References
1. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033 2. Yin Y, Wang J (2018) Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. Bioresour Technol 268:52–59. https://doi.org/10.1016/j.biortech.2018.07.126 3. Montingelli ME, Benyounis K, Stokes J, Olabi AG (2016) Pretreatment of macroalgal biomass for biogas production. Energy Convers Manag 108:202–209. https://doi.org/10.1016/j.enconman.2015.11.008 4. Yun EJ, Kim HT, Cho KM, et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318. https://doi.org/10.1016/j.biortech.2015.08.001 5. Agbor VB, Cicek N, Sparling R, et al (2011) Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005 6. Feng D, Liu H, Li F, et al (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chinese J Oceanol Limnol 29:1243–1248. https://doi.org/10.1007/s00343-011-0298-x 7. Jeong GT, Kim SK, Park DH (2013) Detoxification of hydrolysate by reactive-extraction for generating biofuels. Biotechnol Bioprocess Eng 18:88–93. https://doi.org/10.1007/s12257-012-0417-3 8. Kim D-H, Lee S-B, Jeong G-T (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353. https://doi.org/10.1016/j.biortech.2014.03.078 9. Meinita MDN, Hong YK, Jeong GT (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:123–128. https://doi.org/10.1007/s00449-011-0609-9 10. Park JH, Hong JY, Jang HC, et al (2012) Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88. https://doi.org/10.1016/j.biortech.2011.12.065 11. Yoon JJ, Kim YJ, Kim SH, et al (2010) Production of Polysaccharides and Corresponding Sugars from Red Seaweed. Adv Mater Res 93–94:463–466. https://doi.org/10.4028/www.scientific.net/AMR.93-94.463 12. Kang KE, Park DH, Jeong GT (2013) Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresour Technol 132:160–165. https://doi.org/10.1016/j.biortech.2013.01.012 13. Kim DH, Lee SB, Jeong GT (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353. https://doi.org/10.1016/j.biortech.2014.03.078 14. Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6:110–122. https://doi.org/10.1002/cssc.201200546 15. Horn SJ, Aasen IM, Emptyvstgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254. https://doi.org/10.1038/sj.jim.7000065 16. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46. https://doi.org/10.1007/s11027-010-9275-5 17. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504. https://doi.org/10.1016/j.biortech.2007.11.036 18. Jmel MA, Anders N, Yahmed N Ben, et al (2018) Variations in Physicochemical Properties and Bioconversion Efficiency of Ulva lactuca Polysaccharides After Different Biomass Pretreatment Techniques. Appl Biochem Biotechnol 184:777–793. https://doi.org/10.1007/s12010-017-2588-z 19. Jeong TS, Kim YS, Oh KK (2011) Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour Technol 102:10529–10534. https://doi.org/10.1016/j.biortech.2011.09.017 20. Wyman CE, Dale BE, Elander RT, et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. https://doi.org/10.1016/j.biortech.2005.01.010 21. Singh LK, Chaudhary G, Majumder CB, Ghosh S (2011) Utilization of hemicellulosic fraction of lignocellulosic biomaterial for bioethanol production. Adv Appl Sci Res 2:508–521 22. Aden A, Ruth M, Ibsen K, et al (2002) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover 23. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027 24. Kumar S, Gupta R, Kumar G, et al (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156. https://doi.org/10.1016/j.biortech.2012.10.120 25. Khambhaty Y, Mody K, Gandhi MR, et al (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103:180–185. https://doi.org/10.1016/j.biortech.2011.10.015 26. Nguyen TH, Ra CH, Sunwoo IY, et al (2017) Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng 40:529–536. https://doi.org/10.1007/s00449-016-1718-2 27. Lee JY, Kim YS, Um BH, Oh KK (2013) Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration. Renew Energy 54:196–200. https://doi.org/10.1016/j.renene.2012.08.025 28. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N (2013) Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour Technol 134:257–263. https://doi.org/10.1016/j.biortech.2013.02.002 29. Kim SW, Hong CH, Jeon SW, Shin HJ (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641. https://doi.org/10.1016/j.biortech.2015.08.016 30. Meinita MDN, Kang JY, Jeong GT, et al (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24:857–862. https://doi.org/10.1007/s10811-011-9705-0 31. Ra CH, Jeong GT, Shin MK, Kim SK (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425. https://doi.org/10.1016/j.biortech.2013.04.122 32. Kim HM, Wi SG, Jung S, et al (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134. https://doi.org/10.1016/j.biortech.2014.10.050 33. Tan IS, Lee KT (2014) Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy 78:53–62. https://doi.org/10.1016/j.energy.2014.04.080 34. Wei N, Quarterman J, Jin YS (2013) Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77. https://doi.org/10.1016/j.tibtech.2012.10.009 35. Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29. https://doi.org/10.1016/j.biortech.2013.03.108 36. Lee SM, Lee JH (2011) The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Bioresour Technol 102:5962–5967. https://doi.org/10.1016/j.biortech.2011.02.006 37. Jang JS, Cho YK, Jeong GT, Kim SK (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18. https://doi.org/10.1007/s00449-011-0611-2 38. Yanagisawa M, Ojima T, Nakasaki K (2011) Bioethanol from sea lettuce with the use of crude enzymes derived from waste. J Mater Cycles Waste Manag 13:321–326. https://doi.org/10.1007/s10163-011-0026-9 39. Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89. https://doi.org/10.1016/j.renene.2010.06.001 40. Dubois M, Gilles KA, Hamilton JK, et al (1956) Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017 41. Miller GL (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030 42. Marsden W, Gray PP, Nippard GJ, Quinlan MR (1982) Evaluation of the Dns Method for Analysing Lignocellulosic Hydrolysates. J Chem Technol Biotechnol 32:1016–1022. https://doi.org/10.1002/jctb.5030320744 43. Hu R, Lin L, Liu T, et al (2008) Reducing sugar content in hemicellulose hydrolysate by DNS method: A revisit. J Biobased Mater Bioenergy 2:156–161. https://doi.org/10.1166/jbmb.2008.306 44. Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: Prospects and challenges. Renew Sustain Energy Rev 117:109479. https://doi.org/10.1016/j.rser.2019.109479 45. Meinita MDN, Hong YK, Jeong GT (2012) Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:93–98. https://doi.org/10.1007/s00449-011-0608-x 46. Bosch-Reig F, Marcote MJ, Minana MD, Cabello ML (1992) Separation and identification of sugars and maltodextrines by thin layer chromatography: Application to biological fluids and human milk. Talanta 39:1493–1498. https://doi.org/10.1016/0039-9140(92)80131-V 47. Rahman SHA, Choudhury JP, Ahmad AL, Kamaruddin AH (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98:554–559. https://doi.org/10.1016/j.biortech.2006.02.016 48. Hebbale D, Bhargavi R, Ramachandra T V. (2019) Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon 5:e01372. https://doi.org/10.1016/j.heliyon.2019.e01372 49. Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003 50. Sung-Soo Jang (2012) Production of mono sugar from acid hydrolysis of seaweed. African J Biotechnol 11:1953–1963. https://doi.org/10.5897/AJB10.1681 51. Kupiainen L, Ahola J, Tanskanen J (2010) Comparison of formic and sulfuric acids as a glucose decomposition catalyst. Ind Eng Chem Res 49:8444–8449. https://doi.org/10.1021/ie1008822 52. Lee S, Oh Y, Kim D, et al (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl Biochem Biotechnol 164:878–888. https://doi.org/10.1007/s12010-011-9181-7 53. Gonçalves DB, Batista AF, Rodrigues MQRB, et al (2013) Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresour Technol 146:261–266. https://doi.org/10.1016/j.biortech.2013.07.075 54. Smith GM (1938) Cryptogamic botany. Volume I, Algae and fungi. Cryptogam Bot Vol I, Algae fungi 55. Choi WY, Han JG, Lee CG, et al (2012) Bioethanol Production from Ulva pertusa Kjellman by High-temperature Liquefaction. Chem Biochem Eng Q 26:15–21. https://doi.org/10.2147/NSS.S6844 56. Wu FC, Wu JY, Liao YJ, et al (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131. https://doi.org/10.1016/j.biortech.2014.01.024 57. Pilavtepe M, Celiktas MS, Sargin S, Yesil-Celiktas O (2013) Transformation of Posidonia oceanica residues to bioethanol. Ind Crops Prod 51:348–354. https://doi.org/10.1016/j.indcrop.2013.09.020 58. Wang CY, Hsieh YR, Ng CC, et al (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb Technol 44:373–379. https://doi.org/10.1016/j.enzmictec.2009.02.006 59. Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11:1–6. https://doi.org/10.1186/s13104-018-3558-4 60. Shanmughapriya S, Kiran GS, Selvin J, et al (2010) Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated marinobacter sp. MSI032. Appl Biochem Biotechnol 162:625–640. https://doi.org/10.1007/s12010-009-8747-0 61. Gao Z, Ruan L, Chen X, et al (2010) A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87:1373–1382. https://doi.org/10.1007/s00253-010-2554-y 62. Harshvardhan K, Mishra A, Jha B (2013) Purification and characterization of cellulase from a marine Bacillus sp. H1666: A potential agent for single step saccharification of seaweed biomass. J Mol Catal B Enzym 93:51–56. https://doi.org/10.1016/j.molcatb.2013.04.009 63. Kim JY, Hur SH, Hong JH (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett 27:313–316. https://doi.org/10.1007/s10529-005-0685-5 64. Picart P, Diaz P, Pastor FIJ (2008) Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 94:307–316. https://doi.org/10.1007/s10482-008-9248-9 65. Trivedi N, Gupta V, Kumar M, et al (2011) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 83:891–897. https://doi.org/10.1016/j.carbpol.2010.08.069 66. Hirasawa K, Uchimura K, Kashiwa M, et al (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 89:211–219. https://doi.org/10.1007/s10482-005-9023-0 67. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41. https://doi.org/10.1042/BSE0590001 68. Timung R, Naik Deshavath N, Goud V V., Dasu V V. (2016) Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass. J Energy 2016:1–12. https://doi.org/10.1155/2016/8506214 69. Adams JMM, Toop TA, Donnison IS, Gallagher JA (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984. https://doi.org/10.1016/J.BIORTECH.2011.08.032 70. Cho Y, Kim H, Kim SK (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719. https://doi.org/10.1007/s00449-013-0895-5 71. Choi D, Sim HS, Piao YL, et al (2009) Sugar production from raw seaweed using the enzyme method. J Ind Eng Chem 15:12–15. https://doi.org/10.1016/j.jiec.2008.08.004 72. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899. https://doi.org/10.1016/J.FOODCHEM.2006.09.041 73. Deniaud E, Quemener B, Fleurence J, Lahaye M (2003) Structural studies of the mix-linked β-(1 → 3)/β-(1 → 4)-D-xylans from the cell wall of Palmaria palmata (Rhodophyta). Int J Biol Macromol 33:9–18. https://doi.org/10.1016/S0141-8130(03)00058-8 74. Hou X, Yan X (1998) Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ 222:141–156. https://doi.org/10.1016/S0048-9697(98)00299-X 75. Mutripah S, Meinita MDN, Kang JY, et al (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26:687–693. https://doi.org/10.1007/s10811-013-0068-6 76. Robin A, Chavel P, Chemodanov A, et al (2017) Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. Algal Res 28:118–127. https://doi.org/10.1016/j.algal.2017.10.005 77. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26. https://doi.org/10.1016/S0308-8146(02)00171-1 78. Tan IS, Lam MK, Lee KT (2013) Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr Polym 94:561–566. https://doi.org/10.1016/j.carbpol.2013.01.042 79. Trivedi N, Reddy CRK, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54. https://doi.org/10.1016/j.algal.2015.02.025 80. van der Wal H, Sperber BLHM, Houweling-Tan B, et al (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437. https://doi.org/10.1016/j.biortech.2012.10.094 81. Yaich H, Garna H, Besbes S, et al (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901. https://doi.org/10.1016/j.foodchem.2011.03.114 82. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235. https://doi.org/10.4161/bioe.23396 83. Lee YJ, Choi YR, Lee SY, et al (2011) Screening wild yeast strains for alcohol fermentation from various fruits. Mycobiology 39:33–39. https://doi.org/10.4489/MYCO.2011.39.1.033 84. Jmel MA, Ben Messaoud G, Marzouki MN, et al (2016) Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydr Polym 135:274–279. https://doi.org/10.1016/j.carbpol.2015.08.048 85. Mithra MG, Jeeva ML, Sajeev MS, Padmaja G (2018) Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon 4:e00885. https://doi.org/10.1016/j.heliyon.2018.e00885 86. Chundawat SPS, Pal RK, Zhao C, et al (2020) Ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass. J Vis Exp 2020:1–8. https://doi.org/10.3791/57488 87. El-Dalatony MM, Salama ES, Kurade MB, et al (2017) Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies 10:1–19. https://doi.org/10.3390/en10122110 88. Pezoa-Conte R, Leyton A, Anugwom I, et al (2015) Deconstruction of the green alga Ulva rigida in ionic liquids: Closing the mass balance. Algal Res 12:262–273. https://doi.org/10.1016/j.algal.2015.09.011
|