http://www.iisc.ernet.in/
Sequential Maximum a Posterior (SMAP) Algorithm for Classification of Urban Area using Multi-resolution Spatial Data with Derived Geographical Layers
http://wgbis.ces.iisc.ernet.in/energy/
Uttam Kumar1,2,3          Anindita Dasgupta3          Chiranjit Mukhopadhyay1           T.V. Ramachandra2,3,4,*
1Department of Management Studies, 2Centre for Sustainable Technologies (astra), 3Centre for Ecological Sciences [CES],
4Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore – 560012, India.
*Corresponding author:
cestvr@ces.iisc.ernet.in
REFERENCES
  1. Jensen, J. R., and Cowen, D. C., 1999.Remote sensing of urban/suburban infrastructure and socioeconomic attributes.Photogrammetric Engineering and Remote Sensing.vol. 65, 611-622.
  2. Ward, D., Phinn, S. R., and Murray, A. L., 2000.Monitoring growth in rapidly urbanizing areas using remotely sensed data. Professional Geographer. vol. 53, 371-386.
  3. Ramachandra T. V. and Kumar, U., 2008. Wetlands of Greater Bangalore, India: Automatic Delineation through Pattern Classifiers. The Greendisk Environmental Journal, (International Electronic Journal).vol. 1(26),1-22.
  4. Lo, C. P., Quattrochi, D., and Luvall, J., 1997. Application of high resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing.vol. 18, 287–304.
  5. Weng, Q., 2001. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the ZhujiangDelta, China. International Journal of Remote Sensing. vol. 22, 1999-2014.
  6. Ramachandra T. V., and Kumar, U., 2009. Land Surface Temperature with Land Cover Dynamics: Multi-Resolution, Spatio-Temporal Data Analysis of Greater Bangalore. International Journal of Geoinformatics, vol. 5(3), 43-53.
  7. Lo, C. P., 1995. Automated population and dwelling unit estimation from high-resolution satellite images: a GIS approach. International Journal of Remote Sensing, vol. 16, 17-34.
  8. Thomson, C. N., and P. Hardin, 2000.Remote sensing/GIS integration to identify potential low-income housing sites. Cities, vol. 17, 97-109.
  9. Lu, D., and Weng, Q., 2005.Urban Classification Using Full Spectral Information of Landsat ETM+ Imagery in MarionCounty, Indiana. Photogrammetric Engineering and Remote Sensing. vol. 71(11), 1275-1284.
  10. Lu, D., and Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performances. International Journal of Remote Sensing, vol. 28(5), 823-870.
  11. Jensen, J. R., 2000. An Earth Resource Perspective, Prentice Hall, Upper Saddle River, New Jersey. Remote Sensing of the Environment. 544.
  12. Sugumaran, R., Zerr, D., and Prato, T., 2002. Improved urban land cover mapping using multitemporalIkonos images for local government planning, Canadian Journal of Remote Sensing. vol. 28, 90-95.
  13. Van der Sande, C. J., de Jong, S. M., and de Roo, A. P. J., 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of Applied Earth Observation and Geoinformation. vol. 4, 217-229.
  14. Lu, D., Hetrick, S., and Moran, E., 2010. Land Cover Classification in a Complex Urban-Rural landscape with Quickbird Imagery. Photogrammetric Engineering and Remote Sensing. vol. 76(10), 1159-1168.
  15. Rashed, T., Weeks, J. R., Gadalla, M. S., and Hill, A. G., 2001. Revealing the anatomy of cities through spectral mixture analysis of multisepctral satellite imagery: a case study of the Greater Cairo region, Egypt. Geocarto International. vol. 16, 5-15.
  16. Lu, D., Mausel, P., Batistella, M., and Moran, E., 2004a. Comparison of land-cover classification methods of the BrazilianAmazonBasin. Photogrammetric Engineering and Remote Sensing. vol. 70, 732-731.
  17. Haack, B. N., Solomon, E. K., Bechdol, M. A., and Herold, N. D., 2002. Radar and optical data comparison/integration for urban delineation: a case study. Photogrammetric Engineering and Remote Sensing. vol. 68, 1289-1296.
  18. Stuckens, J., Coppin, P. R., and Bauer, M. E. 2000. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment. vol. 71, 282-296.
  19. Shaban, M. A., and Dikshit, O., 2001. Improvement of classification in urban areas by the use of textural features: the case study of Lucknow city, Uttar Pradesh. International Journal of Remote Sensing. vol. 22, 565-593.
  20. Hung, M, and Ridd, M. K., 2002. A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules. Photogrammetric Engineering and Remote Sensing. vol. 68, 1173-1180.
  21. Na, X., Zhang, S., Li, Xiaofeng, Yu, H., and Liu, C., 2010. Improved Land Cover Mapping using Random Forests Combined with Landsat Thematic mapper Imagery and Ancillary Geographic Data. Photogrammetric Engineering and Remote Sensing. vol. 76(7), 833-840.
  22. Xiaodong, Na, Shuqing, Z., Huaiqing, Z., Xiaofeng, L., Chunyue, L., 2009. Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area. Chinese Geographical Science. vol. 19(2), 177-185.
  23. Fahsi, A., Tsegaye, T., Tadesse, W., and Coleman, T., 2000. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy. Forest Ecology and Management. vol. 128(2000), 57-64.
  24. Recio, J. A., Hermosilla, L. A., and Fernandez-Sarria, A., 2011. Historical Land Use as a Feature for Image Classification. Photogrammetric Engineering and Remote Sensing. vol. 77(4), 377-387.
  25. Masocha, M., and Skidmore, A. K., 2011. Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping. International Journal of Applied Earth Observation and Geoinformation. vol. 13, 487-494.
  26. Dorren, L. K. A., Maier, B., Seijmonsbergen, A. C., 2003. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management. vol. 183(2003), 31-46.
  27. Xian, G., Crane, M., and McMahon, C., 2008. Quantifying Multi-temporal Urban development Characteristics in Las Vegas from Landsat and ASTER Data. Photogrammetric Engineering and Remote Sensing. vol. 74(4),  473-481.
  28. Rissanen, J., 1983. A Universal Prior for Integers and Estimation by Minimum Description Length. Annals of Statistics.vol. 11(2), 417-431.
  29. Dempster, A., Laird, N., and Rubin, D., 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Society Series B of Statistics.vol. 39(1), 1-38.
  30. Redner, E., and Walker, H., 1984. Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review.vol. 26(2), 195-239.
  31. Bouman, C., and Shapiro, M., 1992. Multispectral Image Segmentation using a Multiscale Image Model. In Proceedings of IEEE International Conference on Acoust., Speech and Signal Processing (San Francisco, California, March 23-26, 1992). pp. III-565-III-568.
  32. Bouman, C. and Shapiro, M., 1994. A Multiscale Random Field Model for Bayesian Image Segmentation. IEEE Transaction on Image Processing. vol. 3(2), 162-177. URL: http://wgbis.ces.iisc.ernet.in/grass/grass70/manuals/html70_user/i.smap.html
  33. Gong, P., Marceau, D. J., and Howarth, P. J., 1992. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment. vol. 40, 137-151.
  34. Shaban, M. A., and Dikshit, O., 2002. Evaluation of the merging of SPOT multispectral and panchromatic data for classification of an urban environment. International Journal of Remote Sensing. vol. 23, 249-262.
  35. Germaine, K. A., and Hung, M-C., 2011. Delineation of Impervious Surface from Multispectral Imgery and Lidar Incorporating Knowlwdge Based Expert System Rules. Photogrammetric Engineering and Remote Sensing. vol. 77(1), 75-85.
  36. Chen, D., Stow, D.A., and Gong, P., 2004. Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. International Journal of Remote Sensing. vol. 25, 2177-2192.
  37. Haralick, R. M., K. Shanmugam, and I.Dinstein, 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC. vol. 3(6),  610-621.
  38. Augera, F., Aguilar, F. J., and Aguilar, M. A., 2008. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS Journal of Photogrammetry and Remote Sensing. vol. 63, pp. 635-646.
  39. Lu, D., Batistella, M., and Moran, E., 2008a. Integration of Landsat TM and SPOT HRG Images for Vegetation Change Detection in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing, vol. 74(4), 421-430.
  40. Lu, D., Batistella, M., Moran, E., and de Miranda, E. E., 2008b. A comparative study of Landsat TM and SPOT HRG images for vegetation classification in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing. vol. 70(3), 311-321.
BACK   «   TOP   »   NEXT
Citation : Uttam Kumar, Anindita Dasgupta, Chiranjit Mukhopadhyay and Ramachandra. T.V., 2012, Sequential Maximum a Posterior (SMAP) Algorithm for Classification of Urban Area using Multi-resolution Spatial Data with Derived Geographical Layers., Proceedings of the India Conference on Geo-spatial Technologies & Applications, Department of Computer Science and Engineering, Indian Institute of Technology Bombay (IITB), April 12-13, 2012 , pp. 1-13.
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503-extn 107,      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : cestvr@ces.iisc.ernet.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail