References

  1. Achat, D.L., Fortin, M., Landmann, G., Ringeval, B., & Augusto, L., (2015). Forest soil carbon is threatened by intensive biomass harvesting. Scientific reports, 5, 15991. https://doi.org/10.1038/srep15991
  2. Agrawal, A., Nepstad, D., & Chhatre, A., (2011). Reducing emissions from deforestation and forest degradation. Annual Review of Environment and Resources, 36, 373-396. https://doi.org/10.1146/annurev-environ-042009-094508
  3. Alkama, R., & Cescatti, A., (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604. https://doi.org/10.1126/science.aac8083
  4. Armenteras, D., Murcia, U., González, T.M., Barón, O.J., & Arias, J.E., (2019). Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecology and Conservation, 17, e00567. https://doi.org/10.1016/j.gecco.2019.e00567
  5. Arsanjani, J.J., Helbich, M., Kainz, W., & Boloorani, A.D., (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275. https://doi.org/10.1016/j.jag.2011.12.014
  6. Atkinson, G., & Gundimeda, H., (2006). Accounting for India's forest wealth. Ecological Economics, 59(4), 462-476. https://doi.org/10.1016/j.ecolecon.2005.10.022
  7. Bala, G., Caldeira, K., Wickett, M., Phillips, T.J., Lobell, D.B., Delire, C., & Mirin, A., (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550-6555. https://doi.org/10.1073/pnas.0608998104
  8. Bellassen, V. and Luyssaert, S., 2014. Carbon sequestration: Managing forests in uncertain times. Nature News, 506(7487), 153-155. https://doi.org/10.1038/506153a
  9. Bharath, S., Rajan, K.S., & Ramachandra, T.V., (2014). Status and future transition of rapid urbanizing landscape in central Western Ghats - CA based approach. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2(8), 69–75. https://doi.org/10.5194/isprsannals-II-8-69-2014
  10. Bonan, G.B., (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449. http://doi.org/10.1126/science.1155121
  11. Canziani, P.O., & Gerardo, C.B., (2012). Climate impacts of deforestation/land-use changes in central South America in the PRECIS Regional Climate Model: mean precipitation and temperature response to present and future deforestation scenarios. The Scientific World Journal, 2012, 1-20. https://doi.org/10.1100/2012/972672
  12. Chandran, M.D.S., Rao, G.R., Gururaja, K.V., & Ramachandra, T.V., (2010). Ecology of the swampy relic forests of Kathalekan from Central Western Ghats, India. Bioremediation, Biodiversity and Bioavailability, 4(1), 54-68.
  13. Damandeep, S., (2017). Putting a Price on Carbon: A Handbook for Indian Companies. TERI, New Delhi: TERI Press.
  14. Debortoli, N.S., Dubreuil, V., Hirota, M., Filho, S.R., Lindoso, D.P., & Nabucet, J., (2017). Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. International Journal of Climatology, 37(6), 2889-2900. https://doi.org/10.1002/joc.4886
  15. Do, T.V., Trung, P.D., Yamamoto, M., Kozan, O., Thang, N.T., Thuyet, D.V., et al. (2018). Aboveground biomass increment and stand dynamics in tropical evergreen broadleaved forest. Journal of Sustainable Forestry, 37(1), 1-14. https://doi.org/10.1080/10549811.2017.1375959
  16. Fu, X., Wang, X., &Yang, Y.J., (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of environmental management, 206, 10-19. http://doi.org/10.1016/j.jenvman.2017.10.012
  17. Gallaun, H., Zanchi, G., Nabuurs, G.J., Hengeveld, G., Schardt, M., & Verkerk, P.J., (2010). EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management, 260(3), 252-261. https://doi.org/10.1016/j.foreco.2009.10.011
  18. Garg, A., Shukla, P.R., Kankal, B. & Mahapatra, D., (2017). CO2 emission in India: trends and management at sectoral, sub-regional and plant levels. Carbon Management, 8(2), pp.111-123. https://doi.org/10.1080/17583004.2017.1306406
  19. Ghazoul, J., Butler, R.A., Mateo-Vega, J., & Koh, L.P., (2010). REDD: a reckoning of environment and development implications. Trends in ecology & evolution, 25(7), pp.396-402. http://doi.org/ 10.1016/j.tree.2010.03.005
  20. Guthrie, G., & Kumareswaran, D., (2009). Carbon subsidies, taxes and optimal forest management. Environmental and Resource Economics, 43(2), 275-293. https://doi.org/10.1007/s10640-008-9238-4
  21. Humphreys, D., (2008). The politics of Avoided Deforestation: Historical context and contemporary issues. International Forestry Review, 10(3), 433-442. https://doi.org/10.1505/ifor.10.3.433
  22. IMD., (2018). Indian Meterological Department, Hydrometerological Services, Minist. Earth Sci. Gov. India. http://www.imd.gov.in/pages/services_hydromet.php. Accessed 15 March 2019.
  23. KSNDMC., (2018). Karnataka State Natural Disaster Monitoring Centre, Gov. Karnataka. http://dmc.kar.nic.in/default.asp. Accessed 13 February 2019.
  24. Lal, R., (2005). Forest soils and carbon sequestration. Forest ecology and management, 220(1-3), 242-258. https://doi.org/10.1016/j.foreco.2005.08.015
  25. Lal, R., Negassa, W., & Lorenz, K., (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79-86. https://doi.org/10.1016/j.cosust.2015.09.002
  26. Lawrence, D., & Vandecar, K., (2015). Effects of tropical deforestation on climate and agriculture. Nature climate change, 5(1), 27-36. https://doi.org/10.1038/nclimate2430
  27. Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al. (2018). Global carbon budget 2018. Earth System Science Data (Online)10(4). https://doi.org/10.5194/essd-10-2141-2018
  28. Levy, P.E., Cannell, M.G.R., & Friend, A.D., (2004). Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change, 14(1), 21-30. https://doi.org/10.1016/j.gloenvcha.2003.10.005
  29. Lillesand, T.M., Kiefer, R.W., & Chipman, J.W., (2014). Remote sensing and image interpretation. New York: John Wiley & Sons.
  30. Malhi, Y., Aragão, L.E., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., et al. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106(49), 20610-20615. https://doi.org/10.1073/pnas.0804619106
  31. McGarvey, J.C., Thompson, J.R., Epstein, H.E., & Shugart Jr, H.H., (2015). Carbon storage in old‐growth forests of the Mid‐Atlantic: toward better understanding the eastern forest carbon sink. Ecology, 96(2), 311-317. https://doi.org/10.1890/14-1154.1
  32. NCAR., (2019). Climate Data Guide. https://climatedataguide.ucar.edu/data-type/gridded-obs. Accessed 12 January 2019.
  33. Nogueira, E.M., Yanai, A.M., de Vasconcelos, S.S., de Alencastro Graça, P.M.L., & Fearnside, P.M., (2018). Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Regional environmental change, 18(1), 261-270. https://doi.org/10.1007/s10113-017-1198-1
  34. Nogueira, E.M., Yanai, A.M., Fonseca, F.O., & Fearnside, P.M., (2015). Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global change biology, 21(3), 1271-1292. http://doi.org/10.1111/gcb.12798
  35. Pachauri, R.K., & Reisinger. A., (2007). Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland: IPCC.
  36. Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609.
  37. Pandey, R., Rawat, G.S., & Kishwan, J., (2011). Changes in Distribution of Carbon in Various Forest Types of India from 1995-2005 Changements dans la Distribution du Carbone dans Différents Types de Forêts en Inde. Silva Lusit, 19(1),41–54
  38. Rai, S.N., & Proctor, J., (1986). Ecological studies on four rainforests in Karnataka, India: I. Environment, structure, floristics and biomass. The Journal of Ecology, 74(2), 439-454. https://doi.org/10.2307/2260266
  39. Ramachandra, T.V., & Bharath, S., (2018). Geoinformatics based Valuation of Forest Landscape Dynamics in Central Western Ghats, India. J Remote Sensing & GIS, 7(1), 227-236. https://doi.org/10.4172/2469-4134.1000227
  40. Ramachandra, T.V., Aithal, B.H., & Sreejith, K., (2015). GHG footprint of major cities in India. Renewable and Sustainable Energy Reviews, 44, 473-495. https://doi.org/10.1016/j.rser.2014.12.036
  41. Ramachandra, T.V., & Bharath, S., (2019). Global Warming Mitigation Through Carbon Sequestrations in the Central Western Ghats. Remote Sensing in Earth Systems Sciences, 2(1), 39-63. https://doi.org/10.1007/s41976-019-0010-z
  42. Ramachandra, T.V., Bharath, S., & Gupta, N., (2018). Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. Journal of environmental management, 206, 1253-1262. https://doi.org/10.1016/j.jenvman.2017.08.001
  43. Ramachandra, T.V., Hegde, G., Setturu, B., & Krishnadas, G., (2014). Bioenergy: A sustainable energy option for rural India. Advances in Forestry Letters (AFL), 3(1), 1-15.
  44. Ramachandra, T.V., Joshi, N.V., & Subramanian, D.K., (2000a). Present and prospective role of bioenergy in regional energy system. Renewable and sustainable energy reviews, 4(4), 375-430. https://doi.org/10.1016/S1364-0321(00)00002-2
  45. Ramachandra, T.V., Subramanian, D.K., Joshi, N.V., Gunaga, S.V., & Harikantra, R.B., (2000b). Domestic energy consumption patterns in Uttara Kannada district, Karnataka state, India. Energy Conversion and Management, 41(8), 775-831. https://doi.org/10.1016/S0196-8904(99)00151-X
  46. Ramachandra, T.V., Bharath, S., & Chandran, M.D.S., (2016). Geospatial analysis of forest fragmentation in Uttara Kannada District, India. Forest Ecosystems, 3(1), 10-25. https://doi.org/10.1186/s40663-016-0069-4
  47. Ramachandra, T.V., Chandran, M.D.S., Harish BR, et al. (2010). Biodiversity, Ecology and Socio Economic Aspects of Gundia River Basin in the Context of Proposed Mega Hydro Electric Power Project, CES Technical Report 122, Bengaluru: IISc.
  48. Rao, G.R., Krishnakumar, G., Dudani, S.N., Chandran, M.D.S. & Ramachandra, T.V., (2013). Vegetation changes along altitudinal gradients in human disturbed forests of Uttara Kannada, Central Western Ghats. Journal of Biodiversity, 4(2), 61-68.
  49. Ravindranath, N.H., & Ostwald, M., (2008). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects (Vol. 29). Springer Science & Business Media.
  50. Ravindranath, N.H., Somashekhar, B.S., & Gadgil, M., (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297-320. https://doi.org/10.1023/A:1005303405404
  51. Ricke, K., Drouet, L., Caldeira, K., & Tavoni, M., (2018). Country-level social cost of carbon. Nature Climate Change, 8(10), 895-900. https://doi.org/10.1038/s41558-018-0282-y
  52. Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H.J., Fransson, J.E., Hoscilo, A., et al. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53-68. https://doi.org/10.1016/j.jag.2018.12.008
  53. Schulp, C.J., Nabuurs, G.J., & Verburg, P.H., (2008). Future carbon sequestration in Europe—effects of land use change. Agriculture, Ecosystems & Environment, 127(3-4), 251-264. https://doi.org/10.1016/j.agee.2008.04.010
  54. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S.D., Murray-Tortarolo, G., Ahlström, A., et al. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12(3), 653-679. https://doi.org/10.5194/bg-12-653-2015
  55. Swamy, H.R., 1992. Organic productivity, nutrient cycling and small watershed hydrology of natural forests and monoculture plantations in Chikmagalur District, Karnataka (No. CONF-9102202-), New York: John Wiley and Sons, Inc.
  56. Syktus, J.I., & McAlpine, C.A., (2016). More than carbon sequestration: biophysical climate benefits of restored savanna woodlands. Scientific reports, 6, 29194. https://doi.org/10.1038/srep29194
  57. THRG., (2019). Terrestrial Hydrology Research Group, Global Meteorological Forcing Dataset for land surface modeling, Princeton University.
  58. Vinay, S., Bharath, S., Bharath, H.A., & Ramachandra, T.V., (2013). Hydrologic model with landscape dynamics for drought monitoring. In proceeding of: Joint International Workshop of ISPRS WG VIII/1 and WG IV/4 on Geospatial Data for Disaster and Risk Reduction, Hyderabad, November (pp. 21-22), India.
  59. WRI., (2014). Climate analysis indicators tool: WRI’s climate data explorer. World Resources Institute, Washington, DC.
  60. Zaehle, S., Bondeau, A., Carter, T.R., Cramer, W., Erhard, M., Prentice, I.C., et al. (2007). Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems, 10(3), 380-401. https://doi.org/10.1007/s10021-007-9028-9
  61. Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X. and Liu, Y., 2018. Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Global ecology and conservation, 16, e00501. https://doi.org/10.1016/j.gecco.2018.e00501