Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria
Ramachandra T.V*      Deepthi Hebbale a, b,**,       R. Bhargavi a       
Energy and Wetlands Research Group, Centre for Ecological Sciences [CES], Indian Institute of Science, Bangalore – 560012, India.
Web URL: http://ces.iisc.ernet.in/energy; http://ces.iisc.ernet.in/foss
*Corresponding author:
 Ramachandra T.V    Deepthi Hebbale emram.ces@courses.iisc.ac.in, deepthih@iisc.ac.in
References
  1. Abhaykumar, V.K., Dube, H.C., 1992. Cellulases of Vibrio agar-liquefaciens iso- lated from sea mud. World J. Microbiol. Biotechnol. 8.
  2. Antonio, E.S., Kasai, A., Ueno, M., Kurikawa, Y., Tsuchiya, K., Toyohara, H., Yamashita, Y., 2010. Consumption of terrestrial organic matter by estuarine mol- luscs determined by analysis of their stable isotopes and cellulase activity. Estuar. Coast Shelf Sci. 86 (3), 401e407.
  3. Bairagi, A., Ghosh, K.S., Sen, S.K., Ray, A.K., 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult. Int. 10 (2), 109e121.
  4. Bajaj, B.K., Taank, V., Thakur, R.L., 2003. Characterization of yeasts for ethanolic fermentation of molasses with high sugar concentrations. J. Sci. Ind. Res. 62 (11),1079e1085.
  5. Bhat, M.K., Bhat, S., 1997. Cellulose degrading enzymes and their potential indus- trial applications. Biotechnol. Adv. 15 (3e4), 583e620.
  6. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of micro- gram quantities of protein utilizing the principle of protein-dye binding. Anal. Bio- chem. 72.
  7. Dabhi, B.K., Vyas, R.V., Shelat, H.N., 2014. Use of banana waste for the produc- tion of cellulolytic enzymes under solid substrate fermentation using bacterial con- sortium. Int. J. Curr. Microbiol. Appl. Sci. 3 (1), 337e346.
  8. Dar, M.A., Pawar, K.D., Jadhav, J.P., Pandit, R.S., 2015. Isolation of cellulolytic bacteria from the gastro-intestinal tract of Achatina fulica (Gastropoda: Pulmonata) and their evaluation for cellulose biodegradation. Int. Biodeterior. Biodegrad. 98, 73e80.
  9. Daroch, M., Geng, S., Wang, G., 2013. Recent advances in liquid biofuel produc- tion from algal feedstock. Appl. Energy 102, 1371e1381.
  10. Erasmus, J.H., Cook, P.A., Coyne, V.E., 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 155 (1e4), 377e386.
  11. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y., 2008. Production and char- acterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99 (16), 7623e7629.
  12. Gao, Z., Ruan, L., Chen, X., Zhang, Y., Xu, X., 2010. A novel salt-tolerant endo-b- 1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl. Micro- biol. Biotechnol. 87 (4), 1373e1382.
  13. Gautam, S.P., Bundela, P.S., Pandey, A.K., Khan, J., Awasthi, M.K., Sarsaiya, S., 2011. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int. 1e8.
  14. Goldemberg, J., Johansson, T.B., Programme, D., Petruska, M.A., Klimov, V.I., Lewis, N.S., et al., 2007. Challenges in Engineering Microbes for Biofuels Produc- tion, (February), pp. 801e805.
  15. Gupta, P., Samant, K., Sahu, A., 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012.
  16. Hakamada, Y., Koike, K., Yoshimatsu, T., Mori, H., Kobayashi, T., Ito, S., 1997. Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM- S237. Extremophiles 1 (3), 151e156.
  17. Hankin, L., Anagnostakis, S.L., 1977. Solid medium containing carboxymethylcel- lulose to detect cx cellulase activity of micro-organisms. J. Gen. Microbiol. 98 (1), 109e115.
  18. Hebbale, D., Chandran, M.D.S., Joshi, N.V., Ramachandra, T.V., 2017. Energy and food security from macroalgae. J. Biodivers. 8 (1), 1e11.
  19. Henning, J., Jan, B.K., Claus, F., 2012. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel. Bioproduct. Biorefining 6 (3), 246e256.
  20. Hirasawa, K., Uchimura, K., Kashiwa, M., Grant, W.D., Ito, S., Kobayashi, T., Horikoshi, K., 2006. Salt-activated endoglucanase of a strain of alkaliphilic Bacil- lus agaradhaerens. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 89 (2), 211e219.
  21. Hussain, A.A., Abdel-Salam, M.S., Abo-Ghalia, H.H., Hegazy, W.K., Hafez, S.S., 2017. Optimization and molecular identification of novel cellulose degrading bac- teria isolated from Egyptian environment. J. Gen. Eng. Biotechnol. 15 (1), 77e85.
  22. Juturu, V., Wu, J.C., 2014. Microbial cellulases: engineering, production and appli- cations. Renew. Sustain. Energy Rev. 33 (2014), 188e203. Kamara, D.S., Rachman, S.D., Gaffar, S., 2008. Enzymatic degradation of cellulose from banana stalks for glucose production using cellulolytic activity of Tricho- derma viride. In: Proceeding of the International Seminar on Chemistry, pp. 692e696.
  23. Krishna, C., 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour. Technol. 69 (3), 231e239.
  24. Kumar, S., Sahoo, D., 2012. Seaweeds as a source of bioethanol. Algal Biotechnol. Environ. 85, 101e109. IK International Publication, New Delhi.
  25. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary ge- netics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870e1874.
  26. Laureano-Perez, L., Teymouri, F., Alizadeh, H., Dale, B.E., 2005. Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 124, 1081e1099.
  27. Li, X., Dong, X., Zhao, C., Chen, Z., Chen, F., 2003. Isolation and some properties of cellulose degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J. Microbiol. Biotechnol. 19 (4), 375e379.
  28. Liang, Y., Yesuf, J., Schmitt, S., Bender, K., Bozzola, J., 2009. Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J. Ind. Microbiol. Biotechnol. 36 (7), 961e970.
  29. Liang, Y.L., Zhang, Z., Wu, M., Wu, Y., Feng, J.X., 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Int. 2014.
  30. Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M. Der, Chang, J.S., 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellu- losic biohydrogen production. Enzym. Microb. Technol. 44 (6e7), 417e425.
  31. Maki, M.L., Broere, M., Leung, K.T., Qin, W., 2011. Characterization of some effi- cient cellulase producing bacteria isolated from paper mill sludges and organic fer- tilizers. Int. J. Biochem. Mol. Biol. 2 (2), 146e154.
  32. Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14 (1), 217e232.
  33. Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3), 426e428.
  34. Mutalik, S., Vinod Kumar, C.S., Swamy, S., Manjappa, S., 2012. Hydrolysis of lignocellulosic feed stock by Ruminococcus albus in production of biofuel ethanol. Indian J. Biotechnol. 11 (4), 453e457.
  35. Niehaus, F., Niehaus, F., Bertoldo, C., Bertoldo, C., K€ahler, M., K€ahler, M., Antranikian, G., 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51 (6), 711e729.
  36. Percival Zhang, Y.H., Himmel, M.E., Mielenz, J.R., 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24 (5), 452e481.
  37. Philip, J., Tanuja, T., Bedi, S., 2016. Occurrence of cellulose degraders in fruit and vegetable decaying wastes. J. Bioremed. Biodegrad. 07 (06).
  38. Ramachandra, T.V., Shwetmala, 2012. Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renew. Sustain. Energy Rev. 16 (8), 5820e5833.
  39. Ramachandra, T.V., Mahapatra, D.M., Karthick, B., Gordon, R., 2009. Milking di- atoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 48 (19), 8769e8788.
  40. Ramachandra, T.V., Aithal, B.H., Sreejith, K., 2015. GHG footprint of major cities in India. Renew. Sustain. Energy Rev. 44, 473e495.
  41. Ramesh, A., Venugopalan, V.K., 1988. Cellulolytic activity of luminous bacteria. MIRCEN J. Appl. Microbiol. Biotechnol. 4 (2), 227e230.
  42. Reddy, G.V., Ravindra Babu, P., Komaraiah, P., Roy, K.R.R.M., Kothari, I.L., 2003. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem. 38 (10), 1457e1462
  43. .
  44. Salah, A., Ibrahim, S., El-diwany, A.I., 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci. 1 (4), 473e478. Retrieved from. http://www.insipub.com/ajbas/473-478.pdf.
  45. Swain, M.R., Natarajan, V., Krishnan, C., 2017. Marine enzymes and microorgan- isms for bioethanol production. Adv. Food Nutr. Res. 80, 181e197.
  46. Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylog- enies by using the neighbor-joining method. Proc. Natl. Acad. Sci. Unit. States Am. 101 (30), 11030e11035.
  47. Teymouri, F., Laureano-Perez, L., Alizadeh, H., Dale, B.E., 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydroly- sis of corn stover. Bioresour. Technol. 96 (18).
  48. Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C.R.K., Jha, B., 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr. Polym. 83 (2), 891e897.
  49. Trivedi, N., Reddy, C.R.K., Radulovich, R., Jha, B., 2015. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res. 9, 48e54.
  50. Trivedi, N., Reddy, C.R.K., Lali, A.M., 2016. Marine microbes as a potential source of cellulolytic enzymes. Adv. Food Nutr. Res. 79, 27e41.
  51. Ojumu, Tunde Victor, Solomon, Bamidele Ogbe, Betiku, Eriola, L, S.K., Bamikole, A., 2003. Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in saw dust, bagasse and corn cob. Afr. J. Biotechnol. 2 (6), 150e152. June.
  52. Ventura, M., Casta~non, J.I., 1998. The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin. Res. 29 (3), 325e327.
  53. Verma, V., Verma, A., Kushwaha, A., 2012. Isolation and production of cellulase enzyme from bacteria isolated from agricultural fields in district Hardoi, Uttar Pra- desh, India. Adv. Appl. Sci. Res. 3 (1), 171e174.
  54. Wang, Y., Yang, L., Han, S., Li, C., Ramachandra, T.V., 2017. Urban CO2emis- sions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries. Mitig. Adapt. Strat. Glob. Change 22 (7), 993e1019.
  55. Zhang, C., Kim, S.-K., 2010. Research and application of marine microbial en- zymes: status and prospects. Mar. Drugs 8 (6), 1920e1934.

  56.  

    TOP  »  NEXT
Citation : Deepthi Hebbale,R. Bhargavi, T. V.Ramachandra.Saccharification of macroalgalpolysaccharides throughprioritized cellulase producingbacteria.Heliyon 5 (2019) e01372.doi: 10.1016/j.heliyon.2019.e01372
* Corresponding Author :
Dr. T.V. Ramachandra and Deepthi Hebbale
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : emram.ces@courses.iisc.ac.in,deepthih@iisc.ac.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass