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ABSTRACT 
Effective conservation and management of natural resources 
requires up-to-date information on the land cover (LC) types and 
their dynamics. Multi-resolution remote sensing (RS) data with 
appropriate classification strategies have been used to categorise 
land use and land cover (LULC) of a landscape. RS data coupled 
with other important environmental layers (both remotely 
acquired or derived from ground measurements) would be more 
effective in capturing the LC dynamics and changes associated 
with the natural resources, as ancillary layers provide additional 
information that would make the decision boundaries between 
the LC classes more widely separable, enabling classification 
with higher accuracy compared to conventional methods of RS 
data classification.The objective of this paper is to ascertain the 
possibility of improved classification accuracy of high spatial-
low spectral resolution IKONOS data and low spatial-high 
spectral resolution Landsat ETM+ data of an urban area with the 
addition of ancillary and derived geographical layers such as 
vegetation index, temperature, digital elevation model (DEM), 
aspect, slope and texture.  

Results showed that texture played a major role in 
discriminating individual classes which were rather difficult to 
distinguish using only original high spatial resolution IKONOS 
Multispectral (MS) bands. DEM plays a role when the terrain is 
undulating, however, due to limited vegetation cover, vegetation 
index was not useful in classification.With ETM+ MS data, 
inclusion of temperature, NDVI (Normalised Difference 
Vegetation Index), EVI (Enhanced Vegetation Index), elevation, 
slope, aspect, Panchromaticband and texture increased the 
overall accuracy by 7.6% for the same urban area.Thestudy 
helped in the selection of appropriate ancillary layers for 
improved classification of RS data depending on the terrain. 

Keywords 
SMAP, algorithm, IKONOS, Landsat ETM+, urban, 
classification 

1. INTRODUCTION 
Classification of remote sensing (RS) data accurately is a 
prerequisite for many environmental and socio-economic 
applications [1], such as urban change detection [2-3], urban 
heat islands [4-6], and estimation of biophysical, demographic, 
and socio-economic variables [7-8]. Satisfactory classification 
of RS data depends on many factors including (a) the 
characteristics of study area, (b) availability of suitable RS data, 
(c) ancillary and ground reference data, (d) proper use of 
variables and classification algorithms, (e) user’s experience 
with reference to the application and (f) time constraints [9]. 
Furthermore, diverse landscapes and terrain types have a 
mixture of both homogeneous and heterogeneous land 
cover(LC) classes and require supplemental environmental or 
geographical layers for improved classification accuracies. 
Increased spectral variation is common with high degree of 
spectral heterogeneity in complex landscapes [10]. For example, 
urban landscapes are composed of features having a complex 
mix of buildings, roads, flyovers, pavements, trees and lakes 
which are sometimes smaller than the medium spatial resolution 
sensors [11]. This creates mixed pixels, a common problem 
prevalent in residential areas where buildings, trees, lawns, 
concrete and asphalt all occur within a pixel, often responsible 
for low classification accuracy, and is a major challenge for 
selection of suitable image processing approaches over a large 
area. On the other hand, with the availability of fine spatial 
resolution data such as IKONOS Multispectral (MS) and 
Panchromatic (PAN) [12-13], numerous opportunities exist for 
urban studies. A major advantage is that they reduce the mixed 
pixel problem, providing the potential to extract much more 
detailed information of urban structures compared to 
mediumspatial resolution data.However, the most important 
issue associated with high spatial resolution data is that it is 
expensive and requires more time for data analysis than medium 
spatial resolution data [9]. Moreover, high spatial resolution 
often lead to high spectral variation within the same LC class, 
and the limited number of spectral bands, including the lack of a 
shortwave infrared band, leads to a high rate of spectral 
confusion resulting in poor classification performance [14]. In 
practice, data acquired from medium spatial resolution sensors 
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such as Landsat TM/ETM+ or IRS LISS-III, being readily 
available for multiple dates, are commonly used for urban 
landscape analysis at a regional scale. 

 
Reducing the spectral variation within the same LC and 
increasing the separability of different LC types are the keys for 
improving LC classification [10]. In this regard, different 
approaches such as sub-pixel classification [15-16], multi-sensor 
data integration [17], full spectral image classification [18-19], 
expert classification [20] have been used. Traditional per-pixel 
spectral-based supervised classification is based only on spectral 
signatures, but does not make use of rich spatial information 
inherent in the data [14]. Therefore, making full use of RS 
information along with ancillary information (acquired or 
derived environmental layers) would be an efficient way to 
improve classification accuracy. 

The paper is organised as follows: Section 2 highlights the 
previous work done using additional geographical layers for 
improving classification accuracy, section 3 states the 
objectives, and section 4 describes the SMAP classification 
algorithm. Study area and Data are discussed in section 5, results 
from IKONOS and Landsat ETM+ are highlighted in section 6, 
followed by Discussion and Conclusion in section 7 and 8 
respectively.   

2. LITERATURE REVIEW  
There are few earlier studies that show the utility of 

ancillary and geographically derived data for improving LC 
classification. Na et al., (2010) [21] used 103 geographical 
layers to show improvement in LC mapping using Landsat TM 
bands 1 to 5 and 7, NDVI, EVI, a data fusion transformation 
combining the six bands information from the Landsat TM 
image (first principal component – PC1) as additional 
predictors, image texture measures (variance, homogeneity, 
contrast, dissimilarity and entropy) with window size of 3 x 3 
pixels and 11 x 11 pixels, DEM, slope and soil type with 
Random Forest (RF), Classification and Regression Tree 
(CART) and Maximum Likelihood Classifier (MLC) based 
classification. Among these, RF yielded accurate classification 
with an overall accuracy of 91% and kappa 0.89. They also 
quantified the effect of training set size on the performance of 
classification algorithms. Xiaodong et al., (2009)[22] integrated 
TM data with NDVI, EVI, first principal component (PC), slope, 
soil types and five texture measures (variance, homogeneity, 
contrast, dissimilarity and entropy) for LC classification of 
Marsh Area using CART and MLC. They concluded that image 
spectral, textural, terrain data and ancillary Geographical 
Information System (GIS) improved the land use and land 
cover(LULC) classification accuracy significantly. Fahsi et al., 
(2000) [23]evaluated the contribution and quantified the 
effectiveness of DEM in improving LC classification using 
Landsat TM data over a rugged area in the Atlas Mountains, 
Morocco. The study showed that DEM considerably improved 
the classification accuracy by reducing the effect of relief on 

satellite images, increasing the individual accuracies of the 
different classes by upto 60%.   

 
Recio et al., (2011)[24] used historical land use (LU) and 

ancillary data as a feature in a geospatial framework for image 
classification and showed improvement in overall classification 
accuracy considered case-by-case for each class. Masocha and 
Skidmore (2011)[25] used DEM along with ASTER imagery 
and georeferenced point data obtained from field to increase the 
accuracy of invasive species (Lantana camera) mapping. They 
used Neural Network and SVM classifiers along with GIS 
expert system to develop hybrid classifiers. The overall accuracy 
increased from 71% (kappa 0.61) to 83% (kappa 0.77) with 
Neural Network and from 64% (kappa 0.52) to 76% (kappa 
0.67) with SVM hybrid classifiers. Dorren et al., (2003)[26] 
studied the effect of topographic correction and the role of DEM 
as additional band using per-pixel and object based classification 
to classify forest stand type maps using Landsat TM data in a 
steep mountainous terrain. They concluded that both 
topographic correction and classification with DEM as 
additional band increased the overall accuracy. 

 
Xian et al., (2008)[27] quantified multi-temporal urban 

development characteristics in Las Vegas from Landsat and 
ASTER Data. Apart from the satellite imageries, NDVI, slope, 
aspect and temperature were used for classification. Lu and 
Weng (2005)[9] demonstrated urban classification using full 
spectral information of Landsat ETM+ imagery in Marion 
County, Indiana. Role of PC’s of ETM+ MS bands, texture, 
temperature and data fusion of MS and PAN to improve 
classification accuracy were considered. They concluded that 
texture and temperature may improve classification accuracy for 
some classes, but may degrade for other classes. Data fusion of 
MS and PAN are useful but high spatial resolution also increases 
spectral variation within the classes, decreasing the classification 
accuracy. Data fusion combined with texture significantly 
improved classification accuracy. 

3. OBJECTIVE 
The objective of this work is to investigate the role of 

several ancillary and derived layers for high spatial-low spectral 
resolution IKONOS data and low spatial-high spectral resolution 
Landsat ETM+ data classification of an urban area with varying 
characteristics. The following questions are examined in the 
process of image classification: 

 
(i.) Does addition of vegetation indices such as NDVI and 

EVI increase or decrease classification accuracy? 
(ii.) Does elevation and derived layers (slope and aspect) 

improve classification accuracy? 
(iii.) Does texture has any role in proper identification of 

classes with better classification accuracy?  
(iv.) How does temperature add to the classification accuracy 

when included in classification?  
(v.) Does addition of PAN band in addition to MS bands with 

other ancillary and derived layers prove useful in 
improving classification accuracy? 
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4. CONTEXTUAL CLASSIFICATION 
USING SEQUENTIAL MAXIMUM A 
POSTERIOR (SMAP) 
CLASSIFICATION 
In SMAP, spectral signatures are extracted from images 

based on training map by determining the parameters of a 
spectral class Gaussian mixture distribution model, which are 
used for subsequent segmentation (i.e. classification) of the MS 
images. The Gaussian mixture class describes the behavior of an 
information class which contains pixels with a variety of distinct 
spectral characteristics. For example, forest, grasslands or urban 
areas are examples of information classes that need to be 
separated in an image. However, each of these information 
classes may contain subclasses each with its own distinctive 
spectral characteristic; a forest may contain a variety of different 
tree species each with its own spectral behavior. Mixture classes 
improve segmentation performance by modelling each 
information class as a probabilistic mixture with a variety of 
subclasses. In order to identify the subclasses, clustering is first 
performed to estimate both the number of distinct subclasses in 
each class, and the spectral mean and covariance for each 
subclass. The number of subclasses is estimated using 
Rissanen's minimum description length (MDL) criteria [28]. 
This criteria determines the number of subclasses which best 
describe the data. The approximate maximum likelihood 
estimates of the mean and covariance of the subclasses are 
computed using the expectation maximization (EM) 
algorithm[29-30]. 

 
SMAP improves segmentation accuracy by segmenting the 

image into regions rather than segmenting each pixel separately 
[31-32]. The algorithm exploits the fact that nearby pixels in an 
image are likely to have the same class and segments the image 
at various scales or resolutions using the coarse scale 
segmentations to guide the finer scale segmentations. In addition 
to reducing the number of misclassifications, the algorithm 
generally produces segmentations with larger connected regions 
of a fixed class. The amount of smoothing that is performed in 
segmentation is dependent on the behavior of the data. If the 
data suggest that the nearby pixels often change class, then the 
algorithm adaptively reduces the amount of smoothing, ensuring 
that excessively large regions are not formed 

(http://wgbis.ces.iisc.ernet.in/grass/grass70/manuals/html70_use
r/i.smap.html). 

 

5. STUDY AREA AND DATA 
The study area selected for urban classification is a part of 

Greater Bangalore having dense builtup, parks, roads, streets, 
flyovers, walk ways, open land, etc. Dense and medium urban 
areas have high surrounding temperature compared to vegetation 
patches, parks and lakes [6].The undulating terrain in the city 
ranges from 735 to 970 m with varying textures due to different 
urban structures. 

 
IKONOS data (700 x 700 dimension) and Landsat ETM+  MS 
data pertaining to a part of Greater Bangalore were used for 
urban classification. Ancillary layers such as elevation and its 
derived layers such as slope and aspect along with 
NDVI(Normalised Difference Vegetation Index), EVI 
(Enhanced Vegetation Index) and textures (ASM - angular 
second moment, contrast, entropy and variance) were used in 
separate experiments during classification as summarised in 
table 1 (for IKONOS data) and table 2 (for Landsat ETM+ data), 
respectively. Figure 1 showsFalse ColourComposite (FCC), 
NDVI, EVI, DEM (Digital Elevation Model), slope and aspect 
for the study area. EVI values were rescaled from 0 to 1. It is 
seen from figure 1 that EVI index highlight vegetation better 
than NDVI (in green colour) compared to FCC. The elevation in 
this area ranges from 883 to 940 m. Slope and aspect are 
represented in degrees. 

 

6. RESULTS 
 

6.1 IKONOS data classification 
Figure 2 is the output from the eight classifications as 

explained in table 1 using SMAP. Figure 2 (Classification No. 1) 
is the classified output of IKONOS 4 bands. Classification No. 2 
is the output after adding NDVI as an additional layer to the 
input in the classifier, where two classes are missing (asbestos 
roof and open area). Overall, blue plastic roof is over estimated 
as evident from figure 2 and area statistics in table 3.  
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Figure 1. FCC, NDVI, EVI, DEM, slope and aspect added in IKONOS data classification as additional layers. 

 
Table 1. Details of geographical layers used for IKONOS 

classification  

Classification 
No. 

RS data and ancillary 
geographical layers used 

Total number 
of input 

layers in the 
classification 

1 IKONOS bands 1, 2, 3, 4 4 

2 IKONOS bands 1, 2, 3, 4, and 
NDVI 

5 

3 IKONOS bands 1, 2, 3, 4, and 
EVI 

5 

4 IKONOS bands 1, 2, 3, 4, and 
DEM 

5 

5 IKONOS bands 1, 2, 3, 4, 
EVI, DEM 

6 

6 IKONOS bands 1, 2, 3, 4, 
DEM, slope and aspect 

7 

7 IKONOS bands 1, 2, 3, 4, 
DEM, slope, aspect and EVI 

8 

8 IKONOS bands 1, 2, 3, 4, 
DEM and Texture (ASM, 
contrast, entropy, variance) at 
0, 45, 90 and 135 degrees for 
IKONOS bands 1, 2, 3, 4 

5+(4 x 4 x 4) = 
69 

 
The role of NDVI in discriminating non-vegetation area is 
negligible and therefore asbestos and open areas have merged 
with concrete roof and blue plastic with a drastic decrease in 
overall accuracy (47%) as shown in table 4.When EVI was added 
as an additional derived layer, classification is better compared to 
the inclusion of NDVI. However, the class composition is either 
under estimated (concrete roof, vegetation and open area) or over 
estimated (blue plastic roof) lowering the overall accuracy to 
55%.Blue plastic roof was also over estimated when both EVI and 
DEM were added as input layers along with the original bands. As 
evident from figure 2, concrete roof and open area have been 
misclassified and merged to blue plastic roof, which is dominant 
in the scene. Asbestos roof and vegetation are the two 
classeswhich showed higher producer’s and user’s accuracies. 
However, the overall accuracy still remained low (49.28%). 

 
Similar situation prevails when DEM, slope and aspect were 
included with the input IKONOS MS bands to the 
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classifier.Concrete roof, open area and vegetation are under 
estimated and blue plastic roof is over estimated, brining the 
overall accuracy to as low as 55%. The output worsens when 
DEM, slope, aspect with EVI were considered additionally to the 
input. All the classes are either over estimated or under estimated 
with overall accuracy of 51% (table 4).In classification No. 8, 
when only DEM and texture measures were added (table 1) as 
input  to the classifier apart from IKONOS 4 MS bands, the 
overall accuracy went high to 88.72% with high producer’s and 
user’s accuracies for individual classes which were classified 
properly (table 3). 
 
The above experiments conclude that in a highly urbanised area 
with less vegetation cover and highly contrasting features, texture 
plays a major role in discriminating individual classeswhich are 
rather difficult to distinguish using only original high 
 
Table 2. Details of data and ancillary layers used for Landsat 

ETM+ MS classification  

Classification 
No. 

RS data and ancillary 
geographical layers used 

Total 
number of 

input layers 
in the 

classification 

1 
ETM+ bands 1, 2, 3, 4, 5 and 7 at 
30 m 

6 

2 
ETM+ bands 1, 2, 3, 4, 5, 7 and 
Temperature  

7 

3 
ETM+ bands 1, 2, 3, 4, 5, 7, 
NDVI, EVI, elevation, slope and 
aspect 

11 

4 
ETM+ bands 1, 2, 3, 4, 5, 7, 
Temperature, NDVI, EVI, 
elevation, slope and aspect 

12 

5 

ETM+ bands 1, 2, 3, 4, 5, 7, 
Temperature, NDVI, EVI, 
elevation, slope and aspect,texture 
(ASM, contrast, entropy, variance) 
at 0, 45, 90 and 135 degrees for 
ETM+ bands 1, 2, 3, 4, 5, 7 

108 

6 

ETM+ bands 1, 2, 3, 4, 5, 7, 
Temperature, NDVI, EVI, 
elevation, slope and aspect,texture 
(ASM, contrast, entropy, variance) 
at 0, 45, 90 and 135 degrees for 
ETM+ bands 1, 2, 3, 4, 5, 7 

109 

7 

ETM+ bands 1, 2, 3, 4, 5, 7, 
Temperature, NDVI, EVI,ETM+ 
PAN, texture (ASM, contrast, 
entropy, variance) at 0, 45, 90 and 
135 degrees for ETM+ bands 1, 2, 
3, 4, 5, 7, and ETM+ PAN 
elevation, slope and aspect 

125 

spatial resolution IKONOS MS bands as evident from high 
classification accuracies in table 4 (Classification No. 4 and 8 
highlighted in bold), compared to the classification of only 
IKONOS 4 MS bands (Classification No. 1 highlighted in bold). 
DEM plays a role when the terrain is undulating but derived 
layers such as slope and aspect did not aid in discriminating 
classes when the elevation had low variance. Due to limited 
vegetation presence (a few parks) in the study area, EVI was not 
useful in classification. Overall 3.5% improvement in accuracy 
was observed after including elevation and texture along with the 
original bands as input to the classifier. 

6.2 Landsat ETM+ data classification  
 

Seven separate classifications were carried out with the 
different combinations of Landsat ETM+ bands and geographical 
layers as summarised in table 2. Landsat ETM+ PAN band was 
also added in the classification data set and the other 6 MS bands 
were resampled to 15 m. Finally, the texture measures from PAN 
band were included as input to classification, making the total 
number of geographical layers to 125. Figure 3 shows output from 
the seven classified images and LU statistics are listed in table 5. 
The producer’s, user’s, overall accuracies and kappa are given in 
table 6. 

 
Figure 3 indicates that outputs obtained from the original 

spectral bands along with temperature, NDVI, EVI, elevation, 
slope and aspect (Classification No. 1, 2, 3 and 4) have 
misclassified many pixels belonging to builtup, water and open 
area. Many of the tarred or concrete road pixels that actually 
belong to builtup have been classified as water. Thus water class 
has been over estimated. 

 
Addition of texture, PAN band and texture of PAN 

significantly improved the classification accuracy of all the 
classes including urban and water bodies as evident from table 5 
(highlighted in bold). From accuracy assessment in table 6, we see 
that Classification No. 5, 6 and 7 have higher accuracies 
compared to other classifications. Inclusion of temperature 
increased accuracy whereas addition of vegetation index layers 
along with elevation, slope and aspect decreased the overall 
accuracy. When both temperature and vegetation index with 
elevation, slope and aspect were used, the accuracy still 
decreased. However, inclusion of texture and PAN significantly 
increased the overall accuracy. There was a 7.6% increase in 
accuracy by adding temperature, NDVI, EVI, elevation, slope, 
aspect, PAN along with texture measures, which proved to be 
useful for mediumspatial resolution data such as ETM+ while 
discriminating different classes in an urban environment. 

7. DISCUSSION  
Analysis of the role of ancillary and derived geographical 

layers in improving classification accuracy is required along with 
the new methods of expert classification being developed [25]. In 
this work, derived and ancillary layers were assessed for their 
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performance in improving classification accuracy in an urbanised 
landscape.  

 
The results provided new insights to the likelihood of 

improved performance of LC classification by use of 
supplemental layers related to the region along with the RS data. 
IKONOS data were used for urban area classification along with 
many other layers of elevation and texture. The enhanced 
characteristics of IKONOS MS and PAN compared to Landsat 
ETM+ highlighted some typical urban features such as buildings 
and narrow roads in residential areas compared to the latter (figure 

3). IKONOS image not only reduced the mixed pixel problem, but 
also provided a rich texture and contextual information than 
Landsat ETM+ MS bands with 15 or 30 m spatial resolution. 
Earlier works [33-34] have used SPOT HRV data for urban 
classification due to its high spatial resolution comparing with 
Landsat ETM data. Knowledge based expert system have also 
been used with MS imagery and LiDAR data to delineate 
impervious surface in urban areas [35]. The study showed that 
high spatial resolution is considered to be more important than 
high spectral resolution in urban classification [1]. 

 

 

Table 3. Area statistics from the IKONOS classified images  

Class → 

Area ↓ 

Concrete 
roof 

Asbestos 
roof 

Blue 
plastic 

roof 

Vegetation Open 
area 

Total 

ha 351.74 9.53 1.88 260 158.80 Classification 
No. 1 % 44.99 1.22 0.24 33.26 20.66 

ha 324.51 - 285.02 172.23 - Classification 
No.  2 % 41.51 - 36.46 22.03 - 

ha 299.89 7.26 259.32 188.17 27.11 Classification 
No.  3 % 38.36 0.93 33.17 24.07 3.47 

ha 352.74 8.82 1.42 259.98 161.49 Classification 
No.  4 % 44.96 1.12 0.18 33.14 20.59 

ha 84.53 11.20 385.11 244.86 56.06 Classification 
No.  5 % 10.81 1.43 49.26 31.32 7.17 

ha 142.56 17.44 331.30 218.02 72.44 Classification 
No.  6 % 18.24 2.23 42.38 27.89 9.27 

ha 126.17 16.13 433.22 146.88 59.36 Classification 
No.  7 % 16.14 2.06 55.42 18.79 7.59 

ha 354.88 7.93 0.95 259.33 158.66 Classification 
No.  8 % 45.40 1.22 0.12 33.17 20.30 

 

 

 

 

 

 

 

781.76 
ha  

(100%) 

 



7 

________________________________________________________________________________________________________________ 

Proceedings of the India Conference on Geo-spatial Technologies & Applications, Department of Computer Science and 
Engineering, Indian Institute of Technology Bombay (IITB), April 12-13, 2012 

 

 

 

 

Table 4. Accuracy assessment of the IKONOS classified images 

lass → 

Accuracy ↓ 
Concrete 

roof 
Asbestos 

roof 
Blue 

plastic 
roof 

Vegetation Open area Overall 
Accuracy 

Kappa 

Classification No. 1 
Producer’s 
accuracy (%) 

92.50 89.15 85.00 85.00 76.92 

User’s 
accuracy (%) 

89.99 81.00 87.00 83.00 83.00 

85.25 0.8250 

Classification No. 2 
Producer’s 
accuracy (%) 

76.22 - 17.01 48.55 - 

User’s 
accuracy (%) 

69.45 - 21.97 51.33 - 

47.63 0.4136 

Classification No. 3 
Producer’s 
accuracy (%) 

83.77 91.34 10.55 48.00 18.00 

User’s 
accuracy (%) 

70.53 97.63 42.31 41.38 17.09 

55.05 0.5117 

Classification No. 4 
Producer’s 
accuracy (%) 

90.15 87.48 84.53 82.07 86.18 

User’s 
accuracy (%) 

87.57 84.39 85.11 85.95 88.79 

86.21 0.8437 

Classification No. 5 
Producer’s 
accuracy (%) 

42.89 73.94 10.05 78.53 55.91 

User’s 
accuracy (%) 

22.05 75.9 19.23 83.91 30.37 

49.28 0.4577 

Classification No. 6 
Producer’s 
accuracy (%) 

57.55 67.58 18.06 78.66 57.81 

User’s 
accuracy (%) 

55.04 72.55 21.23 73.84 51.41 

55.37 0.5322 

Classification No. 7 
Producer’s 
accuracy (%) 

58.38 51.43 12.05 76.25 65.99 

User’s 
accuracy (%) 

51.31 58.45 17.69 64.37 54.70 

51.06 0.4719 

Classification No. 8 
Producer’s 

92.57 89.25 89.00 86.13 88.37 
88.72 0.8615 
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accuracy (%) 

User’s 
accuracy (%) 

90.00 82.00 88.00 90.15 91.75 

 

 
Classification No. 1 

 
Classification No. 2 

 
Classification No. 3 

 
Classification No. 4 

 
Classification No. 5 

 
Classification No. 6 

 
Classification No. 7 

 
Classification No. 8 

 

 

 

Figure 2.Classified outputs from IKONOS by adding additional geographical layers. 

 

In IKONOS data classification, when only DEM and 
texture measures were added as input to the classifier apart from 
IKONOS 4 spectral bands, the overall accuracy went high to 
88.72% (3.5% improvement) with high producer’s and user’s 

accuracies for individual classes, which is comparable to the 
overall accuracy obtained by classifying QuickBird imagery for 
LC classification in a complex urban environment based on 
texture (overall accuracy – 87.33%) and segmentation (overall 
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accuracy – 88.33%) by Lu et al., (2010) [14]. Although it is 
difficult to identify suitable texture which is dependent on image 
band and window size for the specific study[36], appropriate 
texture measures reduce spectral variation within same LC and 
also improves spectral separability among different LC classes 
[37-40]. It is to be noted that derived layers from elevation such 
as slope and aspect did not aid in discriminating classes and EVI 
did not prove useful in classification due to poor vegetation 
cover.Addition of temperature, NDVI, EVI, elevation, slope, 

aspect, PAN and texture with Landsat ETM+ spectral bands 1, 
2, 3, 4, 5 and 7, significantly improved the classification 
accuracy by 7.6%, which proved to be useful with medium 
spatial resolution data in an urban area. 

 
However, in addition to the use of ancillary layers such as 

textural images, selection of different seasonal images along 
with suitable classification algorithms are also needed to 
improve classification performance[14]. 

 

Table 5.Area statistics from the Landsat ETM+ classified images 

Class → 

Area ↓ 

Urban Vegetation  Water  Open area Total 

ha 4543.14 1911.89 600.32 1999.25 
Classification 1 

% 50.17 21.12 6.63 22.08 

ha 4014.78 1825.96 560.71 2653.15 
Classification 2 

% 44.34 20.17 6.19 29.30 

ha 4245.71 1884.53 471.43 2446.04 
Classification 3 

% 46.93 20.83 5.21 27.03 

ha 3450.37 1854.25 554.54 3188.55 
Classification 4 

% 38.14 20.49 6.13 35.24 

ha 5262.71 1905.61 93.96 1754.99 
Classification 5 

% 58.36 21.13 1.04 19.46 

ha 5226.04 1887.87 86.47 1816.89 
Classification 6 

% 57.96 20.94 0.96 20.15 

ha 5164.41 1974.06 65.70 1813.11 
Classification 7 

% 57.27 21.89 0.73 20.11 

9054.62 ha 

(100%) 

 

8. CONCLUSION  
RS based LC mapping and monitoring of large areas has 

created new challenge with the varied spatial scale and data 
volume, requiring automated classification algorithms that 
minimise human interventions. This work has shown that use of 
spatial information along with ancillary and derived geographical 
layers is an effective way to improve LC classification 
performance which was demonstrated in an urban terrain. 

 
In a highly urbanised area with less vegetation cover and 

highly contrasting features, texture played a major role in 
discriminating individual classes which were rather difficult 
todistinguish using only original high spatial resolution IKONOS 
MS bands. DEM plays a role when the terrain is undulating, 
however, due to limited vegetation cover, vegetation index was 
not useful in classification. For the same urban area, inclusion of 
temperature, NDVI, EVI, elevation, slope, aspect, PAN and 
texture significantly increased the overall accuracy by 7.6% while 
discriminating different classes properly with Landsat ETM+ data. 
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Figure 3.Classified outputs from Landsat ETM+ bands by adding additional geographical layers. 
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Table 6. Accuracy assessment of the Landsat ETM+ classified images 

Class → 

Accuracy ↓ 
Urban Vegetation Water Open area Overall 

Accuracy 
Kappa 

Classification No. 1 
Producer’s 
accuracy (%) 

73.94 87.45 66.91 74.62 

User’s 
accuracy (%) 

76.92 84.36 61.00 78.82 

75.50 0.7309 

Classification No. 2 
Producer’s 
accuracy (%) 

76.22 87.99 68.62 79.52 

User’s 
accuracy (%) 

78.73 83.05 65.28 81.03 

77.94 0.7548 

Classification No. 3 
Producer’s 
accuracy (%) 

71.88 78.87 69.96 71.09 

User’s 
accuracy (%) 

74.70 77.95 65.23 75.29 

73.12 0.7101 

Classification No. 4 
Producer’s 
accuracy (%) 

68.33 81.87 57.34 77.11 

User’s 
accuracy (%) 

75.19 78.33 59.61 72.55 

71.43 0.6811 

Classification No. 5 
Producer’s 
accuracy (%) 

83.57 82.41 78.91 81.88 

User’s 
accuracy (%) 
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Classification No. 6 
Producer’s 
accuracy (%) 

83.99 82.59 79.15 82.13 

User’s 
accuracy (%) 

83.94 83.77 81.17 82.44 

82.29 0..8077 

Classification No. 7 
Producer’s 
accuracy (%) 

84.91 88.21 81.11 83.62 

User’s 
accuracy (%) 

81.17 81.57 84.23 80.51 

83.15 0.8125 
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