|
EMERGING ROLE OF GEOGRAPHICAL INFORMATION SYSTEM (GIS), LIFE CYCLE ASSESSMENT (LCA) AND SPATIAL LCA (GIS-LCA) IN SUSTAINABLE BIOENERGY PLANNING |
|
aSchool of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India,
bDepartment of Energy, Tezpur University, Tezpur 784028, Assam, India
cDepartment of Scientific and Industrial Research, Ministry of Science and Technology, Government of India, New Delhi 110016, India
dCentre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
eEnergy and Wetland Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
fDepartment of Biological and Agricultural Engineering, University of California Davis, California 95616, USA
REFERENCES
- Alfonso, D., Perpina, C., Pérez-Navarro, A., Penˇ alvo, E., Vargas, C., Cardenas, R., 2009. Methodology for optimization of distributed biomass resources evaluation, management and final energy use. Biomass Bioenergy 33, 1070–1079.
- Angelis-Dimakis, A., Biberacher, M., Dominguez, J., Fiorese, G., Gadocha, S., Gnansounou, E., et al., 2011. Methods and tools to evaluate the availability of renewable energy sources. Renewable Sustainable Energy Rev. 15, 1182–1200.
- Arodudu, O., Helming, K., Wiggering, H., Voinov, A., 2017. Towards a more holistic sustainability assessment framework for agro-bioenergy systems — a review. Environ. Impact Assess. Rev. 62, 61–75.
- Azapagic, A., Chalabi, Z., Fletcher, T., Grundy, C., Jones, M., Leonardi, G., et al., 2013.
An integrated approach to assessing the environmental and health impacts of pollution in the urban environment: methodology and a case study. Process. Safe. Environ. Prot. 91, 508–520.
- Baan, L.De., Alkemade, R., Koellner, T., 2013. Land use impacts on biodiversity in
LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230.
- Beccali, M., Columba, P., D’Alberti, V., Franzitta, V., 2009. Assessment of bioenergy potential in Sicily: a GIS-based support methodology. Biomass Bioenergy 33,
79–87.
- Bengtsson, M., Carlson, R., Molander, S., Steen, B., 1998. An approach for handling geographical information in life cycle assessment using a relational database. J. Hazard. Mater. 61, 67–75.
- Botha, T., von Blottnitz, H., 2006. A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 34, 2654–2661.
- Butnar, I., Rodrigo, J., Gasol, C.M., Castells, F., 2010. Life-cycle assessment of electricity from biomass: case studies of two biocrops in Spain. Biomass Bioenergy 34, 1780–1788.
- Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S., 2009. Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Rec. 53,
434–447.
- Choudhary, S., Liang, S., Cai, H., Keoleian, G.A., Miller, S.A., Kelly, J., Xu, M., 2014.
Reference and functional unit can change bioenergy pathway choices. Int. J. Life
Cycle Assess. 19, 796–805.
- Contreras, A.M., Rosa, E., Pérez, M., van Langenhove, H., Dewulf, J., 2009.
Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J. Clean. Prod. 17, 772–779.
- Danielsen, F., Beukema, H., Burgess, N.D., Parish, F., Brühl, C.A., Donald, P.F., et al.,
2009. Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv. Biol. 23, 348–358.
- Dresen, B., Jandewerth, M., 2012. Integration of spatial analyses into LCA-calculating
GHG emissions with geoinformation systems. Int. J. Life Cycle Assess. 17, 1094–
1103.
- Ebadian, M., Sowlati, T., Sokhansanj, S., Stumborg, M., Townley-Smith, L., 2011. A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosys. Eng. 110, 280–290.
- Egbendewe-Mondzozo, A., Swinton, S.M., Izaurralde, C.R., Manowitz, D.H., Zhang, X.,
2011. Biomass supply from alternative cellulosic crops and crop residues: a spatially explicit bioeconomic modeling approach. Biomass Bioenergy 35,
4636–4647.
- Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., 2008. Land clearing and the biofuel carbon debt. Science 319, 1235–1238.
- Ferrarini, A., Serra, P., Almagro, M., Trevisan, M., Amaducci, S., 2014. Linking bioenergy and ecological services along field margins: The HEDGE-BIOMASS project. In: 22nd European Biomass Conference and Exhibition, 23–26 June 2014, Hamburg, Germany.
-
Fiedler, P., Lange, M., Schultze, M., 2007. Supply logistics for the industrialized use of biomass – principles and planning approach, LINDI 2007, In: International Symposium on Logistics and Industrial Informatics, 13–15 September, 2007, Wildau, Germany.
- Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80. 185e201.
- Garcia, D.A., Sangiorgio, S., Rosa, F., 2015. Estimating the potential biomasses energy source of forest and agricultural residues in the Cinque Terre Italian National Park. Energy Procedia 82, 674–680.
- Gasol, C.M., Gabarrell, X., Rigola, M., González-García, S., Rieradevall, J., 2011.
Environmental assessment: (LCA) and spatial modelling (GIS) of energy crop implementation on local scale. Biomass Bioenergy 35, 2975–2985.
- Geyer, R., Lindner, J.P., Stoms, D.M., Davis, F.W., Wittstock, B., 2010. Coupling GIS
and LCA for biodiversity assessments of land use Part 1: inventory modeling. Int. J. Life Cycle Assess. 15, 454–467.
- Geyer, R., Stoms, D., Kallaos, J., 2013. Spatially-explicit life cycle assessment of sun- to-wheels transportation pathways in the U.S. Environ. Sci. Technol. 47, 1170–
1176.
- Gibbs, H.K., Johnston, M., Foley, J.A., Holloway, T., Monfreda, C., Ramankutty, N., Zaks, D., 2008. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ. Res. Lett. 3,
034001.
- Gnansounou, E., Vaskan, P., Pachón, E.R., 2015. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresour. Technol. 196, 364–375.
- Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., Meijer, E., 2013. Introduction to LCA
with SimaPro. PRé.
- Gomez, A., Rodrigues, M., Montanes, C., Dopazo, C., Fueyo, N., 2010. The potential for electricity generation from crop and forestry residues in Spain. Biomass Bioenergy 34, 703–719.
- Gorniak-Zimroz, J., Pactwa, K., 2015. The use of spatial data in granite deposit life cycle assessment. Procedia. Earth. Planet. Sc. 15, 474–481.
- Haase, M., Rösch, C., Ketzer, D., 2016. GIS-based assessment of sustainable crop residue potentials in European regions. Biomass Bioenergy 86, 156–171.
- Hellweg, S., Canals, L.M.i., 2014. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113.
- Herr, A., Dunlop, M., 2011. Bioenergy in Australia: an improved approach for
estimating spatial availability of biomass resources in the agricultural production zones. Biomass Bioenergy 35, 2298–2305.
- Hiloidhari, M., Baruah, D.C., 2011. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): investigation of spatial availability. Renewable Sustainble Energy Rev. 15, 1885–1892.
- Hiloidhari, M., Baruah, D., Mahilary, H., Baruah, D.C., 2012. GIS based assessment of rice (Oryza sativa) straw biomass as an alternative fuel for tea (Camellia sinensis L.) drying in Sonitpur district of Assam, India. Biomass Bioenergy 44, 160–167.
- Ho, D.P., Ngo, H.H., Guo, W., 2014. A mini review on renewable sources for biofuel.
Bioresour. Technol. 169, 742–749.
- Höhn, J., Lehtonen, E., Rasi, S., Rintala, J., 2014. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 113, 1–10.
- Hua, M.-C., Huang, A.-L., Wen, T.-H., 2013. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market. Energy 55, 354–360.
- Humpenoder, F., Schaldach, R., Cikovani, Y., Schebek, L., 2013. Effects of land-use change on the carbon balance of 1st generation biofuels: an analysis for the European Union combining spatial modeling and LCA. Biomass Bioenergy 56,
166–178.
The International Renewable Energy Agency (IRENA), 2015. Global bioenergy supply and demand projections.< http://www.irena.org/>.
- Jiang, D., Zhuang, D., Fu, J., Huang, Y., Wen, K., 2012. Bioenergy potential from crop residues in China: availability and distribution. Renewable Sustainble Energy Rev. 16, 1377–1382.
- Kaundinya, D.P., Balachandra, P., Ravindranath, N.H., Ashok, V., 2013. A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: a case study of Tumkur district, India. Energy 52, 77–88.
- Kimming, M., Sundberg, C., Nordberg, Å., Baky, A., Bernesson, S., Norén, O., et al.,
2011. Biomass from agriculture in small-scale combined heat and power plants
– a comparative life cycle assessment. Biomass Bioenergy 35, 1572–1581. Kurka, T., Jefferies, C., Blackwood, D., 2012. GIS-based location suitability of
decentralized, medium scale bioenergy developments to estimate transport CO2
emissions and costs. Biomass Bioenergy 46, 366–379.
- Kuzevicˇová, Zˇ ., Gergel’ová, M., Našcˇáková, J., Kuzevicˇ , Š., 2013. Proposal of methodology for determining of potential residual biomass for agriculture
and forestry in Slovak republic. Acta. Montan. Slovaca. 18, 9–16.
- Lapola, D.M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., et al., 2010.
Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. 107, 3388–3393.
- Lin, T., Rodríguez, L.F., Shastri, Y.N., Hansen, A.C., Ting, K.C., 2013. GIS-enabled
biomass-ethanol supply chain optimization: model development and
Miscanthus application. Biofuels, Bioprod. Biorefin. 7, 314–333.
- Liska, A.J., Yang, H., Milner, M., Goddard, S., Blanco-Canqui, H., Pelton, M.P., 2014.
Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat. Clim. Change. 4, 398–401.
- Long, H., Li, X., Wang, H., Jia, J., 2013. Biomass resources and their bioenergy potential estimation: a review. Renewable Sustainble Energy Rev.
26, 344–35
- Lourinho, G., Brito, P., 2015. Assessment of biomass energy potential in a region of
Portugal (Alto Alentejo). Energy 81, 189–201.
- Mafakheri, F., Nasiri, F., 2014. Modeling of biomass-to-energy supply chain operations: applications, challenges and research directions. Energy Policy 67,
116–126.
- Malico, I., Carrajola, J., Gomes, C.P., Lima, J.C., 2016. Biomass residues for energy production and habitat preservation. Case study in a montado area in Southwestern Europe. J. Clean. Prod. 112, 3676–3683.
Messineo, A., Volpe, R., Marvuglia, A., 2012. Ligno-cellulosic biomass exploitation for power generation: a case study in Sicily. Energy 45, 613–625.
- Monforti, F., Bódis, K., Scarlat, N., Dallemand, J.F., 2013. The possible contribution of agricultural crop residues to renewable energy targets in Europe: a spatially explicit study. Renewable Sustainble Energy Rev. 19, 666–677.
Muench, S., 2015. Greenhouse gas mitigation potential of electricity from biomass. J.
Clean. Prod. 103, 483–490.
- Muench, S., Guenther, E., 2013. A systematic review of bioenergy life cycle assessments. Appl. Energy 112, 257–273.
Mutel, C.L., Pfister, S., Hellweg, S., 2012. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ. Sci. Technol. 46, 1096–1103.
- Nguyen, T.L.T., Hermansen, J.E., Mogensen, L., 2013. Environmental performance of crop residues as an energy source for electricity production: the case of wheat straw in Denmark. Appl. Energy 104, 633–641.
- Perpina, C., Alfonso, D., Pe’rez-Navarro, A., Penalvo, E., Vargas, C., Cardenas, R., 2009.
Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy 34, 555–565.
- Plevin, R.J., Delucchi, M.A., Creutzig, F., 2014. Using attributional life cycle
assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83.
- Ramachandra, T.V., Krishna, S.V., Shruthi, B.V., 2005. Decision support system to
assess regional biomass energy potential. Int. J. Green Energy 1, 407–428. Ramjeawon, T., 2008. Life cycle assessment of electricity generation from bagasse in
- Mauritius. J. Clean. Prod. 16, 1727–1734.
Rathore, D., Pant, D., Singh, A., 2013. A comparison of life cycle assessment studies of different biofuels. In: Singh, A., Pant, D., Olsen, S.I. (Eds.), Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology Series. Springer-Verlag, London.
- Reap, J., Roman, F., Duncan, S., Bras, B., 2008. A survey of unresolved problems in life cycle assessment part 1: goal and scope and inventory analysis. Int. J. Life Cycle Assess. 13, 290–300.
- Roostaei, J., Zhang, Y., 2016. Spatially explicit life cycle assessment: opportunities and challenges of wastewater-based algal biofuels in the United States. Algal. Res. 10.1016/j.algal.2016.08.008.
- Sacchelli, S., Meob, I.D., Palett, A., 2013. Bioenergy production and forest multifunctionality: a trade-off analysis using multiscale GIS model in a case study in Italy. Appl. Energy 104, 10–20.
- Sanscartier, D., Dias, G., Deen, B., Dadfar, H., McDonald, I., MacLean, H.L., 2014. Life cycle greenhouse gas emissions of electricity generation from corn cobs in Ontario, Canada. Biofuels. Bioprod. Biorefin. 8, 568–578.
- Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., et al.,
2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240.
- Sebastián, F., Royo, J., Gómez, M., 2011. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy 36, 2029–2037.
- Shafie, S.M., Masjuki, H.H., Mahlia, T.M.I., 2014. Life cycle assessment of rice straw- based power generation in Malaysia. Energy 70, 401–410.
- Shi, X., Elmore, A., Li, X., Gorence, N.J., Jin, H., Zhang, X., et al., 2008. Using spatial
information technologies to select sites for biomass power plants: a case study in Guangdong Province, China. Biomass Bioenergy 32, 35–43.
Silalertruksa, T., Gheewala, S.H., 2013. A comparative LCA of rice straw utilization
for fuels and fertilizer in Thailand. Bioresour. Technol. 50, 412–419.
- Singh, A., Olsen, S.I., 2012. Key issues in life cycle assessment of biofuels. In: Gopalakrishnan, K. et al. (Eds.), Sustainable Bioenergy and Bioproducts, Green Energy and Technology. Springer-Verlag, London Limited. http://dx.doi.org/
10.1007/978-1-4471-2324-8_11.
- Singh, A., Nizami, A., Korres, N.E., Murphy, J.D., 2011. The effect of reactor design on the sustainability of grass biomethane. Renewable Sustainble Energy Rev. 15,
1567–1574.
- Singh, J., Panesar, B.S., Sharma, S.K., 2011. Geographical distribution of agricultural residues and optimum sites of biomass based power plant in Bathinda, Punjab. Biomass Bioenergy 35, 4455–4460.
- Singh, A., Olsen, S.I., Pant, D., 2013. Importance of life cycle assessment of renewable
energy sources. In: Singh, A. et al. (Eds.), Life Cycle Assessment of Renewable Energy Sources, Green Energy and Technology. Springer-Verlag, London. http:// dx.doi.org/10.1007/978-1-4471-5364-1_1.
- Soam, S., Borjesson, P., Sharma, P.K., Gupta, R.P., Tuli, D.K., Kumar, R., 2017. Life cycle assessment of rice straw utilization practices in India. Bioresour. Technol. 228,
89–98.
- Stephen, J.D., Sokhansanj, S., Bi, X., Sowlati, T., Kloeck, T., Townley-Smith, L., et al.,
2010. Analysis of biomass feedstock availability and variability for the Peace
River region of Alberta, Canada. Biosys. Eng. 105, 103–111.
- Sultana, A., Kumar, A., 2012. Optimal siting and size of bioenergy facilities using geographic information system. Appl. Energy 94, 192–201.
Tiba, C., Candeias, A.L.B., Fraidenraich, N., de Barbosa, E.M.S., Neto, P.B., de, C., Filho,
- J.B., de, M., 2010. A GIS-based decision support tool for renewable energy
management and planning in semi-arid rural environments of northeast of
Brazil. Renewable Energy 35, 2921–2932.
- Tilman, D., Socolow, R., Foley, J.A., Hill, J., Larson, E., Lynd, L., et al., 2009. Beneficial biofuels-The food, energy, and environment trilemma. Science 325,
270–271.
- Tonini, D., Hamelin, L., Alvarado-Morales, M., Astrup, T.F., 2016. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Bioresour. Technol. 208,
123–133.
- Tsiropoulos, I., Faaij, A.P.C., Seabra, J.E.A., Lundquist, L., Schenker, U., Briois, J.-F., Patel, M.K., 2014. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int. J. Life Cycle Assess. 19, 1049–1067.
World Bioenergy Association, 2015. World Bioenergy Statistics 2015. <http://
www.worldbioenergy.org>. (accessed 10.10.15).
- Yu, H., Wang, Q., Ileleji, K.E., Yu, C., Luo, Z., Cen, K., et al., 2012. Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 1: straight-line delivery. Biomass Bioenergy 46, 773–784.
- Yue, C., Wang, S., 2006. GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy
34, 730–742.
- Zubaryeva, A., Zaccarelli, N., Giudice, C.D., Zurlini, G., 2012. Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study. Renewable Energy 39, 261–
270.
|
|
Citation : Moonmoon Hiloidhari, D.C. Baruah, Anoop Singh, Sampriti Kataki, Kristina Medhi, Shilpi Kumari, T.V. Ramachandra, B.M. Jenkins, Indu Shekhar Thakur, (2017). Emerging role of Geographical Information System (GIS), Life Cycle
Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari et al. / Bioresource Technology, 2017, PP: 1–9, http://dx.doi.org/10.1016/j.biortech.2017.03.079.
|