http://www.iisc.ernet.in/
Euglena sp. as a Suitable Source of Lipids for Potential use as Biofuel and Sustainable Wastewater Treatment
http://wgbis.ces.iisc.ernet.in/energy/
Durga Madhab Mahapatra1,2            H. N. Chanakya2,3             T.V. Ramachandra1,2,3,*
1 Energy and Wetlands Research Group, Centre for Ecological Sciences [CES], 2 Centre for Sustainable Technologies (astra),
3 Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore – 560012, India.
*Corresponding author:
cestvr@ces.iisc.ernet.in

References

  1. Ahmed H, Hader DP (2011) Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Water Air Soil Poll 216:547-560
  2. APHA, AWWA, WEF, (2005) Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, Washington, DC, USA.
  3. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64-70
  4. Aitchison EA, Butt VS (1973) The relationship between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris. J Exp Bot 34:497-510
  5. Bhatnagar A, Bhatnagar M, Chinnasamy S, Das K (2010) Chlorella minutissima-a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161:523-536
  6. Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37:911-917
  7. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal
  8. from municipal wastewater effluent using microalgal biofilms Water Res 45: 5925–5933
  9. Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4:267-279
  10. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313-321
  11. CPCB,  (Central Pollution Control Board)  (2011) Status of wastewater generation and treatment in India (0-9 pp.). http://unstats.un.org/unsd/environment/envpdf/pap_wasess3b6india.pdf
  12. Chanakya HN, Mahapatra DM, Sarada R, Abitha R (2012a) Algal biofuel production and mitigation potential in India, Mitigation and Adaptation Strategies for Global Change. DOI: 10.1007/s11027-012-9389-z
  13. Chanakya HN, Mahapatra DM, Sarada R, Chauhan VS, Abitha R (2012b) Sustainability of large-scale algal biofuel production in India. J Indian Inst Sci 92:63-98
  14. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294-306
  15. Constantopoulos G, Bloch K (1967) Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 242:3538-3542
  16. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146-1151
  17. Chiu C, Schumacher LG, Suppes GJ (2004) Impact of cold flow improvers on soybean biodiesel blend. Biomass Bioenergy 27:485-491
  18. D’Oca MGM, Viegas CV, Lemoes JS, Miyasaki EK, Moron-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35:1533-1538
  19. de Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertiliser (1997–2003). Water Res 38:4222-4246
  20. de la Noue  J, Laliberte G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247-254
  21. de Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released  polysaccharides and whole cultures  of  two exoploysaccharide-producing cyanobacteria. J Appl Phycol 18:181-187
  22. Dean AP, Estrada B, Sigee DC, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technol 101:4499-4507.
  23. Dean AP, Nicholson JMB, Sigee DC (2012)  Changing patterns of carbon allocation in lake phytoplankton: an FTIR analysis, Hydrobiologia 684:109-127.
  24. Dijkstra AJ (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Technol 108:249-264
  25. Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielson E (2012) Isolation and characterisation of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375-383
  26. Feng Y, Li Chao, Zhang D (2011) Lipid production of Chlorella vulgaris  cultured  in  artificial  wastewater  medium.  Bioresource Technol 101:101-105
  27. Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J Phycol 37:271-279.
  28. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493-507
  29. Hach. Procedure Manual, 2008. Hach, Loveland, CO.
  30. Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145-1159.
  31. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059-1070
  32. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358-1364
  33. Kong  QX,  Li  L,  Martinez  B,  Chen  P,  Ruan  R  (2010) Culture  of  microalgae  Chlamydomonas  reinhardtii  in  wastewater  for  biomass  feedstock  production.  Appl  Biochem  Biotechnol 160:9-18
  34. Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various biooils. Bioresource Technol 80:53-62
  35. Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494-5500
  36. Liang YN, Sarkany N, Cu Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043-1049.
  37. Mahapatra DM, Chanakya HN, Ramachandra TV (2011a) Assessment of treatment capabilities of Varthur Lake, Bangalore. Int J Environ Tech Manag 14:84-102
  38. Mahapatra DM, Chanakya HN, Ramachandra TV (2011b) C:N ratio of Sediments in a sewage fed Urban Lake. Int J Geology 5:86-92
  39. Mahapatra DM, Chanakya HN, Ramachandra TV (2011c) Role of Macrophytes in Sewage fed urban lake. Inst Integ Omics Biotechnol J 2:01-09
  40. Matusiak K, Pryztocka-Jusiak M, Leszczynska-Gerula K, Horoch M (1976) Studies on the purification of wastewater from the nitrogen fertilizer industry by intensive algal cultures. II: Removal of nitrogen from wastewater.  Acta Microbiol Pollut 25:361-374
  41. Murdock JN, Wetzel DL (2009) FTIR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscopy Rev 44:335-361
  42. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Ind Wastes 29:437-455
  43. Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223-262
  44. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technol 102:35-42.
  45. Pittman JK, Dean AP, Osundeku O (2011) The Potential of Sustainable Algal biofuel production using wastewater resources. Bioresource Technol 102:17-25
  46. Popovich CA, Damiani MC, Constenla D, Leonardi, PI (2011) Lipid quality of Skeletonema costatum and Navicula gregaria from South Atlantic Coast (Argentina): evaluation of its suitability as biodiesel feedstock. J Appl Phycol 24:1-10
  47. Powell N, Shilton A, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958-5962
  48. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 48:8769-8788
  49. Regnault A, Chervin D, Chammai A, Piton F, Calvayrac R, Mazliak P (1995) Lipid composition of Euglena gracilis in relation to carbon/nitrogen balance. Phytochemistry 40:725-733
  50. Resour. Document:  www.umweltbundesamt.at/…/3bStatus_of_Wastewater_India.pdf
  51. Richmond A (2004) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Science Ltd. Blackwell. Chapter: Mass Cultivation of Microalgae Algal Nutrition, pp. 104-105.
  52. Rosenberg A (1963) A comparison of Lipid patterns in Photosynthesizing and Nonphotosynthesizing cells of Euglena gracilis. Biochemistry 2:1148-1154
  53. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technol 101:58-64
  54. Savage N (2011) Algae: The scum solution. Nature 474:15-16
  55. Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721-726.
  56. Sigee DC, Dean A, Levado E, Tobin MJ (2002) Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from a eutrophic lake. Euro J Phycol 37:19-26.
  57. Solovchenko AE, Khozin-Goldberg I, Didi-cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245-251
  58. Song Y, Hahn HH, Hoffmann E (2002) Effect of solution conditions on the precipitation of phosphate for recovery: a thermal dynamic evaluation. Chemosphere 48:1029-1034.
  59. Stehfest, K., Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyse nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717-726
  60. Sturm BSM, Peltier E, Smith V, Denoyelles F (2012) Controls of microalgal biomass and lipid production in municipal wastewater-fed bioreactors. Environ Prog Sustain Ene 31:10-16
  61. Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903-908
  62. Tam, NFY, Wong YS (1990) The comparison of growth and nutrient removal efficiency of Chlorella pyrenoidosa in settled and activated sewages. Environ Poll 65:93-108
  63. Volensky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203-216
  64. Voltolina D, Cordero B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresource Technol 68:265-268
  65. Wang B and Lan C Q, (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent, Bioresource Technol 102:5639-5644
  66. Wang  L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010a) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technol 101:2623-2628
  67. Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010b) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotech 162:1174-1186
  68. Wiesmann U (1994) Biological nitrogen removal from wastewater.  Adv Biochem Eng Biotechnol 51:113-153
  69. Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115-1122
  70. Yujie F, Li C, Zhang D  (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technol 102:101-105.
  71. Zhou W, Min M, Hu B, Ma X, Cheng Y, Chen P (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technol 110:448-455
  72. Zhu CJ, Lee YK, Chao TM (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J Appl Phycol 9:451-457
BACK  «  TOP  »  NEXT
Citation : Durga Madhab Mahapatra, Chanakya H.N. and Ramachandra. T.V, 2013. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment., Journal of Applied Phycology, pp. 1-11. DOI: 10.1007/s10811-013-9979-5
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : cestvr@ces.iisc.ernet.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail