Renewable and Sustainable Energy Reviews
Bioethanol from macroalgae: Prospects and challenges
aEnergy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560012, India.
bCentre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
*Corresponding author:
 Ramachandra T.V   emram.ces@courses.iisc.ac.in
Deepthi Hebbale , deepthih@iisc.ac.in
10. References
  1. Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK. An overview of biological processes and their potential for CO2 capture. J Environ Manag 2016;183:41–58. https://doi.org/10.1016/J. JENVMAN.2016.08.054.
  2. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 2018;181:42–59. https://doi.org/10.1016/J.jclepro.2018.01.125
  3. Hirsch RL, Bezdek R, Wendling R. Peaking of world oil production: impacts, mitigation, & risk management. 2005.
  4. Ramachandra TV, Bharath HA, Kulkarni G, Han SS. Municipal solid waste: generation, composition and GHG emissions in Bangalore, India. Renew Sustain Energy Rev 2018;82:1122–36. https://doi.org/10.1016/j.rser.2017.09.085.
  5. Ramachandra TV, Bajpai V, Kulkarni G, Aithal BH, Han SS. Economic disparity and CO2 emissions: the domestic energy sector in Greater Bangalore, India. Renew Sustain Energy Rev 2017;67:1331–44. https://doi.org/10.1016/j.rser.2016.09.038.
  6. Bolük G, Mert M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: evidence from a panel of EU (European Union) countries. Energy 2014;74:439–46. https://doi.org/10.1016/j.energy.2014.07.008.
  7. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Lid€ en G, Zacchi G. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol 2006;24: 549–56. "https://doi.org/10.1016/j.tibtech.2006.10.004.
  8. Tripathi L, Mishra AK, Dubey AK, Tripathi CB, Baredar P. Renewable energy: an overview on its contribution in current energy scenario of India. Renew Sustain Energy Rev 2016;60:226–33. https://doi.org/10.1016/j.rser.2016.01.047.
  9. Hirst E. Integrating wind output with bulk power operations and wholesale electricity markets. Wind Energy 2002;5:19–36. https://doi.org/10.1002/we.57.
  10. Leahy PG, Foley AM. Wind generation output during cold weather-driven electricity demand peaks in Ireland. Energy 2012;39:48–53. https://doi.org/10.1016/j.energy.2011.07.013.
  11. Huang H, Li F. Bidding strategy for wind generation considering conventional generation and transmission constraints. J Mod Power Syst Clean Energy 2015;3:51–62. https://doi.org/10.1007/s40565-015-0100-8.
  12. Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ. Progress in biofuel production from gasification. Prog Energy Combust Sci 2017;61:189–248. "https://doi.org/10.1016/j.pecs.2017.04.001
  13. Lipscy PY, Kushida KE, Incerti T. The fukushima disaster and Japan’s nuclear plant vulnerability in comparative perspective. Environ Sci Technol 2013;47:6082–8. https://doi.org/10.1021/es4004813.
  14. Nuclear backlash forces Merkel to rethink energy policy | Germany| News and in- depth reporting from Berlin and beyond | DW | 14.03. 2011 (accessed January 1, 2019), https://www.dw.com/en/nuclear-backlash-forces-merkel-to-rethink- energy-policy/a-14909851.
  15. Annual report 2017-18. Ministry of Petroleum & Natural Gas (MoPNG) Government of India; 2018.
  16. Kumar A, Kumar K, Kaushik N, Sharma S, Mishra S. Renewable energy in India: current status and future potentials. Renew Sustain Energy Rev 2010;14:2434–42. https://doi.org/10.1016/j.rser.2010.04.003.
  17. Ramachandra TV, Shwetmala. Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renew Sustain Energy Rev 2012;16: 5820–33. https://doi.org/10.1016/j.rser.2012.05.035.
  18. Aljerf L. Green technique development for promoting the efficiency of pulp slurry reprocess. 2016.
  19. Armstrong RC, Wolfram C, de Jong KP, Gross R, Lewis NS, Boardman B, et al. The frontiers of energy. Nat Energy 2016;1:15020. https://doi.org/10.1038/nenergy.2015.20.
  20. Ramachandra TV, Shruthi BV. Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 2007;11:1460–80. https://doi.org/10.1016/j.rser.2005.12.002.
  21. Ramachandra TV, Jain R, Krishnadas G. Hotspots of solar potential in India. Renew Sustain Energy Rev 2011;15:3178–86. https://doi.org/10.1016/j.rser.2011.04.007.
  22. Bhattacharyya SC. Energy access problem of the poor in India: is rural electrification a remedy? Energy Policy 2006;34:3387–97. https://doi.org/10.1016/j.enpol.2005.08.026.
  23. McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol 2002;83:47–54. https://doi.org/10.1016/S0960-8524(01)00119-5.
  24. Kumar A, Kumar N, Baredar P, Shukla A. A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 2015;45:530–9. https://doi.org/10.1016/j.rser.2015.02.007.
  25. Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 2010;14:578–97. https://doi.org/10.1016/j.rser.2009.10.003.
  26. Ramachandra TV. Mapping of fuelwood trees using geoinformatics. Renew Sustain Energy Rev 2010;14:642–54. https://doi.org/10.1016/J.RSER.2009.10.007.
  27. Ramachandra TV, Joshi NV, Subramanian DK. Present and prospective role of bioenergy in regional energy system. Renew Sustain Energy Rev 2000;4:375–430. https://doi.org/10.1016/S1364-0321(00)00002-2.
  28. Ramachandra TV, Kamakshi G, Shruthi BV. Bioresource status in Karnataka. Renew Sustain Energy Rev 2004;8:1–47. https://doi.org/10.1016/j.rser.2003.09.001.
  29. O D, Inan B. An overview of bioethanol production from algae. Biofuels-Status Perspect 2015;141–62. https://doi.org/10.5772/57353.
  30. Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 2010;101: 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007.
  31. Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 2008;9:433–43. https://doi.org/10.1038/nrg2336.
  32. Maeda M, Tokimatsu K, Mori S. A global supply-demand balance model to assess potential CO2 Emissions and woody biofuel supply from increased crop production. Energy Procedia 2015;75:2865–70. https://doi.org/10.1016/j.egypro.2015.07.575.
  33. Gasparatos A, Stromberg P, Takeuchi K. Sustainability impacts of first-generation biofuels. Anim Front 2013;3:12–26. https://doi.org/10.2527/af.2013-0011.
  34. Ramachandra TV, Aithal BH, Sreejith K. GHG footprint of major cities in India. Renew Sustain Energy Rev 2015;44:473–95. https://doi.org/10.1016/j.rser.2014.12.036.
  35. Subhadra B, Edwards M. An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 2010;38:4897–902. https://doi.org/10.1016/j.enpol.2010.04.036.
  36. Adams JM, Gallagher JA, Donnison IS. Fermentation study on saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 2009;21:569–74. https://doi.org/10.1007/s10811-008-9384-7.
  37. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2015;2:1–13. https://doi.org/10.3389/fbioe.2014.00090.
  38. Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 2008;49:2106–16. https://doi.org/10.1016/j.enconman.2008.02.020.
  39. John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 2011;102:186–93. https://doi.org/10.1016/j.biortech.2010.06.139.
  40. Ramachandra TV, Durga Madhab M, Shilpi S, Joshi NV. Algal biofuel from urban wastewater in India: scope and challenges. Renew Sustain Energy Rev 2013;21:767–77. https://doi.org/10.1016/j.rser.2012.12.029.
  41. Odum WE, Heald EJ. Trophic analyses of an estuarine mangrove community. Bull Mar Sci 1972;22:671–738. https://doi.org/10.12691/marine-2-1-3.
  42. Kraan S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strategies Glob Change 2013;18:27–46. https://doi.org/10.1007/s11027-010-9275-5.
  43. Milledge JJ, Smith B, Dyer PW, Harvey P. Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 2014;7:7194–222. https://doi.org/10.3390/en7117194.
  44. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R. Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 2009;48:8769–88. https://doi.org/10.1021/ie900044j.
  45. Smith VH, Sturm BSM, deNoyelles FJ, Billings SA. The ecology of algal biodiesel production. Trends Ecol Evol 2010;25:301–9. https://doi.org/10.1016/j.tree.2009.11.007.
  46. Hurd CL, Harrison PJ, Bischof K, Lobban CS. Seaweed ecology and physiology. Cambridge University Press; 2014.
  47. McHugh DJ. Seaweeds uses as human foods. A Guid to Seaweed Ind 2003;105. ISBN 92-5-104958-0.
  48. Pereira L, Neto JM. Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press; 2014.
  49. Rajkumar R, Yaakob Z, Takriff MS. Potential of the micro and macro algae for biofuel production: a brief review. BioResources 2014;9:1606–33. https://doi.org/10.15376/biores.9.1.1606-1633.
  50. Yanagisawa M, Kawai S, Murata K. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 2013;4:224–35. https://doi.org/10.4161/bioe.23396.
  51. Moll B, Deikman J. Enteromorpha clathrata: a potential seawater-irrigated crop. Bioresour Technol 1995;52:255–60. https://doi.org/10.1016/0960-8524(95)00036-E.
  52. Jang JS, Cho YK, Jeong GT, Kim SK. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioproc Biosyst Eng 2012;35:11–8. https://doi.org/10.1007/s00449-011-0611-2
  53. .
  54. Harun MKRD. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 2011;168:1079–84. https://doi.org/10.1016/j.cej.2011.01.088.
  55. Jung KA, Lim SR, Kim Y, Park JM. Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 2013;135:182–90. https://doi.org/10.1016/j.biortech.2012.10.025.
  56. Wei N, Quarterman J, Jin YS. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 2013;31:70–7. https://doi.org/10.1016/j.tibtech.2012.10.009.
  57. Borines MG, de Leon RL, Cuello JL. Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 2013;138:22–9. https://doi.org/10.1016/j.biortech.2013.03.108.
  58. Kjellman FR. Phaeophyceae (fucoideae). Die Nat Pflanzenfamilien I Teil 1891;2:176–92.
  59. Pascher A. Uber Flagellaten und Algen. Ber Dtsch Bot Ges 1914;32:136–60.
  60. Elizabeth Percival RHM. Chemistry and enzymology of marine algal polysaccharides. Q Rev Biol 2004;44. https://doi.org/10.1086/406101.229–229.
  61. Kumar S, Gupta R, Kumar G, Sahoo D, Chander R. Biore source Tec hnology Bioethanol production from Gracilaria verrucosa , a red alga , in a biorefinery approach. Bioresour Technol 2013;135:150–6. https://doi.org/10.1016/j. biortech.2012.10.120.
  62. Smith GM. Cryptogamic botany. Volume I, Algae and fungi, vol. I. Cryptogam Bot; 1938. Algae Fungi.
  63. El-Dalatony MM, Salama ES, Kurade MB, Hassan SHA, Oh SE, Kim S, et al. Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: a review. Energies 2017;10:1–19. https://doi.org/10.3390/en10122110.
  64. Lin F, Waters CL, Mallinson RG, Lobban LL, Bartley LE. Relationships between biomass composition and liquid products formed via pyrolysis. Front Energy Res 2015;3. https://doi.org/10.3389/fenrg.2015.00045.
  65. Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008;54:559–68.https://doi.org/10.1111/j.1365-313X.2008.03463.x.
  66. Machineni L. Lignocellulosic biofuel production: review of alternatives. Biomass Convers Biorefinery 2019. https://doi.org/10.1007/s13399-019-00445-x.
  67. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv 2011;29:675–85. https://doi.org/10.1016/j.biotechadv.2011.05.005
  68. Ibrahim HAH. Pretreatment of straw for bioethanol production. Energy Procedia 2012;14:542–51. https://doi.org/10.1016/j.egypro.2011.12.973.
  69. Lee HV, Hamid SBA, Zain SK. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. ScientificWorldJournal 2014; 2014:631013. https://doi.org/10.1155/2014/631013.
  70. Hamelinck CN, Van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 2005;28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002.
  71. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 2011;46:2111–6. https://doi.org/10.1016/j.procbio.2011.08.001.
  72. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 2008;1:1–9. https://doi.org/10.1186/1754-6834-1-5.
  73. Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildyal NP. Mechanism of solid particle degradation by Aspergillus Niger in solid state fermentation. Process Biochem 1994;29:545–51. https://doi.org/10.1016/0032-9592(94)80016-2.
  74. Chen H, Zhou D, Luo G, Zhang S, Chen J. Macroalgae for biofuels production: progress and perspectives. Renew Sustain Energy Rev 2015;47:427–37. https://doi.org/10.1016/j.rser.2015.03.086.
  75. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-H€ agerdal B, € Zacchi G. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 2006;126:488–98. https://doi.org/10.1016/j.jbiotec.2006.05.001.
  76. Abo-State MA, Ragab AME, EL-Gendy NS, Farahat LA, Madian HR. Effect of different pretreatments on egyptian sugar-cane bagasse saccharification and bioethanol production. Egypt J Pet 2013;22:161–7. https://doi.org/10.1016/j.ejpe.2012.09.007.
  77. Aggarwal NK, Niga P, Singh D, Yadav BS. Process optimization for the production of sugar for the bioethanol industry from tapioca, a non-conventional source of starch. World J Microbiol Biotechnol 2001;17:783–7. https://doi.org/10.1023/A:1013500602881.
  78. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kaminski M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018;23:2937. https://doi.org/10.3390/molecules23112937.
  79. Binod P, Kuttiraja M, Archana M, Janu KU, Sindhu R, Sukumaran RK, et al. High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 2012;92:340–5. https://doi.org/10.1016/j.fuel.2011.07.044.
  80. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, et al. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 2009;33:1680–6. https://doi.org/10.1016/j.biombioe.2009.09.001.
  81. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sustain Energy Rev 2016;54:473–81. https://doi.org/10.1016/j.rser.2015.10.022.
  82. Maneein S, Milledge JJ, Nielsen BV, Harvey PJ. A review of seaweed pre- treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentatio 2018;4:100. https://doi.org/10.3390/fermentation4040100.
  83. Noparat P, Prasertsan P, Pan X. Dilute acid pretreatment of oil palm trunk biomass at high temperature for enzymatic hydrolysis. Energy Procedia 2015;79:924–9. https://doi.org/10.1016/J.EGYPRO.2015.11.588.
  84. Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100:10–8. https://doi.org/10.1016/j.biortech.2008.05.027.
  85. Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, et al. Salt- activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 2006;89:211–9. https://doi.org/10.1007/s10482-005-9023-0.
  86. Yazdani P, Karimi K, Taherzadeh M. Improvement of enzymatic hydrolysis of a marine macro-alga by dilute acid hydrolysis pretreatment. World Renew Energy 2011:186–91. https://doi.org/10.3384/ecp11057186.
  87. Amezcua-Allieri MA, Sanchez Dur an T, Aburto J. Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. J Chem 2017;2017. https://doi.org/10.1155/2017/5680105.
  88. Tan IS, Lee KT. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy 2014;78:53–62. https://doi.org/10.1016/j.energy.2014.04.080
  89. Trivedi N, Gupta V, Reddy CRK, Jha B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 2013;150:106–12. https://doi.org/10.1016/j.biortech.2013.09.103.
  90. Hebbale D, Bhargavi R, Ramachandra TV. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon 2019;5:e01372. https://doi.org/10.1016/j.heliyon.2019.e01372.
  91. Juturu V, Wu JC. Microbial cellulases: engineering, production and applications.Renew Sustain Energy Rev 2014;33:188–203. https://doi.org/10.1016/j.rser.2014.01.077.
  92. Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997;15:583–620. https://doi.org/10.1016/S0734-9750(97)00006-2.
  93. Swain MR, Natarajan V, Krishnan C. Marine enzymes and microorganisms for bioethanol production. Adv Food Nutr Res 2017;80:181–97. https://doi.org/10.1016/bs.afnr.2016.12.003.
  94. Trivedi N, Reddy CRK, Radulovich R, Jha B. Solid state fermentation (SSF)- derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 2015;9:48–54. https://doi.org/10.1016/j.algal.2015.02.025.
  95. Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B. An alkali- halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 2011;83:891–7. https://doi.org/10.1016/j.carbpol.2010.08.069.
  96. Zhang YH Percival, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006;24:452–81. https://doi.org/10.1016/j.biotechadv.2006.03.003.
  97. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 2013;128:751–9. https://doi.org/10.1016/j.biortech.2012.10.145.
  98. Choi WY, Han JG, Lee CG, Song CH, Kim JS, Seo YC, et al. Bioethanol production from Ulva pertusa kjellman by high-temperature liquefaction. Chem Biochem Eng Q 2012;26:15–21. https://doi.org/10.2147/NSS.S6844.
  99. Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 2013;102:1371–81. https://doi.org/10.1016/j.apenergy.2012.07.031.
  100. Rubin EM, Himmel ME, Ding S, Johnson DK, Adney WS. Biomass Recalcitrance : Nature 2007;454:804–7. https://doi.org/10.1126/science.1137016.
  101. Niehaus F, Bertoldo C, Kahler M, Antranikian G. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 1999;51:711–29. https://doi.org/10.1007/s002530051456.
  102. Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol 2009;20:295–9. https://doi.org/10.1016/j.copbio.2009.05.007.
  103. Ge L, Wang P, Mou H. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 2011;36:84–9. https://doi.org/10.1016/j.renene.2010.06.001.
  104. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 2013;134:257–63. https://doi.org/10.1016/j.biortech.2013.02.002.
  105. Kim D-H, Lee S-B, Jeong G-T. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 2014; 161:348–53. https://doi.org/10.1016/j.biortech.2014.03.078.
  106. Kim SW, Hong CH, Jeon SW, Shin HJ. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 2015;196:634–41. https://doi.org/10.1016/j.biortech.2015.08.016.
  107. Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl Biochem Biotechnol 2011;164:878–88. https://doi.org/10.1007/s12010-011-9181-7.
  108. Ra CH, Jeong GT, Shin MK, Kim SK. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 2013;140:421–5. https://doi.org/10.1016/j.biortech.2013.04.122.
  109. Jang Sung-Soo. Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol 2012;11:1953–63. https://doi.org/10.5897/AJB10.1681.
  110. Erasmus JH, Cook PA, Coyne VE. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 1997;155:377–86. https://doi.org/10.1016/S0044-8486(97)00112-9.
  111. Nguyen TH, Ra CH, Sunwoo IY, Jeong GT, Kim SK. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioproc Biosyst Eng 2017;40:529–36. https://doi.org/10.1007/s00449-016-1718-2.
  112. Walker G, Stewart G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016;2:30. https://doi.org/10.3390/beverages2040030.
  113. Karagoz P, Ozkan M. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 2014;158:286–93. https://doi.org/10.1016/j.biortech.2014.02.022.
  114. Jin M, Lau M, Balan V, Dale BE. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour Technol 2010;101:8171–8. https://doi.org/10.1016/j.biortech.2010.06.026.
  115. Horn SJ, Aasen IM, Emptyvstgaard K. Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 2000;25:249–54. https://doi.org/10.1038/sj.jim.7000065.
  116. Horn SJ, Aasen IM, stgaard K. Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 2000;24:51–7. https://doi.org/10.1038/sj.jim.2900771.
  117. Kim NJ, Li H, Jung K, Chang HN, Lee PC. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 2011;102:7466–9.https://doi.org/10.1016/j.biortech.2011.04.071.
  118. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 2012;103: 180–5. https://doi.org/10.1016/j.biortech.2011.10.015.
  119. Choi D, Sim HS, Piao YL, Ying W, Cho H. Sugar production from raw seaweed using the enzyme method. J Ind Eng Chem 2009;15:12–5. https://doi.org/10.1016/j.jiec.2008.08.004.
  120. Kad ar Z, Szengyel Z, R eczey K. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 2004;20:103–10. https://doi.org/10.1016/j.indcrop.2003.12.015.
  121. Cho Y, Kim MJ, Kim SK. Ethanol production from seaweed, Enteromorpha intestinalis, by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae. KSBB J 2013;28:366–71. https://doi.org/10.7841/ksbbj.2013.28.6.366.
  122. Tesfaw A, Assefa F. Current trends in bioethanol production by Saccharomyces cerevisiae : substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Sch Res Not 2014;2014:1–11. https://doi.org/10.1155/2014/532852.
  123. Tolieng V, Kunthiphun S, Savarajara A, Tanasupawat S. Diversity of yeasts and their ethanol production at high temperature. J Appl Pharm Sci 2018;8:136–42. https://doi.org/10.7324/JAPS.2018.8221.
  124. Hu N, Yuan B, Sun J, Wang SA, Li FL. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 2012;95:1359–68. https://doi.org/10.1080/03602559.2017.1373397.
  125. Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 2013;77:1505–10. https://doi.org/10.1271/bbb.130173.
  126. Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 2011;21:323–31. https://doi.org/10.4014/jmb.1010.10057.
  127. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 2012;108:83–8. https://doi.org/10.1016/j.biortech.2011.12.065.
  128. Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, et al. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Reports 2017;10:52–61. https://doi.org/10.1016/j.bbrep.2017.03.003.
  129. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A. Bioethanol production from fermentable sugar juice. Sci World J 2014;2014. https://doi.org/10.1155/2014/957102.
  130. Neelakandan T, Usharani G. Optimization and production of bioethanol from cashew apple juice using immobilized yeast cells by Saccharomyces cerevisiae. J Sci Res 2009;4:85–8.
  131. El Sayed WMM, Ibrahim HAH. Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. J Biotechnol Biomater 2016;6. https://doi.org/10.4172/2155-952X.1000226.
  132. Kopsahelis N, Nisiotou A, Kourkoutas Y, Panas P, Nychas GJE, Kanellaki M. Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range. Bioresour Technol 2009;100:4854–62. https://doi.org/10.1016/j.biortech.2009.05.011.
  133. Wu FC, Wu JY, Liao YJ, Wang MY, Shih IL. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 2014;156:123–31. https://doi.org/10.1016/j.biortech.2014.01.024.
  134. Mutripah S, Meinita MDN, Kang JY, Jeong GT, Susanto AB, Prabowo RE, et al. Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 2014;26:687–93. https://doi.org/10.1007/s10811-013-0068-6.
  135. Hebbale D, Chandran MDS, Joshi NV, Ramachandra TV. Energy and food security from macroalgae. J Biodivers 2017;8:1–11. https://doi.org/10.1080/09766901.2017.1351511.
  136. Carl C, De Nys R, Paul NA. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production. PLoS One 2014;9:98700. https://doi.org/10.1371/journal.pone.0098700.
  137. Guiry MD, Guiry GM. AlgaeBase. World-Wide Electronic Publication. Galway:National University of Ireland; 2013. http://www.algaebase.org.
  138. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350–6. https://doi.org/10.1021/ac60111a017.
  139. Updegraff DM. Semimicro determination of cellulose inbiological materials. Anal Biochem 1969;32:420–4. https://doi.org/10.1016/S0003-2697(69)80009-6.
  140. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–75. https://doi.org/10.1016/0304-3894(92)87011-4.
  141. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–7. https://doi.org/10.1139/y59-099.
  142. Meinita MDN, Hong YK, Jeong GT. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioproc Biosyst Eng 2012;35:93–8. https://doi.org/10.1007/s00449-011-0608-x
  143. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426–8. https://doi.org/10.1021/ac60147a030.
  144. Subba Rao PV, Mantri VA. Indian seaweed resources and sustainable utilization:scenario at the dawn of a new century. Curr Sci 2006;91:164–74. https://doi.org/10.1021/Ie201743x.
  145. Chennubhotla VSK, Kaliaperumal N, Kalimuthu S. Seaweed recipes and other practical uses of. Seaweeds 1981;13:9–16.
  146. Kaliaperumal N, Chennubhotla VSK. Sea weed distribution and resources in Kerala coast. Seaweed Res Uliln 1997;19:29–32.
  147. Mishra SSS. Biodiversity of marine benthic algae from intertidal zone of konkan coast. (Maharashtra). Indian J Appl Res 2014;4:1–3. https://doi.org/10.1007/s11517-014-1207-1.
  148. Pereira N, Almeida MR. A preliminary checklist of marine algae from the Coast of Goa, vol. 43; 2014.
  149. Rath J, Adhikary SP. Marine macro-algae of Orissa, east coast of India. ALGAE 2010;21:49–59. https://doi.org/10.4490/algae.2006.21.1.049.
  150. Thakur MC, Reddy CRK, Jha B. Seasonal variation in biomass and species composition of seaweeds stranded along Port Okha, northwest coast of India. J Earth Syst Sci 2008;117:211–8. https://doi.org/10.1007/s12040-008-0025-y.
  151. Thirumaran G, Anantharaman P. Daily growth rate of field farming seaweed Kappaphycus alvarezii (doty) doty ex P. Silva in vellar estuary. World J Fish Mar Sci 2009;1:144–53.
  152. Lobban CS, Harrison PJ, Lobban CS, Harrison PJ. Morphology, life histories, and morphogenesis. Seaweed Ecol Physiol 2009;1–68. https://doi.org/10.1017/cbo9780511626210.002.
  153. Rameshkumar S, Rajaram R. Experimental cultivation of invasive seaweed Kappaphycus alvarezii (Doty) Doty with assessment of macro and meiobenthos diversity from Tuticorin coast, Southeast coast of India. Reg Stud Mar Sci 2017;9:117–25. https://doi.org/10.1016/j.rsma.2016.12.002.
  154. Geetanjah’Deshmukhe VX, Untawale G. Seaweed resources. Indian Ocean A Perspect 2001;2:563.
  155. Fleurence J. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 1999;10:25–8. https://doi.org/10.1016/S0924-2244(99)00015-1.
  156. Kang KE, Park DH, Jeong GT. Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresour Technol 2013;132:160–5. https://doi.org/10.1016/j.biortech.2013.01.012.
  157. Nitsos CK, Matis KA, Triantafyllidis KS. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 2013;6:110–22. https://doi.org/10.1002/cssc.201200546.
  158. Glicksman M. Utilization of seaweed hydrocolloids in the food industry, vols. 151–152; 1987.
  159. Bixler HJ, Porse H. A decade of change in the seaweed hydrocolloids industry.J Appl Phycol 2011;23:321–35. https://doi.org/10.1007/s10811-010-9529-3.
  160. Cuevas M, Sanchez S, García JF, Baeza J, Parra C, Freer J. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones. Renew Energy 2015;74:839–47. https://doi.org/10.1016/j.renene.2014.09.004.
  161. Jmel MA, Anders N, Ben Yahmed N, Schmitz C, Marzouki MN, Spiess A, et al. Variations in physicochemical properties and bioconversion efficiency of Ulva lactuca polysaccharides after different biomass pretreatment techniques. Appl Biochem Biotechnol 2018;184:777–93. https://doi.org/10.1007/s12010-017-2588-z.
  162. Prabakaran P, Ravindran AD. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 2011;53: 150–4. https://doi.org/10.1111/j.1472-765X.2011.03082.x.
  163. Jahnavi G, Prashanthi GS, Sravanthi K, Rao LV. Status of availability of lignocellulosic feed stocks in India: biotechnological strategies involved in the production of Bioethanol. Renew Sustain Energy Rev 2017;73:798–820. https://doi.org/10.1016/j.rser.2017.02.018.
  164. Lee J ye, Li P, Lee J, Ryu HJ, Oh KK. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 2013;127:119–25. https://doi.org/10.1016/j.biortech.2012.09.122.
  165. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 2012;24:857–62. https://doi.org/10.1007/s10811-011-9705-0.
  166. Wei N, Quarterman J, Kim SR, Cate JHD, Jin YS. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 2013;4:1–8. https://doi.org/10.1038/ncomms3580.
  167. Jeong GT, Kim SK, Park DH. Detoxification of hydrolysate by reactive-extraction for generating biofuels. Biotechnol Bioproc Eng 2013;18:88–93. https://doi.org/10.1007/s12257-012-0417-3.
  168. Yanagisawa M, Kawai S, Murata K. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 2013;4:224–35. https://doi.org/10.4161/bioe.23396.
  169. Johnson B, Gopakumar G. Farming of the seaweed Kappaphycus alvarezii in Tamil Nadu coast status and constraints. Mar Fish Inf Serv T&E 2011;208:1–5.
  170. Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A. Lignocellulosic biomass to ethanol process Design and economics utilizing Co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. 1999.
  171. Suriyachai N, Weerasaia K, Laosiripojana N, Champreda V, Unrean P. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour Technol 2013;142:171–8. https://doi.org/10.1016/j.biortech.2013.05.003.
  172. Siddhanta AK, Prasad K, Meena R, Prasad G, Mehta GK, Chhatbar MU, et al. Profiling of cellulose content in Indian seaweed species. Bioresour Technol 2009; 100:6669–73. https://doi.org/10.1016/j.biortech.2009.07.047.
  173. Kim HM, Wi SG, Jung S, Song Y, Bae HJ. Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 2015;175:128–34. https://doi.org/10.1016/j.biortech.2014.10.050
  174. Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 2011;53:246–52. https://doi.org/10.1111/j.1744-7909.2010.01024.x.
  175. Borines MG, De Leon RL, McHenry MP. Bioethanol production from farming non- food macroalgae in Pacific island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew Sustain Energy Rev 2011;15:4432–5. https://doi.org/10.1016/j.rser.2011.07.109.
  176. Uchida M, Miyoshi T, Kaneniwa M, Ishihara K, Nakashimada Y, Urano N. Production of 16.5% v/v ethanol from seagrass seeds. J Biosci Bioeng 2014;118: 646–50. https://doi.org/10.1016/j.jbiosc.2014.05.017
  177. Baldan B, Andolfo P, Navazio L, Tolomio C, Mariani P. Cellulose in algal cell wall : an “in situ” localization. Eur J Histochem 2001;45:51–6. https://doi.org/10.4081/1613.
  178. Mantri VA, Thakur MC, Kumar M, Reddy CRK, Jha B. The carpospore culture of industrially important red alga Gracilaria dura (Gracilariales, Rhodophyta).Aquaculture 2009;297:85–90. https://doi.org/10.1016/j.aquaculture.2009.09.004.
  179. Padhi S, Swain PK, Behura SK, Baidya S, Behera SK, Panigrahy MR. Cultivation of Gracilaria verrucosa (huds) papenfuss in chilika lake for livelihood generation in coastal areas of Orissa state. J Appl Phycol 2011;23:151–5. https://doi.org/10.1007/s10811-010-9592-9.
  180. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, et al. Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 2011;102:2595–604. https://doi.org/10.1016/j.biortech.2010.10.010.
  181. Junior JN, Massaguer PR De. Thermal degradation kinetics of sucrose, glucose and fructose in sugarcane must for bioethanol production. J Food Process Eng 2006;29:462–77.
  182. Lenihan P, Orozco A, O’neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 2010;156:395–403. https://doi.org/10.1016/j.cej.2009.10.061.
  183. Rebek J. On the structure of histidine and its role in enzyme active sites. Struct Chem 1990;1:129–31. https://doi.org/10.1007/BF00675792.
  184. Shuler MLF. Bioprocess engineering basic concepts. 2002.
  185. Frankenberger Jr WT, Johanson JB. Effect of pH on enzyme stability in soils, vol. 14; 1982.
  186. Arroyo-Lopez FN, Orli c S, Querol A, Barrio E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int J Food Microbiol 2009;131:120–7. https://doi.org/10.1016/j.ijfoodmicro.2009.01.035
  187. Bertolini MC, Ernandes JR, Laluce C. New yeast strains for alcoholic fermentation at higher sugar concentration. Biotechnol Lett 1991;13:197–202. https://doi.org/10.1007/BF01025817
  188. D’Amato D, Corbo MR, Del Nobile MA, Sinigaglia M. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int J Food Sci Technol 2006;41:1152–7. https://doi.org/10.1111/j.1365-2621.2005.01128.x
  189. Luo MB, Liu F. Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. J Exp Mar Biol Ecol 2011; 409:223–8. https://doi.org/10.1016/j.jembe.2011.08.023
  190. Saranya G, Subashchandran MD, Mesta P, Ramachandra TV. Prioritization of prospective third-generation biofuel diatom strains. Energy, Ecol Environ 2018;3:338–54. https://doi.org/10.1007/s40974-018-0105-z
  191. Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Moller HB. Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 2012;24:449–58. https://doi.org/10.1007/s10811-011-9767-z.
  192. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, et al. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 2001;37:975–86. https://doi.org/10.1046/j.1529-8817.2001.01137.x.
  193. Roesijadi G, Copping AE, Huesemann MH, Forster J. Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. 2008. [193]
  194. Bui HTT, Luu TQ, Fotedar R. Effects of temperature and pH on the growth of Sargassum linearifolium and S. Podacanthum in potassium-fortified inland saline water. Am J Appl Sci 2018;15:186–97. https://doi.org/10.3844/ajassp.2018.186.197.
  195. Khan SI, Satam SB. Seaweed mariculture: scope and potential in India. Aquac Asia 2003;VIII:26–9.
  196. Mamatha BS, Namitha KK, Senthil A, Smitha J, Ravishankar GA. Studies on use of Enteromorpha in snack food. Food Chem 2007;101:1707–13. https://doi.org/10.1016/j.foodchem.2006.04.032.
  197. Adenle AA, Haslam GE, Lee L. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy 2013;61:182–95. https://doi.org/10.1016/j.enpol.2013.05.088.

 

Citation :T.V. Ramachandra, Deepthi Hebbale, 2019, Bioethanol from macroalgae: Prospects and challenges, Available online 17 October 2019 1364-0321/© 2019 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.rser.2019.109479 Received 24 February 2019; Received in revised form 23 September 2019; Accepted 8 October 2019
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : tvr@iisc.ac.in , cestvr@ces.iisc.ernet.in, energy.ces@iisc.ac.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass