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Abstract- Sub-pixel classification is essential for the successful 

description of many land cover (LC) features with spatial 

resolution less than the size of the image pixels. A commonly used 

approach for sub-pixel classification is linear mixture models 

(LMM). Even though, LMM have shown acceptable results, 

pragmatically, linear mixtures do not exist. A non-linear mixture 

model, therefore, may better describe the resultant mixture 

spectra for endmember (pure pixel) distribution. In this paper, 
we propose a new methodology for inferring LC fractions by a 

process called automatic linear-nonlinear mixture model (AL­

NLMM). AL-NLMM is a three step process where the 

endmembers are first derived from an automated algorithm. 

These endmembers are used by the LMM in the second step that 

provides abundance estimation in a linear fashion. Finally, the 

abundance values along with the training samples representing 

the actual proportions are fed to multi-layer perceptron (MLP) 

architecture as input to train the neurons which further refines 

the abundance estimates to account for the non-linear nature of 

the mixing classes of interest. AL-NLMM is validated on 

computer simulated hyperspectral data of 200 bands. Validation 

of the output showed overall RMSE of 0.0089±0.0022 with LMM 

and 0.0030±0.0001 with the MLP based AL-NLMM, when 

compared to actual class proportions indicating that individual 

class abundances obtained from AL-NLMM are very close to the 

real observations. 

Keywords- Hyperspectral, sub-pixel classification, multi-layer 
perceptron, non-linear unmixing 

I. INTRODUCTION 

Hyperspectral imaging spectrometers collect images in the 
form of image cube that represents reflected energy from the 
Earth's surface materials, where each pixel has the resultant 
mixed spectrum from reflected source radiation [1]. The mixed 
spectrum phenomenon causes mixed pixel problem because the 
intrinsic scale of spatial variation on the Earth's land cover 
(LC) is finer than the scale of sampling imposed by the image 
pixels. In other words, mixed pixels are a mixture of more than 
one distinct object, and exist for one of the two reasons. Firstly, 
if the spatial resolution of the sensor is not high enough to 
separate different LC types, these can jointly occupy a single 
pixel, and the resulting spectral measurement will be a 
composite of the individual spectra that reside within a pixel. 
Secondly, mixed pixels can also result when distinct LC types 
are combined into a homogeneous mixture. This occurs 
independent of the spatial resolution of the sensor [2]. 

Commonly used approach to mixed pixel classification has 
been linear spectral unmixing [3], supervised fuzzy-c means 
classification [4], artificial neural networks [5 and 6], and 
Gaussian mixture discriminant analysis [7], etc. which uses a 
linear mixture model (LMM) to estimate the abundance 
fractions of spectral signatures lying within a pixel. LMM 
assumes that the reflectance spectrum of a mixture is 
systematic combination of the component reflectance spectra in 
the mixture (called endmembers). The combination of these 
endmembers is linear if component of interest in a pixel appear 
in spatially segregated patterns. If, however, the components 
are in intimate association, the electromagnetic spectrum 
typically interacts with more than one component as it is 
multiple scattered, and the mixing systematics between the 
different components are highly non-linear. In other words, 
non-linear mixing occurs when radiance is modified by one 
material before interacting with another one under the 
assumption that incident solar radiation is scattered within the 
scene itself and that these interaction events may involve 
several types of ground cover materials [8] and require non­
linear mixture model (NLMM) for unmixing the components 
of interest. 

If K is the number of spectral bands in the data set, and P, 
the number of distinct classes of objects in the physical scene, 
then associated with each pixel is a K-dimensional vector y 
whose components are the gray values corresponding to the K 
bands. If E = [e], ez, . . .  ep, """' ep], where {ep} is a column vector 
representing the spectral signature of the pth target material or 
category; the column vectors of the K x P matrix E are the 
endmembers. For a given pixel, the abundance fraction of the 
pth target material present in a pixel is denoted by uP' and these 
values are the components of the P-dimensional abundance 
vector u. A nonlinear mixture model is then expressed as: 

y = feE, a) + 1) (1) 
where, f is an unknown nonlinear function that defines the 
interaction between E and u, and 1) is a noise vector. In this 
context, artificial neural network (ANN) based NLMMs 
outperform the traditional linear unmixing models. ANNs have 
been widely studied as a promising alternative to accomplish 
the difficult task of estimating fractional abundances of 
endmembers. Atkinson et aI., (1997) [9] applied a MLP (milti­
layer perceptron) model to decompose A VHRR imagery and 
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was superior to the linear unmixing model and a fuzzy c-means 
classifier. Another popular ANN model - ARTMAP was first 
introduced to identify the life form components of the 
vegetation mixture [to] using Landsat imagery which could 
capture non-linear effects and thus performed better than LMM 
[11]. ART MMAP, an extension of ARTMAP was designed 
specifically for mixture analysis with enhanced interpolation 
function and provided better prediction of mixture information 
than ARTMAP [12]. Regression tree has also been used as 
non-linear unmixing models [6]. All of these methods are stand 
alone and work on the data directly when endmembers are 
known a priori. The objective of this paper is to develop an 
automated procedure to unmix hyperspectral imagery for 
obtaining fraction that accounts for the non-linear mixture of 
the class types. We call this model as automatic linear­
nonlinear mixture model (AL-NLMM) as shown in the block 
diagram in Fig. 1. This paper is structured in six sections. 
Methods for automatic endmember extraction, linear unmixing 
and MLP are discussed in section II followed by the description 
of AL-NLMM in section Ill. Data preparation is dealt In 
section IV with the experimental results and discussion in 
section V. Section VI concludes with model limitations. 

II. METHODOLOGY 

A. Automatic endmember extraction - The N-FINDR 
algorithm - N-FINDR is a fully automatic technique for 
endmember selection [13] as briefed below: 
1. Let P denote the number of classes or endmembers to be 

identified. 

2. Perform a Principal Component Analysis (PCA)­
decomposition of the data and reduce the dimension of the 
data to P - 1. In what follows, we assume that the data is 
transformed to P - 1 dimension PCA space. 

3. Pick P pixels from the set and compute the simplex 
volume generated by the spectra of the P pixels. 

N-FINDR 
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4. Replace each endmember with the spectrum of each pixel 
in the data set and recompute the simplex volume. If the 
volume increases, the spectrum of the new pixel is retained 
as a potential endmember. 

The above steps are executed iteratively considering all the 
pixels, and the final set of spectra retained is taken to be the 
endmembers. 

B. Orthogonal subspace projection (OSP) - In order to 
solve the linear part of the mixing problem, we used asp [14]. 
asp is based on two aspects: 1) how to best utilise the target 
knowledge provided a priori and 2) how to effectively make 
use of numerous spectral bands. Assuming the LMM, the 
observation vector y is related to E by 

Y = Ea + 11. (2) 
We further assume that the components of the noise vector 

'I are zero-mean random variables that are independent and 
identically distributed. Therefore, the covariance matrix of the 
noise vector is (T2I, where (J2 is the variance, and I is K x K 
identity matrix. 

The conventional approach [15] to extract the abundance 
values is to minimise II y - Ea II, and the estimate for the 
abundance is 

(3) 
which is termed as the Unconstrained Least Squares (ULS) 

estimate of the abundance. Imposing the sum-to-one constraint 
on the abundance values, gives the Constrained Least Squares 
(CLS) estimate of the abundance as, 

T -Il T A) a=(EE) EY-21 (4) 
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Fig. 1. Block diagram of the proposed AL-NLMM method for spectral mixture analysis. 
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_ 2(1T(ETE)"IETy_l) 
A, - .  (5) 

f(eE)"11 
In order to find the abundance of the pth target material (Up), 

let the corresponding spectral signature of the desired target 
material be denoted as d. The term Eu in (2) can be rewritten to 
separate the desired spectral signature d from the rest as: 

Ea=dup +Rr (6) 

where r contains the abundance of the rest of the end­
members, and R is a (K x P- I) matrix containing the columns 
of E except for the column vector d. We rewrite (2) as 

y = dup + Rr + 11· (7) 

The interfering signatures present in R can be removed 
from (7) by the operator, 

(8) 
which is used to project the vector y into a space 

orthogonal to the space spanned by the interfering spectral 
signatures. Therefore, operating on y with P, and noting that 
PR = O, 

Py = Pdu
p + Pll . (9) 

The next step is to find an operator wT which maximises the 
SNR given by 

(wTpdu )2 wTpdu2dTpTw)2 
SN R = P = ---::::----,,-P ---::::--=--

&{(wTpl1)2} WTp&{(l1l1T)pTw 

= (U!J2 wTpddTpTW 
cr WTppTW 

(10) 

Maximising the SNR leads to the generalised eigenvalue 
problem: PddTpT 

w= APpTW The eigenvector 
corresponding to the maximum eigenvalue is the vector 'w'. It 
can be shown that the w which maximises the SNR is given by 

w=kd. 
Therefore, an optimal estimate of Up is given by " _ /pTpy a ----

P dTpTPd 

(11) 

(12) 

In the absence of noise, the estimate matches with the exact 
value as in (7). The value of u is the abundance of the pth class 
(in an abundance map) ranging from 0 to I in any given pixel. 
o indicates absence of a particular class and 1 indicates full 
presence of that class in that particular pixel. 

C. ANN based multi-layer perceptron (MLP) - The 
advent of ANN approaches is mainly due to their power in 
pattern recognition, interpolation, prediction, forecasting, 
classification and process modeling [16]. A MLP network 
comprises a number of identical units organised in layers, with 
those on one layer connected to those on the next layer so that 
the output of one layer are used as input to the next layer. 

A detailed introduction on MLP can be found in literatures [16-
19]. The main aspects here are: (i) the order of presentation of 
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training samples should be randomised from epoch to epoch; 
and (ii) the momentum and learning rate parameters are 
typically adjusted (and usually decreased) as the number of 
training iterations increases. 

III. AUTOMATIC LINEAR-NONLINEAR MIXTURE MODEL 

Despite many attempts of using ANN for unmixing models, 
ANN-based non-linear unmixing techniques remain largely 
unexplored for general purpose applications [20]. Only [1], [6], 
[8] and [21] have been some of the pioneering work in NLMM 
to be considered as a general model for ANN-based non-linear 
unmixing independent of physical properties of the observed 
classes. Some of these applications are however, difficult and 
complex in their implementation that makes LMM easy to 
implement, generalise and reconstruct. Therefore, in our 
approach, we make use of the LMM output as the input to 
NLMM to refine the fraction estimates. The MLP architecture 
can be extended to produce a continuous-values output for sub­
pixel classification problem. The entries to the MLP model are 
the abundance (a) output obtained from LMM, which is 
denoted by alLMM where i = I, . . .  , E, and the neuron count at 
the input layer equals the number of endmember classes 
(estimated by a fully constrained LMM) as shown in Fig. 2. 
The training process is based on error back-propagation 
algorithm [21], where the respective weights in the output and 
hidden nodes (Wand V in Fig. 3) are modified depending on 
the error (be), the input data and the learning parameter alpha 
(u). The activation rule used here for the hidden and output 
layer nodes is defined by the logistic function 

1 

((x) = 1 -x ' 
+e 

(13) 

Input neurons Output neu rons 

Fig. 2. Architecture of the MLP model. 

be of the output layer is calculated as the difference 
between the fraction (t) estimation outputs fNLMM' i = I, . . .  E, 
provided by the network architecture and a set of desired output 
given by actual fractional abundances available for the training 
samples. The resulting error is back-propagated until the 
convergence is reached. One of the earlier works by [20] 
attempted a similar NLMM methodology, which made use of a 
modified MLP neural network (NN), whose entries were 
determined by a linear activation function provided by a 
Hopfield NN (HNN). 
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The combined HNN/MLP method used the LMM to 
provide an initial abundance estimation and then refined the 
estimation using a non-linear model. As per [20], this was the 
first and the only approach in the literature that integrated 
linear and NLMM. 

IV. COMPUTER SIMULATIONS 

One of the major problems involved in analysing the 
quality of fractional estimation methods is the fact that ground 
truth information about the real abundances of materials at sub­
pixel levels is difficult to obtain in real scenarios [21]. In order 
to avoid this shortcoming, simulation of hyperspectral imagery 
was carried out to examine the algorithm's performance in a 
controlled manner. 

Spectral libraries of four minerals - alunite, buddingtonite, 
kaolinite and calcite (available at http://speclib.jpl.nasa.govl) 
were used to generate synthetic data. Plaza et al. [21], used the 
signatures of soil (el) and vegetation (e2) to create a simulated 
image with non-linear mixtures using a simple logarithmic 
function. The abundance of el and e2 were assigned according 
to (14) 

2 
y(x,y) = Iep ·s/x,y) (14) 

P=1 
where, y denotes a vector containing the simulated discrete 
spectrum of the pixel at spatial coordinates (x,y) of the 

. s (x y) = logu (x,y). 
h ·b · f simulated Image, P , 

P IS t e contrl utlon 0 

endmember ep and up(x,y) is the fractional abundance of ep 
at (x,y). A limitation here is that even though all the pixels are 
mixed in different proportions, there are no instances of pure 
pixels. If a is 1, we expect the observed hyperspectral signature 
to be solely from one material, and therefore, ideally it should 
be identical to the endmember itself. Here, as the abundance 
increases towards 1, log (a) approaches 0, thereby suppressing 
the contribution of that particular endmember. On the other 
hand, if a is 0, log (a) approaches -00, and therefore, starts 
dominating in the observed spectral signature. Of course, it will 
appear as negative numbers. This is against our physical 
understanding as to how a material which is almost not present 
in the pixel, contribute to the observation in a dominant way? 
That is, the model is not able to highlight the endmember of the 
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correct material when its contribution is 1 and gives a wrong 
endmember when its contribution is O. To overcome this 
limitation, we modify the model in (14) by (15): 

4 
Y(X,y) = Isigp ·s/x,y) (15) 

P=I 
where, sigp is the signature corresponding to pth mineral, 

sp(x,y) = log(l + up (x,y)) is the contribution of endmember 

ep and up (x,y) is the fractional abundance of ep in the pixel at 

(x,y). 

Simulated synthetic non-linear mixture hyperspectral data 
of 200 bands (250 x 250) using four minerals were classified 
using Maximum Likelihood Classifier (MLC) with signatures 
from the spectral libraries. This constitutes high-resolution 
(HR) images. These images were used to generate synthetic 
mixed pixels of 25 x 25 (referred as low-resolution - LR 
images). Four endmembers were extracted from LR images, 
and subsequently, abundance images were estimated 
corresponding to each endmember. Percentage abundance for a 
group of lO x 10 pixels were computed for this entire HR 
classified image (250 x 250) obtained from MLC. This new 
image of size 25 x 25 was used as reference for validating the 
LR abundance output. However, the HR MLC based classified 
output (250 x 250) was not validated as the same spectral 
library which was used for generating the individual class 
signatures for classification of the HR image was also used to 
create the synthetic images. Abundance values from 15% of the 
pixels obtained from linear unmixing along with the 
corresponding proportions obtained from the 250 x 250 
classified image obtained by MLC were used for training the 
neurons in MLP. For example, each input sample to the MLP 
has the abundance values obtained from OSP for each of the 
four classes (0.2, 0.3, 0.1, 0.4 = 1 or 100 % of a pixel) and the 
proportion of each class as derived from HR MLC based 
classified map (0.18, 0.27, 0.2, 0.35 = 1 or 100 % of a pixel) by 
considering 25 x 25 classified pixels and finding the percentage 
of each class separately which is equivalent to 1 x 1 LR pixel 
spatially. Testing was done on the entire output abundance 
images (100% pixels). 

V. RESULTS AND DISCUUSIONS 

Three images from the 200-bands are shown in Fig. 4 and the 
classified output of the 250 x 250 hyperspectral 200 bands data 
is shown in Fig. 5. The proportions of each of the 4 minerals 
were computed based on lO x 10 groups of pixels for 625 
groups [(250 x 250) divided by (10 x 10)]. N-FINDR was used 
to extract the endmembers from the synthetic mixed pixels, 
which are shown in Fig. 6. The endmembers identified by the 
algorithm (drawn in red) have a good match with the actual 
ones (green in color). Abundances of each of the minerals from 
the artificial mixed pixels obtained from LMM are as shown in 
Fig. 7 (b)-(e). Fig. 7 (a) is the 10 times down-sampled image of 
the original mineral classified image (250 x 250) shown in Fig. 
5 to compare hard classification with the abundance map 
visually. A three-layer MLP architecture was made with 4 
input, 1 hidden and 4 output layers. 
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Fig. 4. A 200 band hyperspectral images generated from spectral libraries of 
four different minerals - (a) band I (b) band 100 (c) band 200. 

Buddingtonite 

_ Kaolinite 

_ Calcite 

Fig. 5. Mineral classified map. 

The number of hidden nodes in the hidden layer, learning rate, 
momentum and epoch were varied in steps to estimate the best 
abundance values that could account for the non-linearity in the 
mineral mixtures; until the performance saturated, as shown in 
Fig. 8. Table I lists the values of the training parameters along 
with the training time and the overall RMSE of the MLP 
network for every 500 epochs. Three measures of performance 
were used to evaluate the output from artificial dataset -
RMSE, correlation, Bivariate Distribution Functions (BDFs). 
BDF is helpful to visualise the accuracy of prediction by 
mixture models. BDFs were plotted against the real proportions 
as shown in Fig. 9. Pearson's product-moment correlation at 
95% confidence interval and RMSE between the actual and 
estimated proportion from LMM and NLMM are given in table 
II. The average RMSE of the LMM was 0.0089±0.0022 while 
the average RMSE of the NLMM was 0.0030±0.0001 
demonstrating the superiority of the NLMM over the LMM. 
The MLP network can successfully approximate virtually any 
function when trained correctly. This implies that training is the 
most important step in MLP-based classification. 15% of the 
LMM based abundances along with the actual abundances 
were used for training and the MLP model could interpolate to 
produce many more combinations of class proportions to match 
the testing samples. The interpolation function minimises the 
difference between estimated and real class proportions. Since 
the approach in this work is a hybrid of linear and non-linear 
estimator, it can be easily adapted to either the linear on non­
linear mixture model. Initialisation and training are the two 
issues in a MLP network that has to be dealt carefully. 
However, an effective learning algorithm should not depend on 
initial conditions, which can only affect the convergence rate 
but should not alter the final results [21]. Often, this is not the 
case of learning algorithms used for NNs. In order for a 
mixture model to be effective, initial values must be 
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(a) Alunite (b) Buddingtonite 

(c) Kaolinite (d) Calcite 

Fig. 6. Comparison between the true endmembers and endmembers computed 
from the N-FINDR algorithm. IX-axis: Band number, V-axis: Reflectance 

value. I 

Fig. 7. (a) 10 times down-sampled mineral classified image; (b) - (d) show 
abundances of the four mineral obtained from the LMM. 

TABLE I 
DETAILS OF TRAINING FOR UNMIXING OF SIMULATED DATASET 

No. of Learning Momentum Training Unmixing Overall 
epochs rate term time (sec) time (sec) RMSE 

500 0.90 0.5 4 8 0.0160 
1000 0.85 0.4 5 8 0.0117 
1500 0.80 0.3 7 7 0.0030 
2000 0.70 0.2 7 6 0.0071 
2500 0.60 0.1 8 5 0.0115 

TABLE" 
CORRELATION AND RMSE BETWEEN ACTUAL AND PREDICTED PROPORTIONS 

Classes Correlation (r) RMSE 
(p < 2.2eoI6) 

LMM NLMM LMM NLMM 
Alunite 0.67 0.97 0.0120 0.0032 
Buddingtonite 0.71 0.98 0.0073 0.0029 
Kaolinite 0.73 0.98 0.0088 0.0031 
Calcite 0.75 0.99 0.0076 0.0029 

Fig. 8: Abundances maps of the four mineral obtained from the NLMM. 
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Fig. 9. BDFs of simulated test data for the four minerals obtained LMM. 

representative and cannot be arbitrary. Therefore, an important 
issue for successful application of this approach is the selection 
of endmembers. One of the potential draw back of the N­
FINDR algorithm is that it requires at least one pixel in the 
image to be pure. This may not be the situation always. In such 
cases, alternative methods of endmember extraction have to be 
studied and integrated in the algorithm. Also, the simulated 
dataset in our work is noise-free (has no noise component), so, 
further research is required to analyse the impact of the 
interference of noise. 

VI. CONCLUSIONS 

The proposed AL-NLMM algorithm integrates the concept 
of both linear and non-linear mixing. The method is based on 
extracting the endmembers from the image, followed by 
unmixing in the second step and then interpolating the fractions 
for the whole image based on training data that has both the 
estimated abundance obtained from second step and real 
proportion. The results on simulated hyperspectral data shows 
that the method gives acceptable results for unmixing pixels 
with an overall RMSE of O.0089±O.00215 with LMM and 
O.0030±O.OOOI with the MLP based NLMM when compared to 
real class proportions. It may be concluded that influence due 
to multiple reflections among ground cover targets has to be 
considered for the abundance estimation. While a linear 
detection method might work adequately for many scenarios, a 
non-linear model might perform better. The future work will 
involve developing methods to obtain pure pixels when there 
are no endmembers in the scene. 

REFERENCES 

[I] K. J. Guilfoyle, M. L. Althouse and C.-I. Chang, "A quantitative and 
comparative analysis of linear and nonlinear spectral mixture models 
using radial basis neural networks," IEEE Trans., Geosci. Remote Sens., 
vol. 39, no. 10, pp. 2314-2318,2001. 

TS llIMSP01062 

Proceeding of the 2011 IEEE Students' Technology Symposium 

14-16 January, 2011, lIT Kharagpur 

N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal 
Processing Magazine, vol. 19, pp. 44-57, 2002. 

U. Kumar, N. Kerle, and T.V. Ramachandra, "Constrained linear 
spectral unmixing technique for regional land cover mapping using 
MODIS data," In: Innovations and advanced techniques in systems, 
computing sciences and software engineeringled by Khaled Elleithy, 
Berlin: Springer, pp. 87-95,2008. 

G. M. Foody and D. P. Cox, "Subpixel land cover composition 
estimation using a linear mixture model and fuzzy membership 
functions," Int. J. Remote Sensing, vol. 15, no. 3, pp. 619-631, 1994. 

I. Kanellopoulos, A. Varfis, G. G. Wilkinson, and J. Megier, "Land­
cover discrimination in SPOT imagery by artificial neural network-a 
twenty class experiment," Int. J. Remote Sensing, vol. \3, no. 5, pp. 
917-924,1992. 

[6] W. Liu and E. Y. Wu, "Comparison of non-linear mixture models: sub­
pixel classification," Remote Sens. Environ., vol. 94, pp. 145-154,2005. 

[7] J. Ju, E. D. Kolaczyk and S. Gopal, "Gaussian mixture discriminant 
analysis and sub-pixel and sub-pixel land cover characterization in 
remote sensing," Remote Sens., Environ., vol. 84, pp. 550 - 560, 2003. 

[8] K. Arai, "Non-linear mixture model of mixed pixels in remote sensing 
satellite images based in Monte Carlo simulation," Advances in Space 
Research, vol. 42, pp. 1715-1723,2008 . 

[9] P. M. Atkinson, M. E. J. Cutler and H. Lewis, "Mapping sub-pixel 
proportional land cover with AVHRR imagery," Int. J. Remote Sensing, 
vol. 18, no. 4, pp. 917-935,1997. 

[10] G. A. Carpenter, S. Gopal, S. Macomber, S. Martens and C. E. 
Woodcock, "A neural network method for mixture estimation for 
vegetation mapping," Remote Sens. Environ., vol. 70, pp. \38- 152, 
1999. 

[II] W. Liu, S. Gopal and C. Woodcock, "ARTMAP Multisensor/resolution 
framework for land cover characterization," in Proc. 4th Annu. Corif. 
information fusion, Montreal, Canada, 2001, pp. 11-16. 

[12] W. Liu, K. Seto, E. Wu, S. Gopal and C. Woodcock, "ART-MMAP: A 
neural network approach to subpixel classification," IEEE Trans., 
Geosci. Remote Sens., vol. 42, no. 9, pp. 1976-1983,2004. 

[\3] M. E. Winter, "N-FINDR: an algorithm for fast autonomous spectral 
end-member determination in hyperspectral data," in Proc. of the SPIE: 
Imaging Spectrometry, 1999, vol. 3753, pp. 266-275. 

[14] c.-I. Chang, "Orthogonal Subspace Projection (OSP) Revisited: A 
Comprehensive Study and Analysis," IEEE Trans. Geosci. Remote 
Sens., vol. 43, no. 3, pp. 502-518,2005. 

[15] A. A. Nielsen, "Spectral Mixture Analysis; Linear and Semi-parametric 
Full and Iterated Partial Unmixing in Multi- and Hyperspectral Image 
Data," International Journal of Computer Vision, vol. 42, no. (1/2), pp. 
17-37,2001. 

[16] S. Haykin, Neural Networks: a comprehensive foundation, NY: 
Macmillan, New York, 1998. 

[17] R. O. Duda, P. E. Hart and D. G. Stork, Pattern classification, A Wiley­
Interscience Publication, Indianapolis, IN., 2000, pp. 517-598. 

[18] T. Kavzoglu and P. M. Mather, "The use of backpropagating artificial 
neural networks in land cover classification," Int. J. Remote Sensing, 
vol. 24, no. 23, pp. 4907-4938, 2003. 

[19] J. F. Mas, "Mapping land use/cover in a tropical coastal area using 
satellite sensor data, GIS and artificial neural networks," Estuarine, 
Coastal and Shelf Science, vol. 59, pp. 219-230, 2003. 

[20] J. Plaza, P. Martinez, R. Perez and A. Plaza, "Nonlinear neural network 
mixture models for fractional abundance estimation in A VIRIS 
Hyperspectral Images," Proceedings of the NASA Jet Propulsion 
Laboratory AVIR IS Airborne Earth Science Workshop, Pasadena, 
California, March 31-ApriI2, 2004, pp. 1-12. 

[21] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning 
representations by back-propagating errors," Nature, vol. 323, pp. 533-
535, 1986. 

153 


