http://www.iisc.ernet.in/
Algal Biofuel from Urban Wastewater in India : Scope and Challenges
http://wgbis.ces.iisc.ernet.in/energy/
T.V. Ramachandra1,2,3,*             Mahapatra Durga Madhab1,2             Samantray Shilpi1             N.V. Joshi1
1 Energy and Wetlands Research Group, Centre for Ecological Sciences [CES], 2 Centre for Sustainable Technologies (astra),
3 Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore – 560012, India.
*Corresponding author:
cestvr@ces.iisc.ernet.in

References

  1. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R.  Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 2009;48: 8769-88.
  2. Rene HW, Maria JB. An Outlook on Microalgal Biofuels, Science 2010; 329: 796-99.
  3. Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 50, 14-34.
  4. Shafiee, S., Topal, E., 2009. When will fossil fuel reserves be diminished? Energy Pol 2009; 3:181-89.
  5. Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007; 25:294-306.
  6. Chisti Y. Biodiesel from microalgae beats bio-ethanol. Trends Biotechnol 2008; 26:126-31.
  7. Milne TA, Evans RJ, Nagle N. Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass 1990; 21:219-32.
  8. Emily W. Biotech’s green gold. Nature Biotechnol  2009; 27:15-18.
  9. Ramachandra TV, Alakananda B, Supriya G. Biofuel prospects of microalgal community in urban wetlands, Int J Env Prot 2011;1:54-61.
  10. Khan SA, Rashmi Hussain, MZ  Prasad S, Banerjee UC.  Prospects of biodiesel production from microalgae in India. Renew Sust Ene Rev 2009; 13:2361-72.
  11. Meher LC, Vidya SD, Naik SN, Technical aspects of biodiesel production by transesterification–a review. Renew Sust Ene Rev 2006; 10:248-268.
  12. Annual Report 2011-12. http://ppac.org.in/ Petroleum Planning and Analysis Cell (Ministry of Petroleum & Natural Gas, Government of India (accessed on 11th February 2012, 28th November 2012)
  13. Mahapatra DM, Chanakya HN,  Ramachandra TV. Assessment of Treatment capabilities of Varthur Lake, Bangalore, India. Int J Env Technol Manage 2011a; 14:84-102.
  14. Mahapatra DM,  Chanakya HN,  Ramachandra TV. C:N ratio of Sediments in a sewage fed Urban Lake. Int J Geol 2011b; 5: 86-92.
  15. Mahapatra DM,  Chanakya HN,  Ramachandra TV. Role of Macrophytes in Sewage fed urban lake. Inst Int Omics Appl Biotechnol 2011c; 2:01-09.
  16. Ahluwalia SS, Goyal D.  Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresou Technol 2007; 98:2243-57.
  17. Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 2002; 15:377-90.
  18. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR. Algae in waste treatment. Sewage Ind. Wastes. 1957; 29:437-455.
  19. Green FB, Lundquist TJ, Oswald WJ, Energetics of advanced integrated wastewater pond systems. Water Sci Technol 1995; 31:9-20.
  20. Hoffmann JP. Wastewater treatment with suspended and nonsuspended algae. J Phycol 1998; 34:757-63.
  21. Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 2006; 40:2799-815.
  22. Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E. Microalgae mass production methods. Trans Asabe  2009; 52,1275-87.
  23. Geciova J, Bury D, Jeln P. Methods for disruption of microbial cells for potential use in the diary industry-a review. Int. Dairy J. 2002: 12, 541-553.
  24. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol 2010; 101:575-77.
  25. Prabakaran P, Ravindran AD. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Micobiol. 2011; 53:150-54
  26. Amin HM, Wijffels RH, 2004. Milking of microalgae. Trends Biotechnol. 22, 189-194.
  27. Lee SJ, Yoon BD, Oh HM. Rapid method of the determination of lipid from green alga Botryococcus braunii. Biotechnol Techniq 1998; 12:553-556.
  28. Engler CR, 1985. Disruption of microbial cells. In: Moo-Yoong, M. (Ed.), Comprehensive Biotechnology, second ed. Pergamon Press, Oxford, pp. 305-324.
  29. Prescott GW, How to know the freshwater algae: An ill. guide for identifying the more common freshwater algae to genus .Publisher:. Brown, 1964;272 pages.
  30. APHA (American Public Health Association) AWWA WEF 1995. Standard Methods for Examination of Water and Wastewater, 19th edition. Washington DC.
  31. Bligh EG, Dyer WJ, A rapid method of lipid extraction and purification. Can J Biochem Physiol 1959; 37:911-917.
  32. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol Biotechnol 2011; 90:1429-41.
  33. Marinetti GV. New Biochemical Separations, Van Nostrand, Princeton, N J, 1964, pp. 339.
  34. Official Methods and Recommended Practices of the American Oil Chemists' Society, AOCS, Champaign, 1969; Method (Ce 2-66.).
  35. Ramachandra T V, Rishabh Jain, Gautham Krishnadas, 2011. Hotspots of solar potential in India, Renewable and Sustainable Energy Reviews 15 (2011) 3178–3186, doi:10.1016/j.rser.2011.04.007.
  36. Census of India, 2011. http://www.censusindia.gov.in/2011-prov-results/paper2/prov _results_paper2_ india.html accessed on 12/09/2011.
  37. Wasteland Atlas 2005. http://dolr.nic.in/WastelandsAtlas2005/Wasteland_Atlas_ 2005.pdf accessed on 17/08/2011.
  38. Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae; Close-Out Report. NREL Report No. 1998;TP-580-24190.
  39. Li X, Hu H, Gan K, Sun Y, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresou Technol 2010; 101:5494-5500.
  40. Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresou Technol 2011; 102:101-105.
  41. Dayananda C, Sarada R, Usha RM, Shamala TR, Ravishankar GA. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharide in various media. Biomass Bioenergy 2007;31:87-93.
  42. Sharathchandra K, Rajashekhar M. Total lipid and fatty acid composition in some freshwater cyanobacteria, J. Algal Biomass Utln 2011;2:83-97.
  43. Cafiizares Villanueva RO, Dolrdnguez AR, Cruz MS, Rios-Leal E. Chemical composition of Cyanobacteria grown in Diluted, aerated swine wastewater, Bioresou Technol 1995;51:111-16.
  44. Becker EW. 1994 Microalgae: biotechnology and microbiology. Cambridge Univ. Press, Cambridge, New York.
  45. Moore JW, Seasonal Changes in the proximate and fatty acid composition of some naturally grown freshwater chlorophytes. J  Phycol 1975;11:205-11.
  46. Stefanov K, Dimitrov K, Dimitrova KS, Kirisheva I, Popov S. Lipid and sterol  composition of the freshwater alga Spirogyra crassa. Arch Hydrobiol 1996;135: 523-27.
  47. Hossain AB, Sharif M, Salleh A, Amru NB, Chowdhury P, Mohd N. Biodiesel Fuel Production from Algae as Renewable Energy, Ame J Biochem Biotechnol 2008;4:250-254.
  48. Kumar P, Suseela MR, T Kiran. Physico-Chemical Characterization of Algal oil: a Potential Biofuel, Asian J Exp Biol 2011;2:493-97.
  49. Constantopolous G, Bloch, K. Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 1967;242:3538-42.
  50. Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Indus Microbiol Biotechnol 2009;36:269-74.
  51. Ranjan A, Patil C, Moholkar VS. Mechanistic assessment of microalgal lipid extraction. Indus Eng Chem Res 2010;49:2979-85.
  52. Nelson MM, Leighton DL, Phleger CF, Nichols DP. Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comp Biochem Physiol 2002;131:695-712.
  53. Manivannan K, Devi GK, Thirumaran G, Anantharaman P, Mineral composition of marine macroalgae from Mandapam Coastal regions; Southeast Coast of India. Am-Euras J Bot 2008; 1:58-67.
  54. Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N. Optimization of direct conversion of wet algae to biodiesel under super critical methanol conditions. Bioresou Technol 2010; 107:307-313.
  55. Sheng J, Vannela R, Rittmann BE. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol 2011;45:3795-3802.
  56. Knoth G. Analytical methods used in the production and fuel quality assessment of Biodiesel. Trans ASAE 2001;44:93-200.
  57. Hulanicka D, Erwin J, Bloch K. Lipid metabolism of Euglena gracilis. J. biol. Chem. 1964;239:2778-87.
  58. Al-Hasan RH, Ali AM, Radwan SS. Effects of Light and Dark Incubation on the Lipid and Fatty Acid Composition of Marine Cyanobacteria. J Gen Microbiol 1989;135:865-72.
  59. Murakami N, Morimoto T, Mamura H, Ueda Z, Nagai S, Sakakibara J, Yamada N. Studies on glycolipids, III. Glyceroglycolipids from an axenically cultured cyanobacterium Phormidium tenue.  Chem Pharm  Bull  1991;39:2277-81.
  60. Ip SY, Bridger JS, Chin CT, Martin WRB, Raper, WGC. Algal growth in primary settled sewage–the effects of five key variables. Water Res. 1982;16: 621-32.
  61. Kong QX, Li L, Martinez B, Chen, P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 2010;160:9-18.
  62. Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 2000;73:263-272.
  63. Maslova P, Mouradyan  EA, Lapina SS, Klyachko-Gurvich GL. Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria, Russ. J. Plant Physiol. 2004;51:353-60.
  64. Nagle VL, Mhalsekar NM, Jagrup TG. Isolation Optimization and characterisation of selected Cyanophycean members, Ind J Mar Sciences 2010;39:212-18.
  65. Orpez R, Martinez ME, Hodaifa G, El-Yousfi F, Jbari N, Sanchez S. Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 2009;246:625-30.
  66. Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 2009;135:1115-22.
BACK  «  TOP  »  NEXT
Citation : T.V. Ramachandra, Mahapatra Durga Madhab, Samantray Shilpi and N.V. Joshi, 2013. Algal biofuel from urban wastewater in India: Scope and challenges., Renewable and Sustainable Energy Reviews, Volume 21, May 2013, Pages 767–777. URL: http://dx.doi.org/10.1016/j.rser.2012.12.029
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : cestvr@ces.iisc.ernet.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail