4, *
Senior Member, IEEE
1 Department of Management Studies, 2 Centre for Sustainable Technologies, 3 Centre for Ecological Sciences,
4 Centre for infrastructure, Sustainable Transport and Urban Planning, Indian Institute of Science, Bangalore – 560012, India.
5 Institut de Recherche en Informatique et Systèmes Aléatoires, 35042 Rennes cedex - France & Technicolor Research & Innovation, Cesson Sévigné, France.
*Corresponding author: cestvr@ces.iisc.ernet.in
|
|
References
- K. J. Guilfoyle, M. L. Althouse and C.-I. Chang, “A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 10, pp. 2314-2318, 2001.
- N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Processing Magazine, vol. 19, pp. 44-57, 2002.
- U. Kumar, N. Kerle, and T.V. Ramachandra, “Constrained linear spectral unmixing technique for regional land cover mapping using MODIS data,” In: Innovations and advanced techniques in systems, computing sciences and software engineering/ed by Khaled Elleithy, Berlin: Springer, pp. 87-95, 2008.
- G. M. Foody and D. P. Cox, “Subpixel land cover composition estimation using a linear mixture model and fuzzy membership functions,” Int. J. Remote Sensing, vol. 15, no. 3, pp. 619-631, 1994.
- I. Kanellopoulos, A. Varfis, G. G. Wilkinson, and J. Megier, “Land-cover discrimination in SPOT imagery by artificial neural network-a twenty class experiment,” Int. J. Remote Sensing, vol. 13, no. 5, pp. 917–924, 1992.
- W. Liu and E. Y. Wu, “Comparison of non-linear mixture models: sub-pixel classification,” Remote Sens. Environ., vol. 94, pp. 145-154, 2005.
- J. Ju, E. D. Kolaczyk and S. Gopal, “Gaussian mixture discriminant analysis and sub-pixel and sub-pixel land cover characterization in remote sensing,” Remote Sens. Environ., vol. 84, pp. 550 – 560, 2003.
- K. Arai, “Non-linear mixture model of mixed pixels in remote sensing satellite images based in Monte Carlo simulation,” Advances in Space Research, vol. 42, pp. 1715-1723, 2008.
- P. M. Atkinson, M. E. J. Cutler and H. Lewis, “Mapping sub-pixel proportional land cover with AVHRR imagery,” Int. J. Remote Sensing, vol. 18, no. 4, pp. 917-935, 1997.
- G. A. Carpenter, S. Gopal, S. Macomber, S. Martens and C. E. Woodcock, “A neural network method for mixture estimation for vegetation mapping,” Remote Sens. Environ., vol. 70, pp. 138- 152, 1999.
- W. Liu, S. Gopal and C. Woodcock, “ARTMAP Multisensor/resolution framework for land cover characterization,” in Proc. 4th Annu. Conf. information fusion, Montreal, Canada, 2001, pp. 11-16.
- W. Liu, K. Seto, E. Wu, S. Gopal and C. Woodcock, “ART-MMAP: A neural network approach to subpixel classification,”IEEE Trans. Geosci. Remote Sens., vol. 42, no. 9, pp. 1976-1983, 2004.
- M. E. Winter, “N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. of the SPIE: Imaging Spectrometry, 1999, vol. 3753, pp. 266-275.
- C.-I. Chang, “Orthogonal Subspace Projection (OSP) Revisited: A Comprehensive Study and Analysis,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 502-518, 2005.
- A. A. Nielsen, “Spectral Mixture Analysis; Linear and Semi-parametric Full and Iterated Partial Unmixing in Multi- and Hyperspectral Image Data,” International Journal of Computer Vision, vol. 42, no. (1/2), pp. 17-37, 2001.
- S. Haykin, Neural Networks: a comprehensive foundation, NY: Macmillan, New York, 1998.
- R. O. Duda, P. E. Hart and D. G. Stork, Pattern classification, A Wiley-Interscience Publication, Indianapolis, IN., 2000, pp. 517-598.
- T. Kavzoglu and P. M. Mather, “The use of backpropagating artificial neural networks in land cover classification,” Int. J. Remote Sensing, vol. 24, no. 23, pp. 4907-4938, 2003.
- J. F. Mas, “Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks,” Estuarine, Coastal and Shelf Science, vol. 59, pp. 219-230, 2003.
- J. Plaza, P. Martinez, R. Pérez and A. Plaza, “Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS Hyperspectral Images,” Proceedings of the NASA Jet Propulsion Laboratory AVIRIS Airborne Earth Science Workshop, Pasadena, California, March 31-April 2, 2004, pp. 1-12.
- D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533–535, 1986.
|
|
Citation : Uttam Kumar, Kumar Raja. S., Mukhopadhyay. C. and Ramachandra. T.V., 2011. A Multi-layer Perceptron based Non-linear Mixture Model to estimate class abundance from mixed pixels. Proceeding of the 2011 IEEE Students' Technology Symposium 14-16 January, 2011, IIT Kharagpur., pp. 148-153.
|