Home  Introduction  Articles  Announcement Books  News  Posters   Reports   Experts   E-Links   Bibliography Forum  Webinars  Editors 
Home  Introduction  Articles  Announcement Books 
News  Posters   Reports   Experts  
E-Links   Bibliography Forum  Webinars  Editors 

Accounting of ecosystem services from microalgae in wetlands of Shivamogga district, KarnatakaCite

Asulabha K. S.1,4, Jaishanker R.4, Sincy V.1,4 and Ramachandra T. V.1,2,3
1Energy & Wetlands Research Group [CES TE15], Centre for Ecological Sciences, 2Centre for Sustainable Technologies (ASTRA)
3Centre for infrastructure, Sustainable Transportation and Urban Planning (CiSTUP)
Indian Institute of Science, Bangalore - 560 012, India.
4Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram, Kerala
envis.ces@iisc.ac.in   tvr@iisc.ac.in      Phone: 080 22933099/22933503 (extn 107, 114)

Abstract Introduction Study Area Results and Discussion

References

  1. Ahmad, A.L., Yasin, N.M., Derek, C.J.C., & Lim, J.K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1), 584 - 593. https://doi.org/10.1016/j.rser.2010.09.018
  2. Ali, M., Sultana, R., Tahir, S., Watson, I.A., & Saleem, M. (2017). Prospects of microalgal biodiesel production in Pakistan - A review. Renewable and Sustainable Energy Reviews, 80, 1588 - 1596. https://doi.org/10.1016/j.rser.2017.08.062
  3. Ansari, F.A., Gupta, S.K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634 -643. https://doi.org/10.1016/j.jclepro.2018.02.098
  4. Ansari, F.A., Nasr, M., Guldhe, A., Gupta, S.K., Rawat, I., & Bux, F. (2020). Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Science of the Total Environment, 704, 135259. https://doi.org/10.1016/j.scitotenv.2019.135259
  5. Araujo, R., Vazquez Calderon, F., Sanchez Lopez, J., Azevedo, I.C., Bruhn, A., Fluch, S., Garcia Tasende, M., Ghaderiardakani, F., Ilmjarv, T., Laurans, M., & Mac Monagail, M., 2021. Current status of the algae production industry in Europe: an emerging sector of the Blue Bioeconomy. Frontiers in Marine Science, 7, 1-24. doi: 10.3389/fmars.2020.626389
  6. Asulabha K.S., Sincy V., Jaishanker R., & Ramachandra T.V. (2018). Algal diversity in urban lakes of Vrishabhavathi valley, Greater Bangalore. LAKE 2018: Conference on Conservation and Sustainable Management of Riverine Ecosystems. The 11th Biennial Lake Conference, Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India.
  7. Asulabha, K.S., Jaishanker, R., Sincy, V., & Ramachandra, T.V. (2022). Diversity of phytoplankton in lakes of Bangalore, Karnataka, India. Biodiversity Challenges - A Way Forward (pp. 147-178). Daya Publishing House, New Delhi.
  8. Barbier, E.B. (2013). Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources, 2(3), 213 - 230.
  9. Baskent, E.Z. (2020). A framework for characterizing and regulating ecosystem services in a management planning context. Forests, 11(1), 1-20. doi:10.3390/f11010102
  10. Bassi, N., Kumar, M.D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1-19. http://dx.doi.org/10.1016/j.ejrh.2014.07.001
  11. Begum, N., Ashashree, H.M., & Sayeswara, H.A. (2016). Diversity of Phytoplankton and Pollution Tolerant Species of Navule Pond, Shivamogga, Karnataka. Mapana Journal of Sciences, 15(4), 35 - 47.
  12. Bosnjakovic, M., & Sinaga, N. (2020). The perspective of large-scale production of algae biodiesel. Applied Sciences, 10(22), 8181. doi:10.3390/app10228181
  13. Chamkalani, A., Zendehboudi, S., Rezaei, N., & Hawboldt, K. (2020). A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renewable and Sustainable Energy Reviews, 134, 110143. https://doi.org/10.1016/j.rser.2020.110143
  14. Chowdhury, H., & Loganathan, B. (2019). Third-generation biofuels from microalgae: a review. Current Opinion in Green and Sustainable Chemistry, 20, 39-44. https://doi.org/10.1016/j.cogsc.2019.09.003
  15. Clarkson, B.R., Ausseil, A.G.E., & Gerbeaux, P. (2013). Wetland ecosystem services. Ecosystem services in New Zealand: Conditions and trends. Manaaki Whenua Press, Lincoln, 192-202.
  16. de Groot, R., Brander, L., & Solomonides, S. (2020). Update of global ecosystem service valuation database (ESVD). FSD report No 2020-06 Wageningen, The Netherlands, 1-58.
  17. Gopal, B. (2016). Should 'wetlands' cover all aquatic ecosystems and do macrophytes make a difference to their ecosystem services?. Folia Geobotanica, 51(3), 209-226.
  18. Green, A.J., & Elmberg, J. (2014). Ecosystem services provided by waterbirds. Biological Reviews, 89(1), 105-122.
  19. Haines-Young, R., & Potschin, M.B. (2018). Common international classification of ecosystem services (CICES) V5. 1 and guidance on the application of the revised structure. 1-53.
  20. Juneja, A., Ceballos, R.M., & Murthy, G.S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607-4638. doi:10.3390/en6094607
  21. Khan, M.I., Shin, J.H., & Kim, J.D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1-21. https://doi.org/10.1186/s12934-018-0879-x
  22. Louw, T.M., Griffiths, M.J., Jones, S.M., & Harrison, S.T. (2016). Techno-economics of algal biodiesel. In Algae biotechnology (pp. 111-141). Springer, Cham. DOI 10.1007/978-3-319-12334-9_7
  23. Magalhães Filho, L.N.L., Roebeling, P.C., Bastos, M.I., Rodrigues, W., & Ometto, G.C. (2021). A global meta-analysis for estimating local ecosystem service value functions. Preprints, 1-19. doi:10.20944/preprints202106.0497.v1
  24. Mathew, G.M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., & Binod, P. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of The Total Environment, 794, 1-15. https://doi.org/10.1016/j.scitotenv.2021.148751
  25. Mizik, T., & Gyarmati, G. (2021). Economic and sustainability of biodiesel production - A systematic literature review. Clean Technologies, 3(1), 19-36. https://doi.org/10.3390/cleantechnol3010002
  26. Nagarajan, S., Chou, S.K., Cao, S., Wu, C., & Zhou, Z. (2013). An updated comprehensive techno-economic analysis of algae biodiesel. Bioresource Technology, 145, 150-156. https://doi.org/10.1016/j.biortech.2012.11.108
  27. Parisara N., Narayana, J., Kiran B.R., & Puttaiah, E.T. (2016). Ecology and distribution of diatoms in Konandur pond of Thirthahalli Taluk, Karnataka. International Journal of Applied and Pure Science and Agriculture (IJAPSA), 2(4), 49 - 55.
  28. Ramachandra T.V., Alakananda, B., Ali Rani, & Khan, M.A. (2011). Ecological and socio-economic assessment of Varthur wetland, Bengaluru (India). Journal of Environmental Science and Engineering, 53(1), 101-108.
  29. Ramachandra T.V., Sincy V., & Asulabha K.S. (2020). Efficacy of rejuvenation of lakes in Bengaluru, India. Green Chemistry & Technology Letters, 6(1), 14-26. doi.org/10.18510/gctl.2020.613
  30. Ramachandra T.V., Sincy V., & Asulabha K.S. (2022). Accounting of ecosystem services of wetlands in Karnataka state, India. ENVIS, CES, IISc. Bangalore.
  31. Ramachandra, T.V., & Aithal, B.H. (2016). Bengaluru's reality: Towards unlivable status with unplanned urban trajectory. Current Science, 110(12), 2207-2208.
  32. Ramachandra, T.V., Asulabha, K.S., Sincy V., Bhat, S.P., & Aithal, B.H. (2016) Wetlands: Treasure of Bangalore, ENVIS Technical Report 101, Energy & Wetlands Research Group, CES, Indian Institute of Science, Bangalore - 560012.
  33. Ramachandra, T.V., Raj, R.K., & Aithal, B.H. (2019). Valuation of Aghanashini estuarine ecosystem goods and services. Journal of Biodiversity, 10(1-2), 45-58.
  34. Ramachandra, T.V., Rajinikanth, R., & Ranjini, V.G. (2005). Economic valuation of wetlands. Journal of Environmental Biology, 26(2), 439-447.
  35. Rashmi B.S., & Malammanavar S.G. (2013). Diversity of phytoplankton of Lakkinakoppa pond Shivamogga dist., Karnataka. Indian Journal of Plant Sciences, 2(3), 87 - 91.
  36. Ro, C., Sovann, C., Bun, D., Yim, C., Bun, T., Yim, S., & Irvine, K.N. (2020). The economic value of peri-urban wetland ecosystem services in Phnom Penh, Cambodia. In IOP Conference Series: Earth and Environmental Science, 561(1), 1-8.
  37. Ronnback, P., Kautsky, N., Pihl, L., Troell, M., Soderqvist, T., & Wennhage, H. (2007). Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts. AMBIO: A Journal of the Human Environment, 36(7), 534-544.
  38. Sayeswara, H.A., Goudar, M.A., & Manjunatha, R. (2011). Water quality evaluation and phytoplankton diversity of Hosahalli pond, Shivamogga, Karnataka (India). International Journal of Chemical Sciences, 9(2), 805 - 815.
  39. Schallenberg, M., de Winton, M.D., Verburg, P., Kelly, D.J., Hamill, K.D., & Hamilton, D. P. (2013). Ecosystem services of lakes. Ecosystem services in New Zealand: Conditions and trends. Manaaki Whenua Press, Lincoln, 203-225.
  40. SEEA, EEA (2014). System of Environmental-Economic Accounting 2012: Experimental Ecosystem Accounting. United Nations, New York, 1-198.
  41. SEEA, EEA (2021). System of Environmental-Economic Accounting: Ecosystem accounting, Final draft. United Nations, New York, 1-362.
  42. Sharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from the KoshiTappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84-93.
  43. Slembrouck, J., Samsudin, R., Pantjara, B., Sihabuddin, A., Legendre, M., & Caruso, D. (2018). Choosing floating macrophytes for ecological intensification of small-scale fish farming in tropical areas: A methodological approach. Aquatic Living Resources, 31, 1-9. doi.org/10.1051/alr/2018017
  44. Tang, X., Li, R., Han, D., & Scholz, M. (2020). Response of eutrophication development to variations in nutrients and hydrological regime: A case study in the Changjiang River (Yangtze) Basin. Water, 12(6), 1-19.
  45. Thapa, S., Wang, L., Koirala, A., Shrestha, S., Bhattarai, S., & Aye, W.N. (2020). Valuation of ecosystem services from an important wetland of Nepal: A Study from Begnas watershed system. Wetlands, 40(5), 1071-1083.
  46. U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Introduction to Wetland Biological Assessment. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-014, 1-42.
  47. Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159-165. doi:10.1016/j.biortech.2010.07.017
  48. Zhang, L., Wu, B., Yin, K., Li, X., Kia, K., & Zhu, L. (2015). Impacts of human activities on the evolution of estuarine wetland in the Yangtze Delta from 2000 to 2010. Environmental Earth Sciences, 73(1), 435-447.
<< Previous
Next >>