References
Abbott, I.A., Isabella, A., Hollenberg, G.J., 1992. Marine algae of California. Stanford University Press. Abd-Rahim, F., Wasoh, H., Zakaria, M.R., Ariff, A., Kapri, R., Ramli, N., Siew-Ling, L., 2014. Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocoll. 42, 309–315. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., Lukas, J., 2002. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, Report NREL/TP-510-32438. National Renewable Energy Laboratory (NREL). Adenle, A.A., Haslam, G.E., Lee, L., 2013. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy 61, 182–195. Alaswad, A., Dassisti, M., Prescott, T., Olabi, A.G., 2015. Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 51, 1446–1460. Baeyens, J., Kang, Q., Appels, L., Dewil, R., Lv, Y., Tan, T., 2015. Challenges and opportunities in improving the production of bio-ethanol. Prog. Energy Combust. Sci. 47, 60–88. Balina, K., Romagnoli, F., Blumberga, D., 2017. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128, 504–511. Bhat, M.K., Bhat, S., 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15, 583–620. Bhattacharyya, S.C., 2006. Energy access problem of the poor in India: Is rural electrification a remedy? Energy Policy 34, 3387–3397. Bikker, P., van Krimpen, M.M., van Wikselaar, P., Houweling-Tan, B., Scaccia, N., van Hal, J.W., Huijgen, W.J.J., Cone, J.W., López-Contreras, A.M., 2016. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 28, 3511–3525. Bindu, M.S., Levine, I.A., 2011. The commercial red seaweed Kappaphycus alvarezii-an overview on farming and environment. J. Appl. Phycol. 23, 789–796. Borines, M.G., de Leon, R.L., Cuello, J.L., 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138, 22–29. Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M.C., Pereda, S. V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N., Critchley, A.T., 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52, 391–406. Chennubhotla, V. S., Najmuddin, M., Ramalingam, J. R., & Kaliaperumal, N., 1990. Bulletin 44. In: CMFRI Bulletin-National Symposium on Research and Development in Marine Fisheries Sessions III & IV 1987. pp. 442–446. Chennubhotla, V.S.K., Kaliaperumal, N., Kalimuthu, S., 1981. Seaweed recipes and other practical uses of Seaweeds 13, 9–16. Cho, Y., Kim, M.-J., Kim, S.-K., 2013. Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae. KSBB J. 28, 366–371. Choi, W.Y., Han, J.G., Lee, C.G., Song, C.H., Kim, J.S., Seo, Y.C., Lee, S.E., 2012. Bioethanol Production from Ulva pertusa Kjellman by High-temperature Liquefaction. Chem. Biochem. Eng. Q 26, 15–21. Daroch, M., Geng, S., Wang, G., 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy 102, 1371–1381. del Río, P.G., Gomes-Dias, J.S., Rocha, C.M.R., Romaní, A., Garrote, G., Domingues, L., 2020. Recent trends on seaweed fractionation for liquid biofuels production. Bioresour. Technol. 299, 122613. Demirbas, A., 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 49, 2106–2116. Dhargalkar, V.K., Pereira, N., 2005. Seaweed : Promising Plant of the Millennium. Source 71, 60–66. Feng, D., Liu, H., Li, F., Jiang, P., Qin, S., 2011. Optimization of dilute acid hydrolysis of Enteromorpha. Chinese J. Oceanol. Limnol. 29, 1243–1248. Gao, Z., Ruan, L., Chen, X., Zhang, Y., Xu, X., 2010. A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl. Microbiol. Biotechnol. 87, 1373–1382. Gasparatos, A., Stromberg, P., Takeuchi, K., 2013. Sustainability impacts of first-generation biofuels. Anim. Front. 3, 12–26. Ge, L., Wang, P., Mou, H., 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew. Energy 36, 84–89. Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N., Aroua, M.K., 2016. An overview of biological processes and their potential for CO2 capture. J. Environ. Manage. 183, 41–58. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G., 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556. Hargreaves, P.I., Barcelos, C.A., da Costa, A.C.A., Pereira, N., 2013. Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour. Technol. 134, 257–263. Harun M. K., R.. D., 2011. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J. 168, 1079–1084. Hebbale, D., Bhargavi, R., Ramachandra, T. V., 2019. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon 5, e01372. Hebbale, D., Chandran, M.D.S., Joshi, N. V., Ramachandra, T. V., 2017. Energy and Food Security from Macroalgae. J. Biodivers. 8, 1–11. Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18. Hirsch, R.L., Bezdek, R., Wendling, R., 2005. Peaking of World Oil Production: Impacts, Mitigation, & Risk Management. Holdt, S.L., Kraan, S., 2011. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 23, 543–597. Horn, S.J., Aasen, I.M., Emptyvstgaard, K., 2000a. Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25, 249–254. Horn, S.J., Aasen, I.M., Østgaard, K., 2000b. Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 24, 51–57. Hurd, C.L., Harrison, P.J., Bischof, K., Lobban, C.S., 2014. Seaweed ecology and physiology. Cambridge University Press. Jambo, S.A., Abdulla, R., Mohd Azhar, S.H., Marbawi, H., Gansau, J.A., Ravindra, P., 2016. A review on third generation bioethanol feedstock. Renew. Sustain. Energy Rev. 65, 756–769. Jang, J.S., Cho, Y.K., Jeong, G.T., Kim, S.K., 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35, 11–18. Jeong, G.T., Kim, S.K., Park, D.H., 2013. Detoxification of hydrolysate by reactive-extraction for generating biofuels. Biotechnol. Bioprocess Eng. 18, 88–93. Jin, M., Lau, M., Balan, V., Dale, B.E., 2010. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour. Technol. 101, 8171–8178. John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A., 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102, 186–193. Jung, K.A., Lim, S.R., Kim, Y., Park, J.M., 2013. Potentials of macroalgae as feedstocks for biorefinery. Bioresour. Technol. 135, 182–190. Kaladharan, P., Kaliaperumal, N., 1999. Seaweed Industry in India. Naga, The ICLARM Quartely 22, 11–14. Kang, K.E., Park, D.H., Jeong, G.T., 2013. Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresour. Technol. 132, 160–165. Khambhaty, Y., Mody, K., Gandhi, M.R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., Ghosh, P.K., 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103, 180–185. Kim, D.H., Lee, S.B., Jeong, G.T., 2014. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour. Technol. 161, 348–353. Kim, H.M., Wi, S.G., Jung, S., Song, Y., Bae, H.J., 2015. Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour. Technol. 175, 128–134. Kim, S.W., Hong, C.H., Jeon, S.W., Shin, H.J., 2015. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour. Technol. 196, 634–641. Kostas, Emily T., White, D.A., Du, C., Cook, D.J., 2016. Selection of yeast strains for bioethanol production from UK seaweeds. J. Appl. Phycol. 28, 1427–1441. Kostas, Emily T, Wilkinson, S.J., White, D.A., Cook, D.J., 2016. Optimization of a total acid hydrolysis based protocol for the quantification of carbohydrate in macroalgae. J. Algal Biomass Utln 7, 21–36. Kraan, S., 2013. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Chang. 18, 27–46. Kuhad, R.C., Gupta, R., Khasa, Y.P., Singh, A., 2010. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour. Technol. 101, 8348–8354. Kumar, A., Kumar, N., Baredar, P., Shukla, A., 2015. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain. Energy Rev. 45, 530–539. Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R.C., Chander, R., 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135, 150–156. Lee, Ji ye, Li, P., Lee, Jieun, Ryu, H.J., Oh, K.K., 2013. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour. Technol. 127, 119–125. Lee, S., Oh, Y., Kim, D., Kwon, D., Lee, C., Lee, J., 2011. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl. Biochem. Biotechnol. 164, 878–888. Lobban, C.S., Harrison, P.J., Harrison, P.J., 1994. Seaweed ecology and physiology. Cambridge University Press. Maeda, M., Tokimatsu, K., Mori, S., 2015. A Global Supply-demand Balance Model to Assess Potential CO2Emissions and Woody Biofuel Supply from Increased Crop Production. Energy Procedia 75, 2865–2870. Masarin, F., Cedeno, F.R.P., Chavez, E.G.S., De Oliveira, L.E., Gelli, V.C., Monti, R., 2016. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 9, 1–12. McHugh, D.J., 2003. Seaweeds uses as Human Foods. A Guid. to Seaweed Ind. 105. McKendry, P., 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol 83, 37–46. Meinita, M.D.N., Hong, Y.K., Jeong, G.T., 2012a. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35, 123–128. Meinita, M.D.N., Kang, J.Y., Jeong, G.T., Koo, H.M., Park, S.M., Hong, Y.K., 2012b. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24, 857–862. Naik, S.N., Goud, V. V., Rout, P.K., Dalai, A.K., 2010. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597. Nguyen, T.H., Ra, C.H., Sunwoo, I.Y., Jeong, G.T., Kim, S.K., 2017. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst. Eng. 40, 529–536. Niehaus, F., Bertoldo, C., Kähler, M., Antranikian, G., 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711–729. Odum, W.E., Heald, E.J., 1972. Trophic analyses of an estuarine mangrove community. Bull. Mar. Sci. 22, 671–738. Park, J.H., Hong, J.Y., Jang, H.C., Oh, S.G., Kim, S.H., Yoon, J.J., Kim, Y.J., 2012. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108, 83–88. Parthiban C, Saranya C, Girija K, Hemalatha A, Suresh M, Anantharaman P, 2013. Biochemical composition of some selected seaweeds from Tuticorin coast. Pelagia Res. Libr. Adv. Appl. Sci. Res. 4, 362–366. Patterson Edward, J.K., Mathews, G., Patterson, J., Ramkumar, R., Wilhelmsson, D., Tamelander, J., Linden, O., 2008. Status of coral reefs of the Gulf of Mannar, southeastern India. Ten years after Bleach. - facing consequences Clim. Chang. Indian Ocean. [Coastal Ocean. Res. Dev. Indian Ocean. Status Rep. 2008.] 45–60. Pereira, L., Neto, J.M., 2014. Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press. Praveen, M.A., Parvathy, K.R.K., Balasubramanian, P., Jayabalan, R., 2019. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci. Technol. Ra, C.H., Jeong, G.T., Shin, M.K., Kim, S.K., 2013. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour. Technol. 140, 421–425. Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R., 2018. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean. Prod. 181, 42–59. Ramachandra, T.V., 2010. Mapping of fuelwood trees using geoinformatics. Renew. Sustain. Energy Rev. 14, 642–654. Ramachandra, T.V. and D.H., 2016. Bioethanol prospects of Algae in Central West Coast of India.pdf. 11th Natl. Conf. Indian Energy Sect. - Synerg. with Energy. Ramachandra, T.V., Hebbale, D., 2020. Bioethanol from macroalgae: Prospects and challenges. Renew. Sustain. Energy Rev. 117, 109479. Ramachandra, T.V., Subramanian, D.K., Joshi, N.V., Gunaga, S.V., Harikantra, R.B., 2000. Domestic energy consumption patterns in Uttara Kannada District, Karnataka State, India. Energy Convers. Manag. 41, 775–831. Ramachandra, T. V., Durga Madhab, M., Shilpi, S., Joshi, N. V., 2013. Algal biofuel from urban wastewater in India: Scope and challenges. Renew. Sustain. Energy Rev. 21, 767–777. Ramachandra, T. V., Kamakshi, G., Shruthi, B. V., 2004. Bioresource status in Karnataka. Renew. Sustain. Energy Rev. 8, 1–47. Ramachandra, T. V., Mahapatra, D.M., Karthick, B., Gordon, R., 2009. Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 48, 8769–8788. Roesijadi, G., Jones, S.B., Zhu, Y., 2010. Macroalgae as a Biomass Feedstock : A Preliminary Analysis. Analysis 1–50. Saranya, G., Subashchandran, M.D., Mesta, P., Ramachandra, T. V., 2018. Prioritization of prospective third-generation biofuel diatom strains. Energy, Ecol. Environ. 3, 338–354. Seghetta, M., Marchi, M., Thomsen, M., Bjerre, A.B., Bastianoni, S., 2016. Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Res. 18, 144–155. Smith, G.M., 1938. Cryptogamic botany. Volume I, Algae and fungi. Cryptogam. Bot. Vol. I, Algae fungi. Speight, M.R., Henderson, P.A., 2013. Marine ecology: concepts and applications. John Wiley & Sons. Sritrakul, N., Nitisinprasert, S., Keawsompong, S., 2017. Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric. Nat. Resour. 51, 512–519. Sudhakar, M.P., Merlyn, R., Arunkumar, K., Perumal, K., 2016. Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass and Bioenergy 90, 148–154. Sung-Soo Jang, 2012. Production of mono sugar from acid hydrolysis of seaweed. African J. Biotechnol. 11, 1953–1963. Swain, M.R., Natarajan, V., Krishnan, C., 2017. Marine Enzymes and Microorganisms for Bioethanol Production. Adv. Food Nutr. Res. 80, 181–197. Tan, I.S., Lee, K.T., 2014. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy 78, 53–62. Torres, M.D., Kraan, S., Domínguez, H., 2019. Seaweed biorefinery, Reviews in Environmental Science and Biotechnology. Tripathi, L., Mishra, A.K., Dubey, A.K., Tripathi, C.B., Baredar, P., 2016. Renewable energy: An overview on its contribution in current energy scenario of India. Renew. Sustain. Energy Rev. 60, 226–233. Trivedi, N., Gupta, V., Reddy, C.R.K., Jha, B., Nitin Trivedi , Vishal Gupta, C.R.K. Reddy, B.J. a, 2013. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour. Technol. 150, 106–112. Trivedi, N., Reddy, C.R.K., Radulovich, R., Jha, B., 2015. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res. 9, 48–54. Trivedi, N., Reddy, C.R.K.K., Lali, A.M., 2016. Marine Microbes as a Potential Source of Cellulolytic Enzymes. Adv. Food Nutr. Res. 79, 27–41. Van Den Hoek, C., 1984. World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera*. Walker, G.M., Walker G. M., 2011. 125th anniversary review: Fuel alcohol: Current production and future challenges. J. Inst. Brew. 117, 3–22. Wei, N., Quarterman, J., Jin, Y.S., 2013. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 31, 70–77. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., Galvez, A., 1999. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. Wu, F.C., Wu, J.Y., Liao, Y.J., Wang, M.Y., Shih, I.L., 2014. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour. Technol. 156, 123–131. Xiao, Z., Zhang, X., Gregg, D.J., Saddler, J.N., 2004. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. In: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Springer, pp. 1115–1126. Yanagisawa, M., Kawai, S., Murata, K., 2013. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4, 224–235. Yanagisawa, M., Nakamura, K., Ariga, O., Nakasaki, K., 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46, 2111–2116. Yeon, J.H., Lee, S.E., Choi, W.Y., Kang, D.H., Lee, H.Y., Jung, K.H., 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21, 323–331. Yoon, J.J., Kim, Y.J., Kim, S.H., Ryu, H.J., Choi, J.Y., Kim, G.S., Shin, M.K., 2010. Production of Polysaccharides and Corresponding Sugars from Red Seaweed. Adv. Mater. Res. 93–94, 463–466. Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C.E., Engelsen, S.B., 2002. Physico‐chemical characterization of floridean starch of red algae. Starch‐Stärke 54, 66–74. Zhang, C., Kim, S.-K., 2010. Research and Application of Marine Microbial Enzymes: Status and Prospects. Mar. Drugs 8, 1920–1934. Zhu, J.Y., Pan, X.J., 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour. Technol. 101, 4992–5002.
|