|
Novel biocatalyst for optimal biodiesel production from diatoms
|
|
1Energy and Wetlands Research Group, Centre for Ecological Sciences [CES],
Indian Institute of Science, Bangalore – 560012, India.
2 Centre for Sustainable Technologies [CST], Indian Institute of Science.
3Centre for Infrastructure, Sustainable Transport and Urban Planning [CiSTUP],
Indian Institute of Science, Bangalore 560 012.
*Corresponding author: trv@iisc.ac.in
References
- T.V. Ramachandra, R. Jain, G. Krishnadas, Hotspots of solar potential in India, Renew.
Sustain. Energy Rev. 15 (2011) 3178e3186, https://doi.org/10.1016/
J.RSER.2011.04.007.
- E.M. Shahid, Y. Jamal, Production of biodiesel: a technical review, Renew. Sustain. Energy Rev. 15 (2011)
4732e4745, https://doi.org/10.1016/ J.RSER.2011.07.079.
- T.V. Ramachandra, M. Durga Madhab, S. Shilpi, N.V. Joshi, Algal biofuel from urban wastewater in India: scope
and challenges, Renew. Sustain. Energy Rev. 21 (2013) 767e777, https://doi.org/10.1016/j.rser.2012.12.029.
- A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki,
S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew.
Sustain. Energy Rev. 16 (2012) 2070e2093, https://doi.org/10.1016/J.RSER.2012.01.003.
- Y. Su, K. Song, P. Zhang, Y. Su, J. Cheng, X. Chen, Progress of microalgae biofuel’s commercialization, Renew.
Sustain. Energy Rev. 74 (2017) 402e411, https://doi.org/10.1016/j.rser.2016.12.078.
- X.-G. Zhu, S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy
into biomass? Curr. Opin. Bio- technol. 19 (2008) 153e159, https://doi.org/10.1016/J.COPBIO.2008.02.004.
- J.S. Boyer, Plant productivity and environment, Science 218 (1982) 443e448, https://doi.org/10.1126/science.218.4571.443.
- Y. Guo, T. Yeh, W. Song, D. Xu, S. Wang, A review of bio-oil production from hydrothermal liquefaction of algae,
Renew. Sustain. Energy Rev. 48 (2015) 776e790, https://doi.org/10.1016/J.RSER.2015.04.049.
- A. Darzins, P.T. Pienkos, The Promise and Challenges of Microalgal-Derived Biofuels,
2009, https://doi.org/10.1002/bbb.159.
- Y. Chisti, M. Seibert, R. Davis, N. Sweeney, S. Wychen, A. Lowell, P. Pienkos,
- Archibald, J. Granados, C. Greene, Biodiesel from microalgae, Biotechnol. Adv.
25 (2007) 294e306, https://doi.org/10.1016/j.biotechadv.2007.02.001.
- F. Moazeni, Y.-C. Chen, G. Zhang, Enzymatic transesterification for biodiesel production from used cooking oil, a
review, J. Clean. Prod. 216 (2019) 117e128, https://doi.org/10.1016/J.JCLEPRO.2019.01.181.
- B. Kayode, A. Hart, An overview of transesterification methods for producing biodiesel from waste vegetable oils,
Biofuels (2017) 1e19, https://doi.org/ 10.1080/17597269.2017.1306683.
- Z. Amini, H.C. Ong, M.D. Harrison, F. Kusumo, H. Mazaheri, Z. Ilham, Biodiesel production by lipase-catalyzed
transesterification of Ocimum basilicum L. (sweet basil) seed oil, Energy Convers. Manag. 132 (2017) 82e90, https:// doi.org/10.1016/J.ENCONMAN.2016.11.017.
- A. Louwrier, Industrial products - the return to carbohydrate-based in- dustries, Biotechnol. Appl. Biochem. 27
(1998) 1e8, https://doi.org/10.1111/ j.1470-8744.1998.tb01368.x.
- F. Beisson, V. Arondel, R. Verger, Assaying Arabidopsis lipase activity, Bio- chem. Soc. Trans. 28 (2000)
773e775, https://doi.org/10.1042/0300-5127: 0280773.
- M.I. Van Dyke, H. Lee, J.T. Trevors, Applications of microbial surfactants, Biotechnol. Adv. 9 (1991) 241e252,
https://doi.org/10.1016/0734-9750(91) 90006-H.
- M.-L. Jia, X.-L. Zhong, Z.-W. Lin, B.-X. Dong, G. Li, Expression and character- ization of an esterase belonging
to a new family via isolation from a meta- genomic library of paper mill sludge, Int. J. Biol. Macromol. 126
(2019) 1192e1200, https://doi.org/10.1016/J.IJBIOMAC.2019.01.025.
- B. Ozcan, G. Ozyilmaz, C. Cokmus, M. Caliskan, Characterization of extracel- lular esterase and lipase
activities from five halophilic archaeal strains, J. Ind. Microbiol. Biotechnol. 36 (2009) 105e110, https://doi.org/10.1007/s10295- 008-0477-8.
- L. Ramnath, B. Sithole, R. Govinden, Identification of lipolytic enzymes iso- lated from bacteria indigenous to
Eucalyptus wood species for application in the pulping industry, Biotechnol. Rep. 15 (2017) 114e124, https://doi.org/ 10.1016/j.btre.2017.07.004.
- C.L. Teo, H. Jamaluddin, N.A.M. Zain, A. Idris, Biodiesel production via lipase catalysed transesterification of
microalgae lipids from Tetraselmis sp, Renew. Energy 68 (2014) 1e5, https://doi.org/10.1016/J.RENENE.2014.01.027.
- R.A. Gross, A. Kumar, B. Kalra, Polymer synthesis by in vitro enzyme catalysis, Chem.
Rev. 101 (2001) 2097e2124, https://doi.org/10.1021/cr0002590.
- S. Chinaglia, L.R. Chiarelli, M. Maggi, M. Rodolfi, G. Valentini, A.M. Picco, Biochemistry of lipolytic enzymes
secreted by Penicillium solitum and Cla- dosporium cladosporioides, Biosc. Biotech. Biochem.
78 (2014) 245e254, https://doi.org/10.1080/09168451.2014.882752.
- S.C.B. Gopinath, P. Anbu, T. Lakshmipriya, A. Hilda, Strategies to characterize fungal lipases for applications
in medicine and dairy industry, BioMed Res. Int. 2013 (2013) 154549, https://doi.org/10.1155/2013/154549.
- F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzym. Microb. Technol. 39 (2006)
235e251, https://doi.org/10.1016/ J.ENZMICTEC.2005.10.016.
- K.-E. Jaeger, T. Eggert, Lipases for biotechnology, Curr. Opin. Biotechnol. 13 (2002)
390e397, https://doi.org/10.1016/S0958-1669(02)00341-5.
- Shraddha, R. Shekher, S. Sehgal, M. Kamthania, A. Kumar, Laccase: microbial
sources, production, purification, and potential biotechnological applica- tions, Enzym. Res. (2011) 217861, https://doi.org/10.4061/2011/217861
(2011).
- E.-S. Lin, C.-C. Wang, S.-C. Sung, Cultivating conditions influence lipase production by the edible Basidiomycete
Antrodia cinnamomea in submerged culture, Enzym. Microb. Technol. 39 (2006) 98e102, https://doi.org/10.1016/ J.ENZMICTEC.2005.10.002.
- B. Sreelatha, V. Koteswara Rao, R. Ranjith Kumar, S. Girisham, S.M. Reddy, Culture conditions for the production
of thermostable lipase by Thermo- myces lanuginosus, Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 87e95, https:// doi.org/10.1016/J.BJBAS.2016.11.010.
- N. Kuratani, H. Shinji, N. Hideo, F. Hideki, Continuous production of biodiesel fuel by enzymatic method, U.S.
Patent 9 (879) (2018) 291. https://patents. google.com/patent/US9879291B2/en.
- W. Orlando Beys Silva, S. Mitidieri, A. Schrank, M.H. Vainstein, Production and
extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae, Process Biochem.
40 (2005) 321e326, https:// doi.org/10.1016/J.PROCBIO.2004.01.005.
- S. Shah, S. Sharma, M.N. Gupta, Biodiesel Preparation by Lipase-Catalyzed
Transesterification of Jatropha Oil, 2004, https://doi.org/10.1021/ef030075z.
- S.T. Keera, S.M. El Sabagh, A.R. Taman, Transesterification of vegetable oil to biodiesel
fuel using alkaline catalyst, Fuel 90 (2011) 42e47, https://doi.org/
10.1016/J.FUEL.2010.07.046.
- H.-Y. Yoo, J.R. Simkhada, S.S. Cho, H. Park, S.W. Kim, C.N. Seong, J.C. Yoo, A novel
alkaline lipase from Ralstonia with potential application in biodiesel production, Bioresour. Technol. 102
(2011) 6104e6111, https://doi.org/ 10.1016/j.biortech.2011.02.046.
- D. Surendhiran, M. Vijay, A.R. Sirajunnisa, Biodiesel production from marine microalga Chlorella salina using
whole cell yeast immobilized on sugarcane bagasse, J. Environ. Chem. Eng. 2 (2014) 1294e1300, https://doi.org/10.1016/ J.JECE.2014.05.004.
- D.-T. Tran, C.-L. Chen, Effect of solvents and oil content on direct trans- esterification of wet oil-bearing
microalgal biomass of Chlorella vulgaris ESP- 31 for biodiesel synthesis using immobilized lipase as the
biocatalyst, Bio- resour. Technol. 135 (2013) 213e221, https://doi.org/10.1016/
J.BIORTECH.2012.09.101.
- J.Z. Chen, S. Wang, B. Zhou, L. Dai, D. Liu, W. Du, A Robust Process for Lipase- Mediated Biodiesel Production
from Microalgae Lipid, 2016, https://doi.org/ 10.1039/c6ra07144a.
- A. Guldhe, P. Singh, S. Kumari, I. Rawat, K. Permaul, F. Bux, Biodiesel syn- thesis from microalgae using
immobilized Aspergillus Niger whole cell lipase biocatalyst, Renew. Energy 85 (2016) 1002e1010, https://doi.org/10.1016/ J.RENENE.2015.07.059.
- L. Ramnath, B. Sithole, R. Govinden, Identification of lipolytic enzymes iso- lated from bacteria indigenous to
Eucalyptus wood species for application in the pulping industry, Biotechnol. Rep. 15 (2017) 114e124, https://doi.org/ 10.1016/J.BTRE.2017.07.004.
- J. Carrazco-Palafox, B.E. Rivera-Chavira, N. Ramírez-Baca, L.I. Manzanares-
Papayanopoulos, G.V. Neva rez-Moorillo n, Improved method for qualitative screening of lipolytic bacterial
strains, MethodsX 5 (2018) 68e74, https:// doi.org/10.1016/J.MEX.2018.01.004.
- D.F.M. Turati, A.F. Almeida, C.C. Terrone, J.M.F. Nascimento, C.R.F. Terrasan,
G. Fernandez-Lorente, B.C. Pessela, J.M. Guisan, E.C. Carmona, Thermotoler- ant lipase from Penicillium sp. section
Gracilenta CBMAI 1583: effect of carbon sources on enzyme production, biochemical properties of crude and purified
enzyme and substrate specificity, Biocatal. Agric. Biotechnol. 17 (2019) 15e24, https://doi.org/10.1016/j.bcab.2018.10.002.
- R. Tripathi, J. Singh, R. kumar Bharti, I.S. Thakur, Isolation, purification and
characterization of lipase from microbacterium sp. and its application in biodiesel production, Energy Procedia
54 (2014) 518e529, https://doi.org/ 10.1016/J.EGYPRO.2014.07.293.
- P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol
fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235,
https://doi.org/10.1016/J.JIP.2010.06.011.
- M.M. Maia, A. Heasley, M. Camargo de Morais, E.H. Melo, M. Morais,
W. Ledingham, J. Lima Filho, Effect of culture conditions on lipase production by Fusarium solani in batch
fermentation, Bioresour. Technol. 76 (2001) 23e27, https://doi.org/10.1016/S0960-8524(00)00079-1.
- F.F. de Castro, A.B.P. Pinheiro, C.B. Nassur, I.P. Barbosa-Tessmann, Mycelium- bound lipase from a locally
isolated strain of Aspergillus westerdijkiae, Biocatal. Agric. Biotechnol. 10 (2017) 321e328, https://doi.org/10.1016/ J.BCAB.2017.04.009.
- S.-S. Yi, J.-M. Noh, Y.-S. Lee, Amino acid modified chitosan beads: improved polymer supports for immobilization
of lipase from Candida rugosa, J. Mol. Catal. B Enzym. 57 (2009) 123e129, https://doi.org/10.1016/ J.MOLCATB.2008.08.002.
- D. Palacios, M.D. Busto, N. Ortega, Study of a new spectrophotometric end- point assay for lipase activity
determination in aqueous media, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 55 (2014)
536e542, https://doi.org/10.1016/J.LWT.2013.10.027.
- R.C. Judd, 2I-Peptide mapping of protein III isolated from four strains of Neisseria
gonorrhoeae. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC347578/pdf/iai00149-0232.pdf,
1982. (Accessed 12 June 2019).
- U.K. Laemmli, Cleavage of structural proteins during the assembly of the
head of bacteriophage T4, Nature 227 (1970) 680e685, https://doi.org/
10.1038/227680a0.
- M. Tsuji, Y. Yokota, K. Shimohara, S. Kudoh, T. Hoshino, An application of wastewater treatment in a cold
environment and stable lipase production of antarctic basidiomycetous yeast Mrakia blollopis, PloS One 8 (2013),
https:// doi.org/10.1371/journal.pone.0059376.
- R. Gaur, A. Gupta, S.K. Khare, Purification and characterization of lipase from solvent tolerant Pseudomonas
aeruginosa PseA, Process Biochem. 43 (2008) 1040e1046, https://doi.org/10.1016/J.PROCBIO.2008.05.007.
- Ryther Guillard, f/2 Medium for Growing
Diatoms : 2L Recipe, 2005, p. 2005. Techniques.
- J.C. Taylor, W.R. Harding, C.G.M. Archibald, A Methods Manual for the Collection, Preparation and Analysis of
Diatom Samples, 2007, https:// doi.org/10.2307/2963468.
- H. Van Heurck, Van Heurck, A Treatise on the Diatomaceae, Translated by
W.E. Baxter, Citations - Diatoms of North America, 1896 (1896), https://
diatoms.org/citations/van_heurck_h-1896-a_treatise_on_the_diatomaceae_
translated_by_we_baxter.
(Accessed 18 August 2018).
- R. Simonsen, Patrick Ruth, C.H.W. Reimer, The diatoms of the United States. Vol. I. Mono
graphs of the academy of natural sciences of philadelphia, 13, xi 688 pp., 64 Taf., Philadelphia, Internationale
Revue Der Gesamten Hydrobiologie Und Hydrographie 53 (1966) 166e167, https://doi.org/ 10.1002/iroh.19680530120 (1968).
þ
- X.L. Li, T.K. Marella, L. Tao, L. Peng, C.F. Song, L.L. Dai, A. Tiwari, G. Li, A novel
growth method for diatom algae in aquaculture waste water for natural food development and nutrient removal,
Water Sci. Technol. 75 (2017) 2777e2783, https://doi.org/10.2166/wst.2017.156.
- M. Axelsson, F. Gentili, A single-step method for rapid extraction of total lipids from green microalgae, PloS
One 9 (2014), e89643, https://doi.org/ 10.1371/journal.pone.0089643.
- R. Jambulingam, M. Shalma, V. Shankar, Biodiesel production using lipase immobilised functionalized magnetic
nanocatalyst from oleaginous fungal lipid, J. Clean. Prod. 215 (2019) 245e258, https://doi.org/10.1016/ J.JCLEPRO.2018.12.146.
- L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, Z. Yuan, Nutrient removal and biodiesel production by
integration of freshwater algae culti- vation with piggery wastewater treatment, Water Res. 47 (2013) 4294e4302, https://doi.org/10.1016/J.WATRES.2013.05.004.
- B. Bharathiraja, R. Ranjith Kumar, R. PraveenKumar, M. Chakravarthy,
D. Yogendran, J. Jayamuthunagai, Biodiesel production from different algal oil using immobilized pure lipase and
tailor made rPichia pastoris with Cal A and Cal B genes, Bioresour. Technol. 213 (2016) 69e78, https://doi.org/ 10.1016/J.BIORTECH.2016.02.041.
- A.F. Panichikkal, P. Prakasan, U. Kizhakkepowathial Nair, M. Kulangara Valappil, Optimization of parameters for
the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology, 3 Biotech
8 (2018) 459, https://doi.org/10.1007/s13205-018-1477-7.
- K. Ramluckan, K.G. Moodley, F. Bux, An evaluation of the efficacy of using selected
solvents for the extraction of lipids from algal biomass by the soxhlet extraction method, Fuel 116 (2014)
103e108, https://doi.org/ 10.1016/J.FUEL.2013.07.118.
- C.A.L. Abe, C.B. Faria, F.F. de Castro, S.R. de Souza, F.C. dos Santos, C.N. da Silva,
D.J. Tessmann, I.P. Barbosa-Tessmann, Fungi isolated from maize (Zea mays L.) grains and production of
associated enzyme activities, Int. J. Mol. Sci. 16 (2015) 15328e15346, https://doi.org/10.3390/ijms160715328.
- S. Chinaglia, L.R. Chiarelli, M. Maggi, M. Rodolfi, G. Valentini, A.M. Picco,
Biochemistry of lipolytic enzymes secreted by Penicillium solitum and Cla- dosporium cladosporioides, Biosci.
Biotechnol. Biochem. 78 (2014) 245e254, https://doi.org/10.1080/09168451.2014.882752.
- P. Hong, S. Koza, E.S.P. Bouvier, Size-exclusion chromatography for the analysis of protein biotherapeutics and
their aggregates, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 2923e2950, https://doi.org/10.1080/ 10826076.2012.743724.
- P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol
fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235,
https://doi.org/10.1016/j.jip.2010.06.011.
- W. Sto€cklein, H. Sztajer, U. Menge, R.D. Schmid, Purification and properties of a lipase from Penicillium
expansum, Biochim. Biophys. Acta Lipids Lipid. Metabol. 1168 (1993) 181e189, https://doi.org/10.1016/0005-2760(93) 90123-Q.
- M. Yig itog lu, Z. Temoçin, Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber
and its application for hydrolysis of some vegetable oils, J. Mol. Catal. B Enzym. 66 (2010) 130e135, https:// doi.org/10.1016/J.MOLCATB.2010.04.007.
- C.M. Romero, M.D. Baigori, L.M. Pera, Catalytic properties of mycelium- bound lipases from Aspergillus Niger MYA
135, Appl. Microbiol. Bio- technol. 76 (2007) 861e866, https://doi.org/10.1007/s00253-007-1067-9.
- A. Salihu, M. Zahangir Alam, M. Ismail AbdulKarim, H.M. Salleh, Effect of process parameters on lipase
production by Candida cylindracea in stirred tank bioreactor using renewable palm oil mill effluent based medium,
J. Mol. Catal. B Enzym. 72 (2011) 187e192, https://doi.org/10.1016/
j.molcatb.2011.06.004.
- F.F. de Castro, A.B.P. Pinheiro, C.B. Nassur, I.P. Barbosa-Tessmann, Mycelium- bound
lipase from a locally isolated strain of Aspergillus westerdijkiae,
Biocatal. Agric. Biotechnol. 10 (2017) 321e328, https://doi.org/10.1016/
J.BCAB.2017.04.009.
- M. Essamri, V. Deyris, L. Comeau, Optimization of lipase production by Rhizopus oryzae and study on the
stability of lipase activity in organic sol- vents, J. Biotechnol. 60 (1998) 97e103, https://doi.org/10.1016/S0168- 1656(97)00193-4.
- M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on ac- tivity, stability, and structure of
enzymes: a review, Int. J. Biol. Macromol. 51 (2012) 555e560, https://doi.org/10.1016/J.IJBIOMAC.2012.06.020.
- P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol
fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235,
https://doi.org/10.1016/j.jip.2010.06.011.
- A. Hiol, M.D. Jonzo, N. Rugani, D. Druet, L. Sarda, L.C. Comeau, Purification and
characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit,
Enzym. Microb. Technol. 26 (2000) 421e430, https://doi.org/10.1016/S0141-0229(99)00173-8.
- M. Yu, S. Qin, T. Tan, Purification and characterization of the extracellular lipase Lip2
from Yarrowia lipolytica, Process Biochem. 42 (2007) 384e391, https://doi.org/10.1016/J.PROCBIO.2006.09.019.
- K. Krammer, H. Bertolet, K. Krammer, H. Lange-Bertalot, Bacillariophyceae. 1. Teil: naviculaceae, in: H. Ettl, J. Gerloff,
H. Heynig, D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, 1986. Band 2/1.,
1986.
- J. Pruvost, G. Van Vooren, B. Le Gouic, A. Couzinet-Mossion, J. Legrand, Sys- tematic
investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application,
Bioresour. Technol. 102 (2011) 150e158, https://doi.org/10.1016/J.BIORTECH.2010.06.153.
- C.A. Popovich, M. Pistonesi, P. Hegel, D. Constenla, G.B. Bielsa, L.A. Martín,
M.C. Damiani, P.I. Leonardi, Unconventional alternative biofuels: quality assessment of biodiesel and its blends from
marine diatom Navicula cincta, Algal Res. 39 (2019) 101438, https://doi.org/10.1016/J.ALGAL.2019.101438.
- M.J. Griffiths, R.P. van Hille, S.T.L. Harrison, Lipid productivity, settling po- tential and fatty acid profile
of 11 microalgal species grown under nitrogen replete and limited conditions, J. Appl. Phycol. 24 (2012)
989e1001, https:// doi.org/10.1007/s10811-011-9723-y.
- T.K. Marella, N.R. Parine, A. Tiwari, Potential of diatom consortium developed by nutrient enrichment for
biodiesel production and simultaneous nutrient removal from waste water, Saudi J. Biol. Sci. 25 (2018) 704e709,
https:// doi.org/10.1016/J.SJBS.2017.05.011.
- M.M. Joseph, K.R. Renjith, G. John, S.M. Nair, N. Chandramohanakumar, Biodiesel prospective of five diatom
strains using growth parameters and fatty acid profiles, Biofuels 8 (2017) 81e89, https://doi.org/10.1080/ 17597269.2016.1204585.
- G.B. Bielsa, C.A. Popovich, M.C. Rodríguez, A.M. Martínez, L.A. Martín,
M.C. Matulewicz, P.I. Leonardi, Simultaneous production assessment of tri- acylglycerols for biodiesel and
exopolysaccharides as valuable co-products in Navicula cincta, Algal Res. 15 (2016), https://doi.org/10.1016/ j.algal.2016.01.013.
- G. Saranya, M.D. Subashchandran, P. Mesta, T.V. Ramachandra, Prioritization of
prospective third-generation biofuel diatom strains, Energy, Ecol. Environ. 3 (2018) 338e354, https://doi.org/10.1007/s40974-018-0105-z.
- F. Mus, J.-P. Toussaint, K.E. Cooksey, M.W. Fields, R. Gerlach, B.M. Peyton,
R.P. Carlson, Physiological and Molecular Analysis of Carbon Source Sup- plementation and pH Stress-Induced Lipid
Accumulation in the Marine Diatom Phaeodactylum Tricornutum, 2013, https://doi.org/10.1007/s00253- 013-4747-7.
- G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl
esters, Fuel Process. Technol. 86 (2005) 1059e1070, https://
doi.org/10.1016/J.FUPROC.2004.11.002.
- T.V. Ramachandra, D.M. Mahapatra, K.B., R. Gordon, Milking diatoms for sustainable energy: biochemical
engineering versus gasoline-secreting diatom solar panels, Ind. Eng. Chem. Res. 48 (2009) 8769e8788, https:// doi.org/10.1021/ie900044j.
- D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra, Bioremediation and lipid synthesis through mixotrophic algal
consortia in municipal wastewater, Bioresour. Technol. 168 (2014) 142e150, https://doi.org/10.1016/ j.biortech.2014.03.130.
- C.L. Teo, H. Jamaluddin, N.A.M. Zain, A. Idris, Biodiesel production via lipase catalysed transesterification of
microalgae lipids from Tetraselmis sp, Renew. Energy 68 (2014) 1e5, https://doi.org/10.1016/J.RENENE.2014.01.027.
- X.-Q. Xu, J. Beardall, Effect of salinity on fatty acid composition of a green microalga from an antarctic
hypersaline lake, Phytochemistry 45 (1997) 655e658, https://doi.org/10.1016/S0031-9422(96)00868-0.
- G.G. Satpati, P. Chandra Gorain, I. Paul, R. Pal, An integrated salinity-driven workflow for rapid lipid
enhancement in green microalgae for biodiesel application, RSC Adv. 6 (2016) 112340e112355, https://doi.org/10.1039/ C6RA23933A.
- S. AS, Biodiesel and polyunsaturated fatty acid (PUFA) potential of MicroalgaeBiomass-A short review, Res. Dev.
Mater. Sci. 10 (2019), https:// doi.org/10.31031/rdms.2019.10.000744.
- I.A. Nascimento, S.S.I. Marques, I.T.D. Cabanelas, S.A. Pereira, J.I. Druzian,
C.O. de Souza, D.V. Vich, G.C. de Carvalho, M.A. Nascimento, Screening microalgae strains for biodiesel production:
lipid productivity and estima- tion of fuel quality based on fatty acids profiles as selective criteria, Bio- Energy
Res. 6 (2013) 1e13, https://doi.org/10.1007/s12155-012-9222-2.
- P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug,
C. Posten, O. Kruse, B. Hankamer, Second generation biofuels: high-efficiency microalgae for biodiesel production,
BioEnergy Res. 1 (2008) 20e43, https:// doi.org/10.1007/s12155-008-9008-8.
- T. Veeranan, R. Kasirajaan, B. Gurunathan, R. Sahadevan, A novel approach for extraction of algal oil from
marine macroalgae Ulva fasciata, Renew. Energy 127 (2018) 64e73, https://doi.org/10.1016/J.RENENE.2017.12.071.
- M.A. Njoki, G. Mercy, G. Nyagah, A. Gachanja, Fourier Transform Infrared Spectrophotometric Analysis of
Functional Groups Found in Ricinus Com- munis L. And Cucurbita Maxima Lam. Roots, Stems and Leaves as Heavy Metal Adsorbents, 2016. www.ijset.net.
(Accessed 24 July 2019).
- S. Bargole, S. George, V. Kumar Saharan, Improved rate of transesterification reaction in biodiesel synthesis
using hydrodynamic cavitating devices of high throat perimeter to flow area ratios, Chem. Eng. Proc. - Process
Inten- sification 139 (2019) 1e13, https://doi.org/10.1016/J.CEP.2019.03.012.
- A.Y. Oyerinde, E.I. Bello, E. Lanchares Sancho, Article no.BJAST.22178 re- viewers: (1)
J. Gimbun, original research article oyerinde and bello, BJAST (2016) 1e14, https://doi.org/10.9734/BJAST/2016/22178.
- J.T. Kloprogge, R.D. Schuiling, Z. Ding, L. Hickey, D. Wharton, R.L. Frost, Vibrational
spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuric acid, Vib.
Spectrosc. 28 (2002) 209e221, https://doi.org/10.1016/S0924-2031(01)00139-4.
- A.F. Ferreira, A.P.S. Dias, C.M. Silva, M. Costa, Bio-oil and bio-char charac-
terization from microalgal biomass, V Confer{e^}ncia Nacional de Mec{a^}nica Dos Fluidos, Termodin{^a}mica e
Energia (Fifth National Conference on Fluid Mechanics, Thermodynamics and Energy), 2014, pp. 11e12. http://paginas.
fe.up.pt/~mefte2014/wp-content/uploads/2014/preprint/mefte2014_
submission_45.pdf.
- A. Adenike Evelyn, O. Abiodun Oluwafemi, Spectroscopic analysis of oil extracted from seeds of hildegardia
barteri (Mast.) kosterm, 2018, https:// doi.org/10.4172/2329-6836.1000325.
- R. Tripathi, J. Singh, R. kumar Bharti, I.S. Thakur, Isolation, purification and characterization of lipase from
microbacterium sp. and its application in biodiesel production, Energy Procedia 54 (2014) 518e529, https://doi.org/ 10.1016/J.EGYPRO.2014.07.293.
- A. Guldhe, B. Singh, I. Rawat, K. Permaul, F. Bux, Biocatalytic conversion of lipids from microalgae Scenedesmus
obliquus to biodiesel using Pseudo- monas fluorescens lipase, Fuel 147 (2015) 117e124, https://doi.org/10.1016/ j.fuel.2015.01.049.
- C.G. Lopresto, S. Naccarato, L. Albo, M.G. De Paola, S. Chakraborty, S. Curcio,
V. Calabro , Enzymatic transesterification of waste vegetable oil to produce biodiesel, Ecotoxicol. Environ. Saf. 121
(2015) 229e235, https://doi.org/ 10.1016/J.ECOENV.2015.03.028.
- J.Z. Chen, S. Wang, B. Zhou, L. Dai, D. Liu, W. Du, A robust process for lipase- mediated biodiesel production
from microalgae lipid, RSC Adv. 6 (2016) 48515e48522, https://doi.org/10.1039/C6RA07144A.
- B. Scholz, G. Liebezeit, Biochemical characterisation and fatty acid profiles of 25
benthic marine diatoms isolated from the Soltho€rn tidal flat (southern North Sea), J. Appl. Phycol. 25 (2013)
453e465, https://doi.org/10.1007/ s10811-012-9879-0.
- C. Delgado, I. Pardo, L. García, Diatom communities as indicators of ecological status
in Mediterranean temporary streams (Balearic Islands, Spain), Ecol. Indicat. 15 (2012) 131e139, https://doi.org/10.1016/J.ECOLIND.2011.09.037.
- F. in the T.L.C. and B.C. of D.S. for P.B.P Zhao, J. Liang, Y. Gao, Q. Luo, Y. Yu,
C. Chen, L. Sun, Variations in the total lipid content and biological charac- teristics of diatom species for
potential biodiesel production, Fund. Renew. Energy Appl. 6 (2016) 22e26, https://doi.org/10.4172/20904541.1000201.
- F.J. Fields, J.P. Kociolek, An evolutionary perspective on selecting high-lipid-
content diatoms (Bacillariophyta), J. Appl. Phycol. 27 (2015) 2209e2220, https://doi.org/10.1007/s10811-014-0505-1.
- S. Hausmann, D.F. Charles, J. Gerritsen, T.J. Belton, A diatom-based biological
condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams, Sci. Total
Environ. 562 (2016) 914e927, https:// doi.org/10.1016/j.scitotenv.2016.03.173.
- M.R. De La Pen~a, Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels
of nutrients and light intensity, and different culture locations, Springer Verlag, J. Appl. Phycol. (2007)
647e655, https://doi.org/10.1007/s10811-007-9189-0.
- G. d’Ippolito, A. Sardo, D. Paris, F.M. Vella, M.G. Adelfi, P. Botte, C. Gallo,
A. Fontana, Potential of lipid metabolism in marine diatoms for biofuel production, Biotechnol. Biofuels 8 (2015) 28,
https://doi.org/10.1186/ s13068-015-0212-4.
- J.C. Taylor, J. Prygiel, A. Vosloo, P.A. de la Rey, L. van Rensburg, Can diatom- based pollution indices be used
for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area, Hydro-
biologia 592 (2007) 455e464, https://doi.org/10.1007/s10750-007-0788-1.
- L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, Biodiesel production from algae oil high
in free fatty acids by two-step catalytic conversion, Bioresour. Technol. 111 (2012) 208e214, https://doi.org/10.1016/ J.BIORTECH.2012.02.033.
- J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, Look Back at the U.S. Department of
Energy’s Aquatic Species Program: Biodiesel from Algae, 1998, https://doi.org/10.2172/15003040.
Close-Out Report.
- X. Tan, Q. Zhang, M.A. Burford, F. Sheldon, S.E. Bunn, Benthic diatom based indices for
water quality assessment in two subtropical streams, Front. Microbiol. 8 (2017) 601. https://www.frontiersin.org/article/10.3389/fmicb.
2017.00601.
- X. Tan, X. Xia, Q. Zhao, Q. Zhang, Temporal variations of benthic diatom community and its main influencing
factors in a subtropical river, China, Environ. Sci. Pollut. Control Ser. 21 (2014) 434e444, https://doi.org/10.1007/ s11356-013-1898-0.
- M. Branco-Vieira, S. San Martin, C. Agurto, M. Santos, M. Freitas, T. Mata,
A. Martins, N. Caetano, M. Branco-Vieira, S. San Martin, C. Agurto, M.A. dos Santos, M.A.V. Freitas, T.M. Mata, A.A.
Martins, N.S. Caetano, Potential of phaeodactylum tricornutum for biodiesel production under natural condi- tions in Chile, Energies 11 (2017) 54, https://doi.org/10.3390/en11010054.
- A. Hiol, M.D. Jonzo, D. Druet, L. Comeau, Production, purification and char- acterization of an extracellular
lipase from Mucor hiemalis f. hiemalis, Enzym. Microb. Technol. 25 (1999) 80e87, https://doi.org/10.1016/S0141- 0229(99)00009-5.
- M.D. Jonzo, A. Hiol, D. Druet, L.C. Comeau, Application of immobilized lipase fromCandida rugosa to synthesis of
cholesterol oleate, J. Chem. Technol. Biotechnol. 69 (1997) 463e469, https://doi.org/10.1002/(SICI)1097- 4660(199708)69:4<463::AID-JCTB738>3.0.CO;2-2.
- H. Noureddini, X. Gao, R.S. Philkana, Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from
soybean oil, Bioresour. Technol. 96 (2005) 769e777, https://doi.org/10.1016/j.biortech.2004.05.029.
- S. Shah, S. Sharma, M.N. Gupta, Biodiesel Preparation by Lipase-Catalyzed
Transesterification of Jatropha Oil, 2004, https://doi.org/10.1021/ef030075z.
- K. Nie, F. Xie, F. Wang, T. Tan, Lipase catalyzed methanolysis to produce biodiesel:
optimization of the biodiesel production, J. Mol. Catal. B Enzym. 43 (2006) 142e147, https://doi.org/10.1016/J.MOLCATB.2006.07.016.
- D.T. Tran, C.L. Chen, J.S. Chang, Effect of solvents and oil content on direct
transesterification of wet oil-bearing microalgal biomass of Chlorella vul- garis ESP-31 for biodiesel synthesis
using immobilized lipase as the biocat- alyst, Bioresour. Technol. (2013), https://doi.org/10.1016/ j.biortech.2012.09.101.
- M. Xiao, R. Intan, J.P. Obbard, Biodiesel production from microalgae oil-lipid feedstock via immobilized whole-cell
biocatalysis, in: Proceedings Venice, Third
International Symposium on Energy from Biomass and Waste, Venice, Italy, 2010, pp. 8e11.
Citation :
Saranya G and Ramachandra T V, 2020. Novel biocatalyst for optimal biodiesel production from
diatoms, Renewable Energy, Volume 153, June 2020, Pages 919-934,
https://doi.org/10.1016/j.renene.2020.02.053
|