Sequential Maximum a Posterior (SMAP) Algorithm for
Classification of Urban Area using Multi-resolution Spatial

Data with Derived Geographical Layers

Uttam Kumar" ? 3, Anindita Dasgupta®, Chiranijit Mukhopadhyay’, and T.V. Ramachandra® > *

'Department of Management Studies, >Centre for Sustainable Technologies, *Centre for Ecological Sciences,
“Centre for infrastructure, Sustainable Transport and Urban Planning, Indian Institute of Science,
Bangalore — 560012, India.

uttam@eces.iisc.ernet.in, anindita_dasgupta@ces.iisc.ernet.in, cn@mgmag.iisc.ernet.in, cestvr@ces.iisc.ernet.in

ABSTRACT

Effective conservation and management of natural resources
requires up-to-date information on the land cover (LC) types and
their dynamics. Multi-resolution remote sensing (RS) data with
appropriate classification strategies have been used to categorise
land use and land cover (LULC) of a landscape. RS data coupled
with other important environmental layers (both remotely
acquired or derived from ground measurements) would be more
effective in capturing the LC dynamics and changes associated
with the natural resources, as ancillary layers provide additional
information that would make the decision boundaries between
the LC classes more widely separable, enabling classification
with higher accuracy compared to conventional methods of RS
data classification.The objective of this paper is to ascertain the
possibility of improved classification accuracy of high spatial-
low spectral resolution IKONOS data and low spatial-high
spectral resolution Landsat ETM+ data of an urban area with the
addition of ancillary and derived geographical layers such as
vegetation index, temperature, digital elevation model (DEM),
aspect, slope and texture.

Results showed that texture played a major role in
discriminating individual classes which were rather difficult to
distinguish using only original high spatial resolution IKONOS
Multispectral (MS) bands. DEM plays a role when the terrain is
undulating, however, due to limited vegetation cover, vegetation
index was not useful in classification.With ETM+ MS data,
inclusion of temperature, NDVI (Normalised Difference
Vegetation Index), EVI (Enhanced Vegetation Index), elevation,
slope, aspect, Panchromaticband and texture increased the
overall accuracy by 7.6% for the same urban area.Thestudy
helped in the selection of appropriate ancillary layers for
improved classification of RS data depending on the terrain.

Keywords
SMAP, algorithm, IKONOS, Landsat ETM+, urban,
classification

1. INTRODUCTION

Classification of remote sensing (RS) data accurately is a
prerequisite for many environmental and socio-economic
applications [1], such as urban change detection [2-3], urban
heat islands [4-6], and estimation of biophysical, demographic,
and socio-economic variables [7-8]. Satisfactory classification
of RS data depends on many factors including (a) the
characteristics of study area, (b) availability of suitable RS data,
(c) ancillary and ground reference data, (d) proper use of
variables and classification algorithms, (e) user’s experience
with reference to the application and (f) time constraints [9].
Furthermore, diverse landscapes and terrain types have a
mixture of both homogeneous and heterogeneous land
cover(LC) classes and require supplemental environmental or
geographical layers for improved classification accuracies.
Increased spectral variation is common with high degree of
spectral heterogeneity in complex landscapes [10]. For example,
urban landscapes are composed of features having a complex
mix of buildings, roads, flyovers, pavements, trees and lakes
which are sometimes smaller than the medium spatial resolution
sensors [11]. This creates mixed pixels, a common problem
prevalent in residential areas where buildings, trees, lawns,
concrete and asphalt all occur within a pixel, often responsible
for low classification accuracy, and is a major challenge for
selection of suitable image processing approaches over a large
area. On the other hand, with the availability of fine spatial
resolution data such as IKONOS Multispectral (MS) and
Panchromatic (PAN) [12-13], numerous opportunities exist for
urban studies. A major advantage is that they reduce the mixed
pixel problem, providing the potential to extract much more
detailed information of wurban structures compared to
mediumspatial resolution data.However, the most important
issue associated with high spatial resolution data is that it is
expensive and requires more time for data analysis than medium
spatial resolution data [9]. Moreover, high spatial resolution
often lead to high spectral variation within the same LC class,
and the limited number of spectral bands, including the lack of a
shortwave infrared band, leads to a high rate of spectral
confusion resulting in poor classification performance [14]. In
practice, data acquired from medium spatial resolution sensors
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such as Landsat TM/ETM+ or IRS LISS-III, being readily
available for multiple dates, are commonly used for urban
landscape analysis at a regional scale.

Reducing the spectral variation within the same LC and
increasing the separability of different LC types are the keys for
improving LC classification [10]. In this regard, different
approaches such as sub-pixel classification [15-16], multi-sensor
data integration [17], full spectral image classification [18-19],
expert classification [20] have been used. Traditional per-pixel
spectral-based supervised classification is based only on spectral
signatures, but does not make use of rich spatial information
inherent in the data [14]. Therefore, making full use of RS
information along with ancillary information (acquired or
derived environmental layers) would be an efficient way to
improve classification accuracy.

The paper is organised as follows: Section 2 highlights the
previous work done using additional geographical layers for
improving classification accuracy, section 3 states the
objectives, and section 4 describes the SMAP classification
algorithm. Study area and Data are discussed in section 5, results
from IKONOS and Landsat ETM+ are highlighted in section 6,
followed by Discussion and Conclusion in section 7 and 8
respectively.

2. LITERATURE REVIEW

There are few earlier studies that show the utility of
ancillary and geographically derived data for improving LC
classification. Na et al., (2010) [21] used 103 geographical
layers to show improvement in LC mapping using Landsat TM
bands 1 to 5 and 7, NDVI, EVI, a data fusion transformation
combining the six bands information from the Landsat TM
image (first principal component — PCl) as additional
predictors, image texture measures (variance, homogeneity,
contrast, dissimilarity and entropy) with window size of 3 x 3
pixels and 11 x 11 pixels, DEM, slope and soil type with
Random Forest (RF), Classification and Regression Tree
(CART) and Maximum Likelihood Classifier (MLC) based
classification. Among these, RF yielded accurate classification
with an overall accuracy of 91% and kappa 0.89. They also
quantified the effect of training set size on the performance of
classification algorithms. Xiaodong et al., (2009)[22] integrated
TM data with NDVI, EVI, first principal component (PC), slope,
soil types and five texture measures (variance, homogeneity,
contrast, dissimilarity and entropy) for LC classification of
Marsh Area using CART and MLC. They concluded that image
spectral, textural, terrain data and ancillary Geographical
Information System (GIS) improved the land use and land
cover(LULC) classification accuracy significantly. Fahsi et al.,
(2000) [23]evaluated the contribution and quantified the
effectiveness of DEM in improving LC classification using
Landsat TM data over a rugged area in the Atlas Mountains,
Morocco. The study showed that DEM considerably improved
the classification accuracy by reducing the effect of relief on

satellite images, increasing the individual accuracies of the
different classes by upto 60%.

Recio et al., (2011)[24] used historical land use (LU) and
ancillary data as a feature in a geospatial framework for image
classification and showed improvement in overall classification
accuracy considered case-by-case for each class. Masocha and
Skidmore (2011)[25] used DEM along with ASTER imagery
and georeferenced point data obtained from field to increase the
accuracy of invasive species (Lantana camera) mapping. They
used Neural Network and SVM classifiers along with GIS
expert system to develop hybrid classifiers. The overall accuracy
increased from 71% (kappa 0.61) to 83% (kappa 0.77) with
Neural Network and from 64% (kappa 0.52) to 76% (kappa
0.67) with SVM hybrid classifiers. Dorren et al., (2003)[26]
studied the effect of topographic correction and the role of DEM
as additional band using per-pixel and object based classification
to classify forest stand type maps using Landsat TM data in a
steep mountainous terrain. They concluded that both
topographic correction and classification with DEM as
additional band increased the overall accuracy.

Xian et al., (2008)[27] quantified multi-temporal urban
development characteristics in Las Vegas from Landsat and
ASTER Data. Apart from the satellite imageries, NDVI, slope,
aspect and temperature were used for classification. Lu and
Weng (2005)[9] demonstrated urban classification using full
spectral information of Landsat ETM+ imagery in Marion
County, Indiana. Role of PC’s of ETM+ MS bands, texture,
temperature and data fusion of MS and PAN to improve
classification accuracy were considered. They concluded that
texture and temperature may improve classification accuracy for
some classes, but may degrade for other classes. Data fusion of
MS and PAN are useful but high spatial resolution also increases
spectral variation within the classes, decreasing the classification
accuracy. Data fusion combined with texture significantly
improved classification accuracy.

3. OBJECTIVE

The objective of this work is to investigate the role of
several ancillary and derived layers for high spatial-low spectral
resolution IKONOS data and low spatial-high spectral resolution
Landsat ETM+ data classification of an urban area with varying
characteristics. The following questions are examined in the
process of image classification:

(i.) Does addition of vegetation indices such as NDVI and
EVlincrease or decrease classification accuracy?

(ii.) Does elevation and derived layers (slope and aspect)
improve classification accuracy?

(iii.) Does texture has any role in proper identification of
classes with better classification accuracy?

(iv.) How does temperature add to the classification accuracy
when included in classification?

(v.) Does addition of PAN band in addition to MS bands with
other ancillary and derived layers prove useful in
improving classification accuracy?
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4. CONTEXTUAL CLASSIFICATION
USING SEQUENTIAL MAXIMUM A
POSTERIOR (SMAP)
CLASSIFICATION

In SMAP, spectral signatures are extracted from images
based on training map by determining the parameters of a
spectral class Gaussian mixture distribution model, which are
used for subsequent segmentation (i.e. classification) of the MS
images. The Gaussian mixture class describes the behavior of an
information class which contains pixels with a variety of distinct
spectral characteristics. For example, forest, grasslands or urban
areas are examples of information classes that need to be
separated in an image. However, each of these information
classes may contain subclasses each with its own distinctive
spectral characteristic; a forest may contain a variety of different
tree species each with its own spectral behavior. Mixture classes
improve segmentation performance by modelling each
information class as a probabilistic mixture with a variety of
subclasses. In order to identify the subclasses, clustering is first
performed to estimate both the number of distinct subclasses in
each class, and the spectral mean and covariance for each
subclass. The number of subclasses is estimated using
Rissanen's minimum description length (MDL) criteria [28].
This criteria determines the number of subclasses which best
describe the data. The approximate maximum likelihood
estimates of the mean and covariance of the subclasses are
computed using the expectation maximization (EM)
algorithm[29-30].

SMAP improves segmentation accuracy by segmenting the
image into regions rather than segmenting each pixel separately
[31-32]. The algorithm exploits the fact that nearby pixels in an
image are likely to have the same class and segments the image
at various scales or resolutions using the coarse scale
segmentations to guide the finer scale segmentations. In addition
to reducing the number of misclassifications, the algorithm
generally produces segmentations with larger connected regions
of a fixed class. The amount of smoothing that is performed in
segmentation is dependent on the behavior of the data. If the
data suggest that the nearby pixels often change class, then the
algorithm adaptively reduces the amount of smoothing, ensuring
that  excessively large regions are not formed

(http://wgbis.ces.iisc.ernet.in/grass/grass70/manuals/html70_use
r/i.smap.html).

5. STUDY AREA AND DATA

The study area selected for urban classification is a part of
Greater Bangalore having dense builtup, parks, roads, streets,
flyovers, walk ways, open land, etc. Dense and medium urban
areas have high surrounding temperature compared to vegetation
patches, parks and lakes [6].The undulating terrain in the city
ranges from 735 to 970 m with varying textures due to different
urban structures.

IKONOS data (700 x 700 dimension) and Landsat ETM+ MS
data pertaining to a part of Greater Bangalore were used for
urban classification. Ancillary layers such as elevation and its
derived layers such as slope and aspect along with
NDVI(Normalised Difference  Vegetation Index), EVI
(Enhanced Vegetation Index) and textures (ASM - angular
second moment, contrast, entropy and variance) were used in
separate experiments during classification as summarised in
table 1 (for IKONOS data) and table 2 (for Landsat ETM+ data),
respectively. Figure 1 showsFalse ColourComposite (FCC),
NDVI, EVI, DEM (Digital Elevation Model), slope and aspect
for the study area. EVI values were rescaled from 0 to 1. It is
seen from figure 1 that EVI index highlight vegetation better
than NDVI (in green colour) compared to FCC. The elevation in
this area ranges from 883 to 940 m. Slope and aspect are
represented in degrees.

6. RESULTS

6.1 IKONOS data classification

Figure 2 is the output from the eight classifications as
explained in table 1 using SMAP. Figure 2 (Classification No. 1)
is the classified output of IKONOS 4 bands. Classification No. 2
is the output after adding NDVI as an additional layer to the
input in the classifier, where two classes are missing (asbestos
roof and open area). Overall, blue plastic roof is over estimated
as evident from figure 2 and area statistics in table 3.
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Figure 1. FCC, NDVI, EVI, DEM, slope and aspect added in IKONOS data classification as additional layers.

Table 1. Details of geographical layers used for IKONOS

8 IKONOS bands 1, 2, 3, 4, | 5+(4x4x4)=
DEM and Texture (ASM, 69
contrast, entropy, variance) at
0, 45, 90 and 135 degrees for
IKONOS bands 1, 2, 3, 4

classification
Classification RS data and ancillary Total number
No. geographical layers used of input
layers in the
classification
1 IKONOS bands 1, 2, 3, 4 4
2 IKONOS bands 1, 2, 3, 4, and 5
NDVI
3 IKONOS bands 1, 2, 3, 4, and 5
EVI
4 IKONOS bands 1, 2, 3, 4, and 5
DEM
5 IKONOS bands 1, 2, 3, 4, 6
EVL, DEM
6 IKONOS bands 1, 2, 3, 4, 7
DEM, slope and aspect
7 IKONOS bands 1, 2, 3, 4, 8

DEM, slope, aspect and EVI

The role of NDVI in discriminating non-vegetation area is
negligible and therefore asbestos and open areas have merged
with concrete roof and blue plastic with a drastic decrease in
overall accuracy (47%) as shown in table 4. When EVI was added
as an additional derived layer, classification is better compared to
the inclusion of NDVI. However, the class composition is either
under estimated (concrete roof, vegetation and open area) or over
estimated (blue plastic roof) lowering the overall accuracy to
55%.Blue plastic roof was also over estimated when both EVI and
DEM were added as input layers along with the original bands. As
evident from figure 2, concrete roof and open area have been
misclassified and merged to blue plastic roof, which is dominant
in the scene. Asbestos roof and vegetation are the two
classeswhich showed higher producer’s and user’s accuracies.
However, the overall accuracy still remained low (49.28%).

Similar situation prevails when DEM, slope and aspect were
included with the input IKONOS MS bands to the
4
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classifier.Concrete roof, open area and vegetation are under
estimated and blue plastic roof is over estimated, brining the
overall accuracy to as low as 55%. The output worsens when
DEM, slope, aspect with EVI were considered additionally to the
input. All the classes are either over estimated or under estimated
with overall accuracy of 51% (table 4).In classification No. 8§,
when only DEM and texture measures were added (table 1) as
input to the classifier apart from IKONOS 4 MS bands, the
overall accuracy went high to 88.72% with high producer’s and
user’s accuracies for individual classes which were classified
properly (table 3).

The above experiments conclude that in a highly urbanised area
with less vegetation cover and highly contrasting features, texture
plays a major role in discriminating individual classeswhich are
rather difficult to distinguish using only original high

Table 2. Details of data and ancillary layers used for Landsat
ETM+ MS classification

Classification RS data and ancillary Total
No. geographical layers used number of
input layers
in the

classification

ETM+ bands 1, 2, 3, 4, 5 and 7 at

30m 6

ETM+ bands 1, 2, 3, 4, 5, 7 and
Temperature

ETM+ bands 1, 2, 3, 4, 5, 7,
3 NDVI, EVI, elevation, slope and 11
aspect

ETM+ bands 1, 2, 3, 4, 5, 7,
4 Temperature, NDVI, EVI, 12
elevation, slope and aspect

ETM+ bands 1, 2, 3, 4, 5, 7,
Temperature, NDVI, EVI,
elevation, slope and aspect,texture 108
(ASM, contrast, entropy, variance)
at 0, 45, 90 and 135 degrees for
ETM+bands 1,2,3,4,5,7

ETM+ bands 1, 2, 3, 4, 5, 7,
Temperature, NDVI, EVI,
6 elevation, slope and aspect,texture 109
(ASM, contrast, entropy, variance)
at 0, 45, 90 and 135 degrees for
ETM+bands 1,2,3,4,5,7

ETM+ bands 1, 2, 3, 4, 5, 7,
Temperature, NDVI, EVLETM+
PAN, texture (ASM, contrast,
7 entropy, variance) at 0, 45, 90 and 125
135 degrees for ETM+ bands 1, 2,
3, 4, 5, 7, and ETM+ PAN
elevation, slope and aspect

spatial resolution IKONOS MS bands as evident from high
classification accuracies in table 4 (Classification No. 4 and 8
highlighted in bold), compared to the classification of only
IKONOS 4 MS bands (Classification No. 1 highlighted in bold).
DEM plays a role when the terrain is undulating but derived
layers such as slope and aspect did not aid in discriminating
classes when the elevation had low variance. Due to limited
vegetation presence (a few parks) in the study area, EVI was not
useful in classification. Overall 3.5% improvement in accuracy
was observed after including elevation and texture along with the
original bands as input to the classifier.

6.2 Landsat ETM+ data classification

Seven separate classifications were carried out with the
different combinations of Landsat ETM+ bands and geographical
layers as summarised in table 2. Landsat ETM+ PAN band was
also added in the classification data set and the other 6 MS bands
were resampled to 15 m. Finally, the texture measures from PAN
band were included as input to classification, making the total
number of geographical layers to 125. Figure 3 shows output from
the seven classified images and LU statistics are listed in table 5.
The producer’s, user’s, overall accuracies and kappa are given in
table 6.

Figure 3 indicates that outputs obtained from the original
spectral bands along with temperature, NDVI, EVI, elevation,
slope and aspect (Classification No. 1, 2, 3 and 4) have
misclassified many pixels belonging to builtup, water and open
area. Many of the tarred or concrete road pixels that actually
belong to builtup have been classified as water. Thus water class
has been over estimated.

Addition of texture, PAN band and texture of PAN
significantly improved the classification accuracy of all the
classes including urban and water bodies as evident from table 5
(highlighted in bold). From accuracy assessment in table 6, we see
that Classification No. 5, 6 and 7 have higher accuracies
compared to other classifications. Inclusion of temperature
increased accuracy whereas addition of vegetation index layers
along with elevation, slope and aspect decreased the overall
accuracy. When both temperature and vegetation index with
elevation, slope and aspect were used, the accuracy still
decreased. However, inclusion of texture and PAN significantly
increased the overall accuracy. There was a 7.6% increase in
accuracy by adding temperature, NDVI, EVI, elevation, slope,
aspect, PAN along with texture measures, which proved to be
useful for mediumspatial resolution data such as ETM+ while
discriminating different classes in an urban environment.

7. DISCUSSION

Analysis of the role of ancillary and derived geographical
layers in improving classification accuracy is required along with
the new methods of expert classification being developed [25]. In
this work, derived and ancillary layers were assessed for their
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performance in improving classification accuracy in an urbanised
landscape.

The results provided new insights to the likelihood of
improved performance of LC classification by use of
supplemental layers related to the region along with the RS data.
IKONOS data were used for urban area classification along with
many other layers of elevation and texture. The enhanced
characteristics of IKONOS MS and PAN compared to Landsat
ETM+ highlighted some typical urban features such as buildings
and narrow roads in residential areas compared to the latter (figure

3). IKONOS image not only reduced the mixed pixel problem, but
also provided a rich texture and contextual information than
Landsat ETM+ MS bands with 15 or 30 m spatial resolution.
Earlier works [33-34] have used SPOT HRV data for urban
classification due to its high spatial resolution comparing with
Landsat ETM data. Knowledge based expert system have also
been used with MS imagery and LiDAR data to delineate
impervious surface in urban areas [35]. The study showed that
high spatial resolution is considered to be more important than
high spectral resolution in urban classification [1].

Table 3. Area statistics from the IKONOS classified images

Class — Concrete | Asbestos | Blue | Vegetation | Open |Total
Area | roof roof plastic area
roof

Classification | 12 351.74 9.53 1.88 260 158.80
No. 1 % 44.99 1.22 0.24 33.26 20.66
Classification ha 324.51 - 285.02 172.23 -
No. 2 % 41.51 - 36.46 22.03 -
Classification ha 299.89 7.26 259.32 188.17 27.11
No. 3 % 38.36 0.93 33.17 24.07 3.47
Classification ha 352.74 8.82 1.42 259.98 161.49
No. 4 % | 44.96 112 0.18 3314 | 20.59 781;76
Classification ha 84.53 11.20 385.11 244.86 56.06 (100%)
No. 5 % 10.81 1.43 49.26 31.32 7.17
Classification ha 142.56 17.44 331.30 218.02 72.44
No. 6 % 18.24 2.23 42.38 27.89 9.27
Classification | D2 126.17 16.13 433.22 146.88 59.36
No. 7 % 16.14 2.06 55.42 18.79 7.59
Classification | 1 354.88 7.93 0.95 259.33 158.66
No. 8 % 45.40 1.22 0.12 33.17 20.30
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Table 4. Accuracy assessment of the IKONOS classified images

lass — Concrete | Asbestos Blue Vegetation | Open area | Overall Kappa
Accuracy | roof O plastic Y
roof
Classification No. 1
b
Producer’s 92.50 89.15 85.00 85.00 76.92
accuracy (%) 85.25 0.8250
b
User’s 89.99 81.00 87.00 83.00 83.00
accuracy (%)
Classification No. 2
b
Producer so 76.22 . 17.01 48.55 -
accuracy (%) 47.63 0.4136
b
User’s 69.45 - 21.97 51.33 -
accuracy (%)
Classification No. 3
b
Producer’s 83.77 91.34 10.55 48.00 18.00
accuracy (%) 55.05 0.5117
b
User’s 70.53 97.63 42.31 41.38 17.09
accuracy (%)
Classification No. 4
9
Producer’s 90.15 87.48 84.53 82.07 86.18
accuracy (%) 86.21 0.8437
b
User’s 87.57 84.39 85.11 85.95 88.79
accuracy (%)
Classification No. 5
b
Producer’s 42.89 73.94 10.05 78.53 55.91
accuracy (%) 49.28 0.4577
b
User’s 22.05 75.9 19.23 83.91 30.37
accuracy (%)
Classification No. 6
b
Producer’s 57.55 67.58 18.06 78.66 57.81
accuracy (%) 55.37 0.5322
b
User’s 55.04 72.55 21.23 73.84 51.41
accuracy (%)
Classification No. 7
b
Producer’s 58.38 51.43 12.05 76.25 65.99
accuracy (%) 51.06 0.4719
b
User’s 51.31 58.45 17.69 64.37 54.70
accuracy (%)
Classification No. 8
- 88.72 0.8615
Producer’s ‘ 9 57 2075 20 00 R6.13 88 37
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accuracy (%)

User’s

o 90.00 82.00 88.00 90.15 91.75
accuracy (%)

Classification No. 1 Classification No. 2 Classification No. 3

Classification No. 6

B Concrete roofs
I Vegetation

I Biue plastic roofs
[ ] Asbestos roofs
[ ]Openarea

Classification No. 7 Classification No. 8

Figure 2.Classified outputs from IKONOS by adding additional geographical layers.

In IKONOS data classification, when only DEM and accuracies for individual classes, which is comparable to the
texture measures were added as input to the classifier apart from overall accuracy obtained by classifying QuickBird imagery for
IKONOS 4 spectral bands, the overall accuracy went high to LC classification in a complex urban environment based on
88.72% (3.5% improvement) with high producer’s and user’s texture (overall accuracy — 87.33%) and segmentation (overall
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accuracy — 88.33%) by Lu et al., (2010) [14]. Although it is
difficult to identify suitable texture which is dependent on image
band and window size for the specific study[36], appropriate
texture measures reduce spectral variation within same LC and
also improves spectral separability among different LC classes
[37-40]. It is to be noted that derived layers from elevation such
as slope and aspect did not aid in discriminating classes and EVI
did not prove useful in classification due to poor vegetation
cover.Addition of temperature, NDVI, EVI, elevation, slope,

aspect, PAN and texture with Landsat ETM+ spectral bands 1,
2, 3, 4, 5 and 7, significantly improved the classification
accuracy by 7.6%, which proved to be useful with medium
spatial resolution data in an urban area.

However, in addition to the use of ancillary layers such as
textural images, selection of different seasonal images along
with suitable classification algorithms are also needed to
improve classification performance[14].

Table 5.Area statistics from the Landsat ETM+ classified images

Class — Urban Vegetation Water Open area Total
Area |
ha 4543.14 1911.89 600.32 1999.25
Classification 1
% 50.17 21.12 6.63 22.08
ha 4014.78 1825.96 560.71 2653.15
Classification 2
% 44.34 20.17 6.19 29.30
ha 4245.71 1884.53 47143 2446.04
Classification 3
% 46.93 20.83 5.21 27.03
ha 3450.37 1854.25 554.54 3188.55 9054.62 ha
Classification 4
% 38.14 20.49 6.13 35.24 (100%)
. . ha 5262.71 1905.61 93.96 1754.99
Classification 5
% 58.36 21.13 1.04 19.46
. ha 5226.04 1887.87 86.47 1816.89
Classification 6
% 57.96 20.94 0.96 20.15
. . ha 5164.41 1974.06 65.70 1813.11
Classification 7
% 57.27 21.89 0.73 20.11

8. CONCLUSION

RS based LC mapping and monitoring of large areas has
created new challenge with the varied spatial scale and data
volume, requiring automated classification algorithms that
minimise human interventions. This work has shown that use of
spatial information along with ancillary and derived geographical
layers is an effective way to improve LC classification
performance which was demonstrated in an urban terrain.

In a highly urbanised area with less vegetation cover and
highly contrasting features, texture played a major role in
discriminating individual classes which were rather difficult
todistinguish using only original high spatial resolution IKONOS
MS bands. DEM plays a role when the terrain is undulating,
however, due to limited vegetation cover, vegetation index was
not useful in classification. For the same urban area, inclusion of
temperature, NDVI, EVI, elevation, slope, aspect, PAN and
texture significantly increased the overall accuracy by 7.6% while
discriminating different classes properly with Landsat ETM+ data.
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Table 6. Accuracy assessment of the Landsat ETM+ classified images

Class — Urban Vegetation Water Open area Overall Kappa
Accuracy | Accuracy
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b
Producer s 73.94 87.45 66.91 74.62
accuracy (%) 75.50 0.7309
9
User’s 76.92 84.36 61.00 78.82
accuracy (%)
Classification No. 2
b
Producer s 76.22 87.99 68.62 79.52
accuracy (%) 77.94 0.7548
b
User’s 78.73 83.05 65.28 81.03
accuracy (%)
Classification No. 3
b
Producer’s 71.88 78.87 69.96 71.09
accuracy (%) 73.12 0.7101
b
User’s 74.70 77.95 65.23 75.29
accuracy (%)
Classification No. 4
b
Producer’s 68.33 81.87 57.34 77.11
accuracy (%) 71.43 0.6811
b
User’s 75.19 78.33 59.61 72.55
accuracy (%)
Classification No. 5
b
Producer’s 83.57 82.41 78.91 81.88
accuracy (%) 81.84 0.7978
9
User’s 83.64 83.37 80.85 81.76
accuracy (%)
Classification No. 6
b
Producer’s 83.99 82.59 79.15 82.13
accuracy (%) 82.29 0..8077
b
User’s 83.94 83.77 81.17 82.44
accuracy (%)
Classification No. 7
b
Producer’s 84.91 88.21 81.11 83.62
accuracy (%) 83.15 0.8125
b
User’s 81.17 81.57 84.23 80.51
accuracy (%)
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