http://www.iisc.ernet.in/
Cellular automata and Genetic Algorithms based urban growth visualization for appropriate land use policies
http://wgbis.ces.iisc.ernet.in/energy/
1Energy and Wetlands Research Group, Centre for Ecological Sciences [CES],
2Centre for Sustainable Technologies, 3Department of Management Studies, 4Centre for infrastructure, Sustainable Transport and Urban Planning,
Indian Institute of Science, Bangalore – 560012, India.
*Corresponding author:
cestvr@ces.iisc.ernet.in

References

  1. Alkheder, S, Shan, J., 2006, ‘Change detection - cellular automata method for urban growth modeling’, International Society of Photogrammetry and Remote Sensing Mid-term Symposium, WG VII/5, Netherlands, May 2006.
  1. AlKheder, S., Wang, J., and Shan, J., 2007, ‘Cellular automata urban growth model calibration with genetic algorithms’, Urban Remote Sensing Joint Event.
  1. Batty, M., and Xie, Y., 1994, ‘From cells to cities’, Environment and Planning, B21, pp. 531-548.
  1. Bayarsaikhan, U., Boldgiv, B., Kim, K-R., Park, K-A., Lee, D., 2009, Change detection and classification of land cover at Hustai National Park in Mongolia. International Journal of Applied Earth Observation and Geoinformation, 11, 273-280.
  1. Conese, C., Maselli, F., 1992, Use of error matrices to improve area estimates with maximum likelihood classification procedures. Remote Sensing of Environment, 40, 113-124.
  1. Clarke, K. C., Hoppen, S., and Gaydos, L., 1997, ‘A selfmodifying cellular automaton model of historical urbanization in the San Francisco Bay area’, Environment and planning, 24, pp. 247-261.
  1. Clarke, K. C., and Gaydos, L. J., 1998, ‘Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore’, International Journal of Geographical Information Sciences, 12, pp. 699-714.
  1. Duda, R. O., Hart, P. E., and Stork, D, G., 2000, Pattern classification, New York, A Wiley-Interscience Publication, Second Edition, ISBN 9814-12-602-0.
  1. Ediriwickrema, L., Khorram, S., 1997, Hierarchical maximum-likelihood classification for improved accuracies. Geoscience and Remote Sensing, IEEE Transactions, 35, 810-816.
  1. Hagerstrand, T., 1967, ‘Innovation Diffusion as a Spatial Process’ University of Chicago Press, Chicago, IL.
  1. Holland, J. H., 1975, ‘Adaptation in Natural and Artificial Systems’, Univ. of Michigan Press, Ann Arbor, MI.
  1. John, A. R., Xiuping, J., 1999. Remote Sensing Digital image Analysis: An Introduction. Springer-Verlag Inc., New York.
  1. Li, X., and Yeh, A. G. O., 2003, ‘Error propagation and model uncertainties of cellular automata in urban simulation with GIS’, In:7th International Conference on GeoComputation, 8- 10, September 2003, University of Southampton, Southampton, UK (GeoComputation CD-ROM).
  1. Liverman, D., Moran, E. F., Rindfuss, R. R., and Stern, P. C., 1998, People and pixels - Linking Remote Sensing and Social Science, Washington, D. C., National Academy Press.
  1. Ramachandra, T.V., and Kumar, U., 2008, ‘Wetlands of Greater Bangalore, India: Automatic Delineation through Pattern Classifiers’, Electronic Green Journal, Vol. 26, Spring 2008 ISSN: 1076-7975.
  1. Strahler, A. H., 1980. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sensing of Environment, 10, 135-163.
  1. Tobler, W., 1979, ‘Cellular geography, in Philosophy’, In: Geography Eds S Gale, G Olsson (D Reidel, Dordrecht), pp. 379-386.
  1. von Neumann, J., 1966, ‘Theory of Self-Reproducing Automata’, University of Illinois Press, Illinois. Edited and completed by A. W. Burks.
  1. White, R. and Engelen, G. 1992. "Cellular Dynamics and GIS: Modeling Spatial Complexity", position paper presented at the NCGIA Specialist Meeting on GIS and Spatial Analysis.
  1. White, R. and Engelen, G. 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modeling Approach to the Evolution of Urban Land Use Patterns", Environment and Planning A, 25, 1175-1199.
  1. Wolfram, S., 1994, ‘Cellular automata’, In: Cellular Automata and Complexity: Collected Papers, Addison Wesley, Steven Wolfram, Reading, MA.
  1. World Urbanization Prospects, 2005, Revision, Population Division, Department of Economic and Social Affaris, UN.
  1. Yang, X, and Lo, C. P., 2003, ‘Modelling urban growth and landscape changes in the Atlanta metropolitan area’, International Journal of Geographical Information Science, Vol. 17, pp. 463–488.
  1. Zheng, M., Cai, Q., Wang, Z., 2005. In: Effect of prior probabilities on maximum likelihood classifier. Geoscience and Remote Sensing Symposium, 2005, IGARS’05, Proceedings 2005 IEEE International, 6, pp. 3753-3756.
BACK  «  TOP  »  NEXT
Citation : Uttam Kumar, Chiranjit Mukhopadhyay and Ramachandra T. V., (2009), Cellular automata and Genetic Algorithms based urban growth visualization for appropriate land use policies, Proceedings of the Fourth Annual International Conference on Public Policy and Management, Centre for Public Policy, Indian Institute of Management (IIMB), Bangalore, India, 9-12 August, 2009.
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : cestvr@ces.iisc.ernet.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail