http://www.iisc.ernet.in/
http://wgbis.ces.iisc.ernet.in/energy/

Uttam Kumar
[uttam@ces.iisc.ernet.in]

Norman Kerle
[kerle@itc.nl]

Milap Punia
[m_punia@hotmail.com]

T. V. Ramachandra*
[cestvr@ces.iisc.ernet.in]

References

  1. Atkinson PM and Tatnall A, (1997) Introduction Neural networks in remote sensing. International Journal of Remote Rensing 18(4): 699- 709
  2. Benz UC, Hofmann P, Willhauck G, Lingenfelder I and Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Photogrammetry and Remote Sensing 58: 239-258
  3. Bischof H, Schneider W, Pinz AJ (1992) Multispectral classification of Landsat images using neural networks. IEEE Transactions on Geoscience and Remote Sensing 30(3): 482–490
  4. Camara G, Monteiro AMV, Paiva J and Souza RCM (2000) Action-Driven Ontologies of the Geographical Space. In: Egenhofer, M.J. and Mark D.M., (Editors). GIScience, AAG, Savannah, GA.
  5. Chang D and Islam S (2000) Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environment 74(3): 534–544
  6. Chang J, Hansen MC, Pittman K, Carroll M, and DiMiceli C (2007) Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy Journal 99: 1654-1664
  7. Duda RO, Hart PE, and Stork DG (2000) Pattern classification. A Wiley-Interscience Publication, Indianapolis, IN., pp. 517-598
  8. EEA & ETC/LC, Corine LC Technical Guide, 1999.
    http://etc.satellus.se/the_data/Technical_Guide/index.htm (Accessed July 20, 2006)
  9. Gao J, Chen HF, Zhang Y, and Zha Y (2004) Knowledge-based approaches to accurate mapping of mangroves from satellite data. Photogrammetric Engineering & Remote Sensing 70(12): 1241–1248
  10. Haykin S (1999) Neural Networks: A Comprehensive Foundation. Prentice-Hall International, Englewood Cli6s, NJ
  11. Heermann PD and Khazenie N (1992) Classification of multispectral remote sensing data using back-propagation neural network. IEEE Transactions on Geoscience and Remote Sensing 30(1): 81–88
  12. Hester DB, Cakir HI, Nelson SAC, and Khorram S (2008) Per-pixel Classification of High Spatial Resolution Satellite Imagery for Urban Land-cover Mapping. Photogrammetric Engineering & Remote Sensing 74(4): 463–471
  13. Kavzoglu T and Mather PM (1999) Pruning artificial neural networks: an example using land cover classification of multi-sensor images. International Journal of Remote Sensing 20(14): 2787-2803
  14. Kavzoglu T and Mather PM (2003) The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing 24(23): 4907–4938
  15. Kim YS (2006) Comparison of the decision tree, artificial neural network, and linear regression methods based on the number and types of independent variables and sample size. Expert Systems with Applications 24(2008): 1227-1234
  16. Lee C and Bethel JS (2004) Extraction, modelling, and use of linear features for restitution of airborne hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing 58(5-6): 289-300
  17. Mas JF (2003) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuarine, Coastal and Shelf Science 59(2004): 219-230
  18. Natural Resources Census, National Landuse and LC Mapping Using Multitemporal AWiFS Data (LULC – AWiFS), April 2005. Project Manual, Remote Sensing & GIS Applications Area, National Remote Sensing Agency, Department of Space, Government of India, Hyderabad, India
  19. Piramuthu S (2006) Input Data for Decision Trees. Expert Systems with Applications, doi: 10.1016/j.eswa.2006.12.030
  20. Ramachandra TV and Rao GR (2005) Inventorying, mapping and monitoring of bioresources using GIS and remote sensing. Geospatial Technology for Developmental Planning, Allied Publishers Pvt. Ltd. New Delhi, 49-76
  21. Rumelhart DE, Hinton GE and Williams RJ (1986) Learning representations by back-propagating errors. Nature 323: 533–535
  22. Song M, Civco DL, and Hurd JD (2005) A competitive pixel-object approach for land cover classification. International Journal of Remote Sensing 26: 4981–4997
  23. Sun H, Li S, Li W, Ming Z and Cai S (2005) Semantic-Based Retrieval of Remote Sensing Images in a Grid Environment. IEEE Geoscience and Remote Sensing Letters 2(4): 440-444
  24. Torma M and Harma P (2004) Accuracy of CORINE LC Classification in Northern Finland. Geoscience and Remote Sensing Symposium, IGARSS '04, Proceedings, IEEE International 1, pp. 227-230
  25. Venkatesh YV and KumarRaja S (2003) On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognition 36(2003): 2161 – 2175
  26. Wardlow BD and Egbert SL (2008) Large-area crop mapping using time-series MODIS 250 m ndvi data: as assessment for the U.S. Central Great Plains. Remote Sensing of Environment 112: 1096-1116
Citation: Uttam Kumar, Norman Kerle, Milap Punia and T. V. Ramachandra , 2011, Mining Land Cover Information Using Multilayer. J Indian Soc Remote Sens, DOI 10.1007/s12524-011-0061-y.

U. Kumar
Department of Management Studies and Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India
e-mail: uttam@ces.iisc.ernet.in

 

M. Punia
Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi 110067, India
e-mail: m_punia@hotmail.com

N. Kerle
Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation, Twente University,
P.O. Box. 6, 7500 AA Enschede, The Netherlands
e-mail: kerle@itc.nl

 

T. V. Ramachandra (*)
Centre for Ecological Sciences and Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India
phone: 91-80-22933099; fax: 91-80-23601428;
e-mail: cestvr@ces.iisc.ernet.in

E-mail   |   Sahyadri   |   ENVIS   |   GRASS   |   Energy   |   CES   |   CST   |   CiSTUP   |   IISc   |   E-mail