|
Bioremediation potential of Macrophytes in Jakkur Wetland, Bangalore |
|
Sudarshan.P. 1, 2 Mahesh M.K 2 Ramachandra T.V.1, 3, 4
1 Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore-560012 2 Dept. of Botany, Yuvaraja’s College, Mysore-570005
3 Centre for Sustainable Technologies (ASTRA), Indian Institute of Science, Bangalore,
Indian Institute of Science, Bangalore – 560012, India. 4Centre for Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP),
Indian Institute of Science, Bangalore, Karnataka, India
*Corresponding author: cestvr@ces.iisc.ernet.in
REFERENCES
- APHA, 1995. Standard Methods for the examination of Water and Waste Water, Nineteenth ed. American Public Health Association, Washington.
- Barbieri, R. and Esteves, F.A. 1991. The chemical composition of some aquatic macrophyte species and implications for the metabolism of a tropical lacustrine ecosystem Lobo Reservoir, Sao Paulo, Brazil. Hydrobiologia., 213: 133-140.
- Blom, C. W. P. M., et al.1990. Adaptations to flooding in plants from river areas. Aquat. Bot., 38: 29-47.
- Bonanno, G. 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf., 97: 124-130.
- Bonanno, G. and Lo Giudice, R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic., 10: 639-645.
- Camargo, A. F. M.and Esteves, F. A. 1996. Influence of water level variation on biomass and chemical composition of the aquatic macrophyte Eichhornia azurea (Kunth) in an oxbow lake of the Rio Mogi-Guaçu (Sao Paulo, Brazil). Archiv. Hydrobiol., 135: 423-432.
- Cook C.D.K. 1996. Aquatic and Wetland Plants of India. Oxford University Press, New Delhi.
- Cowardin, L.M.,et al. 1979. Classification of Wetlands and Deepwater Habitats of the United States, Washington, D.C. U.S. Department of the Interior, U.S. Fish and Wildlife Service.
- Cronk, J. K.and Fennessy, M. S. 2001. Wetland plants: biology and ecology. CRC press.
- DeBusk, T.A., Dierberg, F.E. and Reddy, K.R. 2001. The use of macrophyte based system for phosphorus removal: an overview of 25 years of research and operational results in Florida. Water Sci. Technol., 44(11-12): 39-46.
- Divan, A.M., et al. 2009. Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Cadiota, South Brazil. Ecol. Indic., 9: 1156-1162.
- Foyer, C.H., Lelandais, M. and Kunert, K.J. 1994. Photooxidative stress in plants. Physiol. Plant., 92: 696-717.
- Feldmann, T.and Noges, P. 2007. Factors controlling macrophyte distribution in large shallow Lake Vortsjarv. Aquat. Bot., 87(1): 15-21.
- Gerloff, G.C.and Krombholz, P.H. 1996. Tissue analyses as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. Oceanogr., 11: 529-537.
- Gersberg, R.M.,et al. 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Water. Res., 20: 363–368.
- Gill, M. 2014. Heavy metal stress in plants a review. Int. J. Adv. Res., 2: 1043-1055.
- Hellsten, S. 2001. Effects of Lake water Level regulation on aquatic macrophytes stands in Northern Finland and options to predict these impacts under varying conditions. Acta Bot. Fennia., 171: 1–47.
- Hrivnak, R., Otaheova, H. and Gomory, D. 2009. Seasonal dynamics of macrophyte abundance in two regulated streams. Cent. Eur. J. Biol., 4(2): 241-249.
- Jackson, L.J. and Kalff, J. 1993. Patterns in metal content of submerged aquatic macrophytes; the role of plant growth form. Fresh. Biol., 29: 351-359.
- Jafari, M., et al. 2003. Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). J. Arid. Environ., 56: 627–641.
- Jumbe, A.S.and Nandini, N. 2012. Heavy metals accumulation in macrophytes in the lakes of Bangalore Urban. Ecoscan., 6: 41-45.
- Junk, W. J. and Piedade, M. T. F. 1993. Biomass and primary-production of herbaceous plant communities in the Amazon floodplain. Hydrobiologia., 263: 155-162.
- Kamal, M., et al. 2004. Phytoaccumulation of heavy metals by aquatic plants. Environ. Int., 29: 1029–1039.
- Lawniczak, A., et al. 2010. Response of emergent macrophytes to hydrological changes in a shallow lake, with specialreference to nutrient cycling. Hydrobiologia., 656: 243–254.
- LacouL, P. and Freedman, B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev., 136: 89-136.
- Lee, C.R., Sturgis, T.C.and Landin, M.C. 1981. Heavy metal uptake by marsh plants in hydroponic solution cultures. J. Plant. Nutrition., 3(1–4): 139–151.
- Maathuis, F.J. 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant. Biol., 12: 250-258.
- Maiti, S.K. 2003. Handbook of methods in Environmental studies. In: Air, Noise, Soil and Overburden Analysis, vol 2. ABD publishers.
- Mara, L.R.C.and Raoul, H. 2010. Phosphorus, Nitrogen and Carbon contents of macrophytes in lakes lateral to a tropical river (Paranapanema River, Sao Paulo, Brazil. Acta Limnol. Bras., 22(2): 122-132.
- Matagi S.V., Swai D. and Mugabe R. 1998. A review of heavy metal removal mechanisms in wetlands. Afr. J. Trop. Hydrobiol. Fish., 8: 23-35.
- Maurizio B.and Michela, S. 2012. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol. Eng., 46: 34-42.
- Nirmal Kumar J.I., et al. 2008. Macrophytes in Phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci., 8: 193-200.
- Pawan, K.G., Kumar N.and Kumar M. 2015. Phytoremediation of waste water through aquatic plants for the change detection analysis in the chemical properties within the district Dhanbad, Jharkhand. Int. J. Res. Eng. Technol., 4(2): 243-252.
- Pompeo, M.L.M., Henry R.and Moschini C. V. 2001. The water level influence on Biomass of Echinochloa polystachya (poaceae) in the Jurumirim reservoir (Sao Paulo, Brazil). Rev. Brasil. Biol., 61(1): 19-26.
- Peverly, J.H., Surface, J.M.and Wang, T. 1995. Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecol. Eng., 5: 21–35.
- Qian, J.H., et al. 1999. Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J. Environ. Qual., 28(5): 1448–1455.
- Rai, P.K. 2009. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environ. Monit. Assess., 158(1-4): 433-457.
- Rai, U.N., Sinha, S.and Chandra, P. 1999. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol. Eng., 5(1): 5–12.
- Ramachandra, T.V., et al. 2018. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manage., 206: 1204-1210.
- Ramachandra, T.V., et al. 2017. Rejuvenation Blueprint for lakes in Vrishabhavathi valley. ENVIS Technical Report 122, Environmental Information System, CES, Indian Institute of Science, Bangalore.
- Schallenberg, M.and Waite, E. 2004. Survey of Aquatic macrophytes in Lake Waihola, Summer 2002-2003. Limnology Report No. 9, Department of Zoology, University of Otago.
- Sardans, J., Rivas Ubach, A.and Penuelas, J. 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function; a review and perspectives. Biogeochemistry., 111: 1-39..
- Srivastava, S., et al. 2014. Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol. Eng., 73: 97–301..
- Stankovic, T., et al. 2000. Concentrations of trace metals in dominant aquatic plants of Lake Provala (Vojvodina, Yugoslavia). Biologia Plant., 43: 583 – 585..
- Sudarshan, P., Mahesh, M.K. and Ramachandra, T.V. 2017. Macrophytes of Bangalore Wetlands. ENVIS Technical Report 126, Energy & Wetlands Research Group, CES, Indian Institute of Science, Bangalore..
- Tandon, H.L.S. 1993. Methods of Analysis of Soils, Plants, Waters and Fertilizers. Fertilizer development and consultation organization, New Delhi..
- Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total. Environ. 380, 48-65..
- Wang, Q., Cui, Y.and Dong, Y. 2002. Phytoremediation of polluted waters: Potentials and prospects of wetland plants. Acta. Biotechnol., 22(1–2): 199–208..
- Wetzel, R. 2001. Limnology: Lake and River Ecosystems. Academic Press, U.S.A. 1006pp.
- Yoon, J., et al.2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ., 368(2-3): 456-464.
- Zayed, A., Gowthaman, S. and Terry, N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual., 27(3): 715–721.
- Zhu, Y.L., et al. 1999. Phytoremediation of trace elements by wetland plants: II. Water Hyacinth. J. Environ. Qual., 28(1): 339–344.
AUTHORS
- Mr. Sudarshan.P, Research Scholar, Department of Botany, Yuvaraja’s College, Mysore, Mysore-570005
- Dr. M.K. Mahesh, Associate Professor, Department of Botany, Yuvaraja’s College, Mysore, Mysore-570005.
- Dr. T.V. Ramachandra, Coordinator, Energy and Wetlands Research Group (EWRG) and the Convener of Environmental Information System (ENVIS) at Centre for Ecological Sciences (CES).During the past twenty years he has established an active school of research in the area of energy and environment (http://ces.iisc.ernet.in/energy). He has published over 296 research papers in reputed peer reviewed international and national journals, 62 book chapters, 333 papers in the international and national symposiums in the international and national symposiums as well as 18 books.
|
|
Citation : Sudarshan. P, Mahesh M.K, Ramachandra T.V., 2019, Bioremediation potential of Macrophytes in Jakkur Wetland, Bangalore. INDIAN J. ENVIRONMENTAL PROTECTION, VOL. 39, NO. 7, JULY 2019. © 2019-Kalpana Corporation. IJEP 39(7):594-601(2019)
|