References
1. IEA (2014) Modern energy for all. https://www.iea.org/energyaccess/modernenergyforall/. Accessed 3 Dec 2018 2. Ramachandra T V., Bajpai V, Kulkarni G, et al (2017) Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India. Renew Sustain Energy Rev 67:1331–1344. https://doi.org/10.1016/j.rser.2016.09.038 3. Unglert M, Bockey D, Bofinger C, et al (2020) Action areas and the need for research in biofuels. Fuel 268:. https://doi.org/10.1016/j.fuel.2020.117227 4. Johnsson F, Kjärstad J, Rootzén J (2019) The threat to climate change mitigation posed by the abundance of fossil fuels. Clim Policy 19:258–274. https://doi.org/10.1080/14693062.2018.1483885 5. Ramachandra T V., Shwetmala (2012) Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renew Sustain Energy Rev 16:5820–5833. https://doi.org/10.1016/j.rser.2012.05.035 6. Ramachandra T V., Aithal BH, Sreejith K (2015) GHG footprint of major cities in India. Renew Sustain Energy Rev 44:473–495. https://doi.org/10.1016/j.rser.2014.12.036 7. Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: Prospects and challenges. Renew Sustain Energy Rev 117:109479. https://doi.org/10.1016/j.rser.2019.109479 8. Baghel RS, Trivedi N, Reddy CRK (2016) A simple process for recovery of a stream of products from marine macroalgal biomass. Bioresour Technol 203:160–165. https://doi.org/10.1016/j.biortech.2015.12.051 9. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour Technol 102:186–193. https://doi.org/10.1016/j.biortech.2010.06.139 10. Ramachandra T V., Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788. https://doi.org/10.1021/ie900044j 11. Saranya G, Subashchandran MD, Mesta P, Ramachandra T V. (2018) Prioritization of prospective third-generation biofuel diatom strains. Energy, Ecol Environ 3:338–354. https://doi.org/10.1007/s40974-018-0105-z 12. Mahapatra DM, Chanakya HN, Ramachandra T V. (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. https://doi.org/10.1016/j.biortech.2014.03.130 13. Hebbale D, Chandran MDS, Joshi N V., Ramachandra T V. (2017) Energy and Food Security from Macroalgae. J Biodivers 8:1–11. https://doi.org/10.1080/09766901.2017.1351511 14. Hebbale D, Bhargavi R, Ramachandra T V. (2019) Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon 5:e01372. https://doi.org/10.1016/j.heliyon.2019.e01372 15. Rouhollah H, Iraj N, Giti E, Sorah A (2007) Mixed sugar fermentation by Pichia stipitis , Sacharomyces cerevisiaea , and an isolated xylose- fermenting Kluyveromyces marxianus and their cocultures. African J Biotechnol 6:1110–1114 16. Yaich H, Garna H, Besbes S, et al (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901. https://doi.org/10.1016/j.foodchem.2011.03.114 17. Yaich H, Garna H, Besbes S, et al (2013) Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocoll 31:375–382. https://doi.org/10.1016/j.foodhyd.2012.11.013 18. Robic A, Rondeau-Mouro C, Sassi JF, et al (2009) Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydr Polym 77:206–216. https://doi.org/10.1016/j.carbpol.2008.12.023 19. Karagöz P, Özkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 158:286–293. https://doi.org/10.1016/j.biortech.2014.02.022 20. Tesfaw A, Assefa F (2014) Current Trends in Bioethanol Production by Saccharomyces cerevisiae : Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization. Int Sch Res Not 2014:1–11. https://doi.org/10.1155/2014/532852 21. Peasura N, Laohakunjit N, Kerdchoechuen O, Wanlapa S (2015) Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int J Biol Macromol 81:912–919. https://doi.org/10.1016/j.ijbiomac.2015.09.030 22. Bikker P, van Krimpen MM, van Wikselaar P, et al (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525. https://doi.org/10.1007/s10811-016-0842-3 23. van der Wal H, Sperber BLHM, Houweling-Tan B, et al (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437. https://doi.org/10.1016/j.biortech.2012.10.094 24. van Maris AJA, Abbott DA, Bellissimi E, et al (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 90:391–418. https://doi.org/10.1007/s10482-006-9085-7 25. Cho Y, Kim M-J, Kim S-K (2013) Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae. KSBB J 28:366–371. https://doi.org/10.7841/ksbbj.2013.28.6.366 26. Saxena RK, Anand P, Saran S, et al (2010) Microbial production and applications of 1,2-propanediol. Indian J Microbiol 50:2–11. https://doi.org/10.1007/s12088-010-0017-x 27. Khambhaty Y, Upadhyay D, Kriplani Y, et al (2013) Bioethanol from Macroalgal Biomass: Utilization of Marine Yeast for Production of the Same. Bioenergy Res 6:188–195. https://doi.org/10.1007/s12155-012-9249-4 28. Ferreira AD, Mussatto SI, Cadete RM, et al (2011) Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547–554. https://doi.org/10.1002/yea.1858 29. Azadeh Tofighi, Mahnaz Mazaheri Assadi MHAA and SZK (2008) Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. Tailor-Made Polym Via Immobil Alpha-Olefin Polym Catal 171–210. https://doi.org/10.1002/9783527621668.ch7 30. Paulino de Souza J, Dias do Prado C, Eleutherio ECA, et al (2018) Improvement of Brazilian bioethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol 122:583–591. https://doi.org/10.1016/j.funbio.2017.12.006 31. Radecka D, Mukherjee V, Mateo RQ, et al (2015) Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15:1–13. https://doi.org/10.1093/femsyr/fov053 32. Camargo JZ, Nascimento VM, Stefanello I, et al (2018) Biochemical evaluation, molecular characterization and identification of novel yeast strains isolated from Brazilian savannah fruits, chicken litter and a sugar and alcohol mill with biotechnological potential for biofuel and food industries. Biocatal Agric Biotechnol 16:390–399. https://doi.org/10.1016/j.bcab.2018.09.006 33. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. Chapter 11, The Yeasts 77–100. https://doi.org/10.1016/b978-044481312-1/50014-9 34. Mukherjee V, Steensels J, Lievens B, et al (2014) Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 98:9483–9498. https://doi.org/10.1007/s00253-014-6090-z 35. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 36. Miller GL (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030 37. Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441. https://doi.org/10.1007/s10811-015-0633-2 38. Matmati N, Hannun YA (2008) Thematic Review Series: Sphingolipids. ISC1 (inositol phosphosphingolipid-phospholipase C), the yeast homologue of neutral sphingomyelinases. J Lipid Res 49:922–928. https://doi.org/10.1194/jlr.R800004-JLR200 39. Nan Hu, Bo Yuan , Juan Sun S-AW& F-LL (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 951359–1368 Table 95:1359–1368. https://doi.org/10.1080/03602559.2017.1373397 40. Yumei Gao YLNT (2011) Isolation and characterization of a pichia anomala strain: A promising candidate for bioethanol production. Brazilian J Microbiol 42:668–675. https://doi.org/10.1590/S1517-83822011000200031 41. Arroyo-López FN, Salvadó Z, Tronchoni J, et al (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast 27:1005–1015. https://doi.org/10.1002/yea.1809 42. Hou X, Yan X (1998) Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ 222:141–156. https://doi.org/10.1016/S0048-9697(98)00299-X 43. Jung H-K, Park C-D, Bae D-H, Hong J-H (2008) Isolation of alcohol-tolerant amylolytic Saccharomyces cerevisiae and its application to alcohol fermentation. Food Sci Biotechnol 17:1160–1164 44. Kang T-Y, Oh G-H, Kim K (2000) Isolation and Indentification of Yeast Strains Producing High Concentration of Ethanol with High Viabi-lity. Microbiol Biotechnol Lett 28:309–315 45. Osho A (2005) Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. African J Biotechnol 4:660–662. https://doi.org/10.5897/AJB2005.000-3119 46. Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 103:577–588. https://doi.org/10.1007/s10482-012-9842-8 47. Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P (2018) The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian J Microbiol 49:378–391. https://doi.org/10.1016/j.bjm.2017.09.002 48. Hande A, Mahajan S, Prabhune A (2013) Evaluation of ethanol production by a new isolate of yeast during fermentation in synthetic medium and sugarcane bagasse hemicellulosic hydrolysate. Ann Microbiol 63:63–70. https://doi.org/10.1007/s13213-012-0445-4 49. Kumar S, Gupta R, Kumar G, et al (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156. https://doi.org/10.1016/j.biortech.2012.10.120 50. Nguyen TH, Ra CH, Sunwoo IY, et al (2017) Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng 40:529–536. https://doi.org/10.1007/s00449-016-1718-2 51. Hisamatsu M, Furubayashi T, Karita S, et al (2006) Isolation and Identification of a Novel Yeast Fermenting Ethanol under Acidic Conditions. J Appl Glycosci 53:111–113. https://doi.org/10.5458/jag.53.111 52. Percy J (1947) The anaerobic assimilation by yeast cells 53. Patrascu E, Rapeanu G, Hopulele T (2009) Current approaches to efficient biotechnological production of ethanol. Innov Rom Food Biotechnol 4:1–11 54. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, et al (2006) Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. https://doi.org/10.1016/j.tibtech.2006.10.004 55. Jin M, Lau M, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour Technol 101:8171–8178. https://doi.org/10.1016/j.biortech.2010.06.026 56. du Preez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 23:228–233. https://doi.org/10.1007/BF00261920 57. Nelson DL, Cox MM (2008) Principles of Biochemistry 58. McMillan JD (1993) Xylose Fermenta to Ethanol- A Review. NREL/TP-421-4944 Natl Renew Energy Lab, Golden, CO(United States) 1–51. https://doi.org/10.1016/j.jcs.2014.07.008 59. Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783. https://doi.org/10.1007/BF00167144 60. Sharma NK, Behera S, Arora R, et al (2018) Xylose transport in yeast for lignocellulosic ethanol production: Current status. J Biosci Bioeng 125:346–352. https://doi.org/10.1016/j.jbiosc.2017.10.006 61. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524. https://doi.org/10.1007/s10529-008-9728-z 62. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: A review. Renew Energy 36:3541–3549. https://doi.org/10.1016/j.renene.2011.04.031 63. Gonçalves DB, Batista AF, Rodrigues MQRB, et al (2013) Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresour Technol 146:261–266. https://doi.org/10.1016/j.biortech.2013.07.075 64. Liti G, Carter DM, Moses AM, et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. https://doi.org/10.1038/nature07743 65. Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079. https://doi.org/10.1111/1567-1364.12202 66. Tolieng V, Kunthiphun S, Savarajara A, Tanasupawat S (2018) Diversity of yeasts and their ethanol production at high temperature. J Appl Pharm Sci 8:136–142. https://doi.org/10.7324/JAPS.2018.8221 67. Tan IS, Lam MK, Lee KT (2013) Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr Polym 94:561–566. https://doi.org/10.1016/j.carbpol.2013.01.042 68. Kim SW, Hong CH, Jeon SW, Shin HJ (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641. https://doi.org/10.1016/j.biortech.2015.08.016 69. Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190. https://doi.org/10.1016/j.biortech.2012.10.025 70. Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14:813–825. https://doi.org/10.1111/1567-1364.12158 71. Ranu Gupta (1996) Growth of marine yeast on different strength of stress solutes. Proc Second Work Sci Sagar Sampada pp.91-95 72. Liu Z, Ho SH, Sasaki K, et al (2016) Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Sci Rep 6:1–7. https://doi.org/10.1038/srep24550 73. Van Zyl WH, Lynd LR, Den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using saccharomyces cerevisiae. In: Advances in Biochemical Engineering/Biotechnology. Springer, pp 205–235
|