http://www.iisc.ernet.in/
Modelling urban dynamics in rapidly urbanising Indian cities

a Energy & Wetlands Research Group, Center for Ecological Sciences [CES], Indian Institute of Science, Bangalore, Karnataka 560 012, India
b Centre for Sustainable Technologies (astra), Indian Institute of Science, Bangalore, Karnataka 560 012, India
c Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore, Karnataka 560 012, India
d RCGSIDM, IIT Kharagpur, Kharagpur 721302, India

http://wgbis.ces.iisc.ernet.in/energy/

References

  1. Adhvaryu, B., 2011. The Ahmadabad urban development plan-making process: A critical review. Plann. Pract. Res. 26 (2), 229–250.

  2. Alberti, M., Waddell, P., 2000. An integrated urban development and ecological simulation model. Integr. Assess. 1 (3), 213–227.

  3. Allen, P.M., 1997. Cities and Regions as Self-Organizing Systems: Models ofComplexity. Gordon and Breach, Amsterdam .

  4. Arsanjani, J.J., Helbich, M., Kainz, W., Darvishi Boloorani, A., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 21, 265–275.

  5. Banks, J., Carson, B.L., Nelson, D., 2004. Nicol Discrete-Event System Simulation,forth ed. Prentice-Hall.

  6. Batty, M., 2001. Editorial: agent-based pedestrian modelling. Environ. Plann. B 28 (3), 321–326.

  7. Batty, M., 2007. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-based Models, and Fractals. The MIT Press.

  8. Batty, M., Xie, Y., Sun, Z., 1999. Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban Syst. 23 (3), 205–233.

  9. Bharath, H.A., Bharath, S., Sannadurgappa, D., Ramachandra, T. V., 2012. Effectiveness of landscape Spatial Metrics with reference to the Spatial Resolutions of Remote Sensing Data, Proceedings of India Conference on Geospatial Technologies & Applications 2012, IIT Bombay, Mumbai, India, 12–14 April, 2012.

  10. Bharath, H.A., Vinay, S., Ramachandra, T.V., 2013. Prediction of Land use dynamics in the rapidly urbanising landscape using land change modeller In proceedingsof Fourth International Joint Conference on Advances in Engineering and Technology, AET 2013, December 13–14, NCR Delhi, India.

  11. Bharath, H. A., Vinay, S., Ramachandra, T.V., 2014. Landscape dynamics modelling through integrated Markov, Fuzzy-AHP and Cellular Automata, in the proceeding of International Geoscience and Remote Sensing Symposium (IEEE IGARSS 2014), July 13th – July 19th 2014, Quebec City convention centre, Quebec, Canada. Available at http://www.igarss2014.org/Papers/ViewPapers_MS.asp?PaperNum=1010.

  12. Bhatta, B., 2009a. Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. Int. J. Remote Sens. 30 (18), 4733–4746.

  13. Bhatta, B., 2009b. Modeling of urban growth boundary using geoinformatics. Int. J. Digital Earth 2 (4), 359–381.

  14. Bhatta, B., 2010. Analysis of Urban Growth and Sprawl From Remote Sensing Data. Springer-Verlag, Berlin, Heidelberg.

  15. Campbell, J.B., 2002. Introduction to Remote Sensing. Taylor & Francis, London, UK, p. 605.

  16. Castella, J.-C., Verburg, P.H., 2007. Combination of process-oriented and patternoriented models of land-use change in a mountain area of Vietnam. Ecol. Model. 202, 410–420.

  17. handan, M.C., Bharath, H.A., Ramachandra, T.V., 2014. Quantifying urbanisation using geospatial data and spatial metrics-a case study of madras, In proceedings of Lake 2014: Conference on Conservation and Sustainable Management of Wetland Ecosystems in Western Ghats, 13th–15th Nov., Uttara Kannada, India.

  18. Chang, N.B., Parvathinathan, G., Breeden, J.B., 2008. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manage. 87 (1), 139–153.

  19. Chen, Y., Yu, J., Khan, S., 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 25 (12), 1582–1591. Cheng, J., Masser, I., 2003. Urban growth pattern modelling: a case study of Wuhan City, PR China”. Landscape Urban Plan. 62, 199–217.

  20. Clarke, K.C., Hoppen, S., Gaydos, L., 1997. A self-modifying cellular automation model of historical urbanization in the San Francisco Bay area. Environ. Plann. B Plann. Des. 24 (2), 247–261 .

  21. de Quadros, T.F., Koppe, J.C., Strieder, A.J., Costa, J.F., 2006. Mineral-potential mapping: a comparison of weights-of-evidence and fuzzy methods. Nat. Resour. Res. 15 (1), 49–65.

  22. Dubois, D., Esteva, F., Godo, L., Prade, H., 2007. Fuzzy-set based logics—an history oriented presentation of their main developments. In: Gabbay, D.M., Woods, J. (Eds.), Handbook of the History of Logic. Elsevier, pp. 325–449 .

  23. Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification. A Wiley-Interscience Publication, second ed., ISBN 9814-12-602-0.

  24. Eastman, J.R., 2009. Idrisi Taiga. Clark University, Worcester, MA. Elaalem, M., 2013. A comparison of parametric and Fuzzy Multi-criteria methods for evaluating land suitability for Olive in Jeffara Plain of Libya. APCBEE Proc. 5, 405–409.

  25. Elaalem, M., Comber, A., Fisher, P., 2010. Land evaluation techniques comparing Fuzzy AHP with TOPSIS methods. In: Proceedings of 13th AGILE international conference on geographic information science guimaraes, Portugal, pp. 1–8.

  26. EPA, 2000. Projecting land-use change: a summary of models for assessing the effects of community growth and change on land-use patterns. EPA/600/R-00/098, Office of Research and Development, Washington DC, USA.Fujita, M., Kashiwadani, M., 1989. Testing the efficiency of urban spatial growth: acase study of Tokyo. J. Urban Econ. 25 (2), 156–192..

  27. Guan, Q.L.W., Clarke, K.C., 2005. An artificial-neural-network-based, constrained CA model for Si-mulating urban growth. Cartography Geograph. Inf. Sci. 32 (4), 369–380..

  28. Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., Hokao, K., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 222 (20), 3761–3772..

  29. Han, J., Chi, K., Yeon, Y., 2005. Land cover classification of IKONOS multispectral satellite data: neuro-fuzzy, Neural network and maximum likelihood methods. In: Slezak, D., et al., (Eds.), Proc. 10th International Conference of Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, 31 August–3 September, pp. 251–262..

  30. Huang, J., Lu, X., Sellers, J., 2007. A Global comparative analysis of urban form:applying spatial metrics and remote sensing. Landscape Urban Plann. 82 (4),184–197..

  31. Janssen, J.A.E.B., Krol, M.S., Schielen, R.M.J., Hoekstra, A.Y., 2010. The effect of modelling expert knowledge and uncertainty on multicriteria decision making: A river management case study. Environ. Sci. Policy 13 (3), 229–238..

  32. Jokar, A.J., Kainz, W., Mousivand, A., 2011. Tracking dynamic land use change using spatially explicit Markov chain based on cellular automata – the case of Tehran. Int. J. Image Data Fusion 2 (4)..

  33. Keshavarzi, A., Heidari, A., 2010. Land suitability evaluation using Fuzzy continuous classification (a case study: Ziaran region). Modern Appl. Sci. 4 (7), 72–82..

  34. Lambin, E.F., Geist, H.J., Lepers, E., 2003. Dynamics of land-use and land-cover changes in tropical regions. Ann. Rev. Environ. Resour. 28, 205–241..

  35. Le, Q.B., Park, S.J., Vlek, P.L.G., Cremers, A.B., 2008. Land-use dynamic simulato (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human landscape system. I. Structure and theoretical specification. Ecol. Inf. 3, 135–153..

  36. Leao, S., Bishop, I., Evans, D., 2004. Simulating urban growth in a developing nation’s region using a cellular automata-based model. J. Urban Plann. Dev. 3 (145), 145–158.

  37. Lillesand, T.M., Kiefer, R.W., 2005. Remote Sensing and Image Interpretation, fifthed. John Wiley and Sons. ISBN 9971-51-427-3..

  38. Liu Y., 2009. Modelling urban development with geographical information systems and cellular automata..

  39. Mandelas, E.A., Hatzichristos, T., Prastacos, P., 2007. A fuzzy cellular automata based shell for modeling urban growth – a pilot application in Mesogia area. In 10th AGILE International Conference on Geographic Information Science, Aalborg University, Denmark, pp. 1–9..

  40. Mantelas, L., Hatzichristos, T., Prastacos, P., 2008. Modeling urban growth using fuzzy cellular automata. In 11th AGILE International Conference on Geographic Information Science, Girona, Spain. MOUD. 2011. .

  41. Urban development management for the formulation of the twelft five year plan (2012–2017): Report of the working group on capacity building for the twelfth plan. New Delhi..

  42. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003. Multiagent systems for the simulation of land-use and land-cover change: a review. Ann. Assoc. Am. Geogr. 93, 314–337..

  43. Pontius Jr., R.G., Malanson, J., 2005. Comparison of the structure and accuracy of two land change models. Int. J. Geog. Inf. Sci. 19, 243–265..

  44. Pradhan, B., Pirasteh, P., 2010. Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv. 3 (2), 26–34..

  45. Ramachandra, T.V., Aithal, Bharath H., Sanna, Durgappa D., 2012. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs.Geoinf. 18, 329–343..

  46. Ramachandra, T.V., Bharath, H. A., Vinay, S., Joshi, N.V., Kumar, U., Venugopal, R.K., 2013. Modelling Urban Revolution in Greater Bangalore, India, 30th Annual InHouse Symposium on Space Science and Technology, ISRO-IISc Space Technology Cell, Indian Institute of Science, Bangalore, 7–8 November 2013.

  47. Ramachandra, T.V., Bharath, H.A., Sowmyashree, M.V., 2014a. Urban footprint of Mumbai – the commercial capital of India. Journal of Urban and Regional Analysis 6 (1), 71–94.

  48. Ramachandra, T.V., Bharath, H.A., Sowmyashree, M.V., 2014b. Urban structure in Kolkata: metrics and modeling through Geo-informatics. Appl. Geomatics 6 (4), 229–244.

  49. Ramachandra, T.V., Bharath, H.A., Barik, B., 2014c. Urbanisation pattern of incipient mega region in India, Tema. J. Land Use Mobility Environ. 7 (1), 83–100.

  50. Ramachandra, T.V., Bharath, H.A., Sowmyashree, M.V., 2014d. Urban footprint of Mumbai – The commercial capital of India. J. Urban Reg. Anal. 6 (1), 71–94.

  51. Ramachandra, T.V., Bharath, H.A., Sowmyashree, M.V., 2015. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manage. 148, 67–91.

  52. Robinson, D.T., Brown, D.G., Parker, D.C., Schreinemachers, P., Janssen, M.A., Huigen, M., Wittmer, H., Gotts, N., Promburom, P., Irwin, E., Berger, T., Gatzweiler, F., Barnaud, C., 2007. Comparison of empirical methods for building agent-based models in land use science. J. Land Use Sci. 2, 31–55.

  53. Santé, I., García, A.M., Miranda, D., Crecente, R., 2010. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape Urban Plann. 96, 108–122.

  54. Sivaramakrishnan, K.C., Kundu, A., Singh, B.N., 2005. Handbook of Urbanization in India. Oxford University Press, New Delhi, India.

  55. Sudhira, H.S., Ramachandra, T.V., Raj, K.S., Jagadish, K.S., 2003. Urban growth analysis using spatial and temporal data, photonirvachak. J. Indian Soc. Remote Sens. 31 (4), 299–311.

  56. Sudhira, H.S., Ramachandra, T.V., Jagadish, K.S., 2004. Urban sprawl: metrics, dynamics and modelling using GIS”. Int. J. Appl. Earth Obs. Geoinf. 5 (1), 29–39.

  57. Sudhira H. S., Ramachandra T. V., Subrahmanya, M. H., Bala, 2007. Urban Sprawl Management: Need for an Integrated Spatial Planning Support System, Technical Report: 119, Centre for Ecological science, Indian Institute of science, Bangalore.

  58. Tayyebi, A., Pijanowski, B.C., Pekin, B., 2011. Two rule-based urban growth boundary models applied to the Tehran metropolitan area, Iran. Appl. Geogr.31 (3), 908–918.

  59. Thapa, R.B., Murayama, Y., 2008. Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques:a case study of Hanoi. Land Use Policy 25 (2), 225–239.

  60. Torrens, P. M., 2000. How cellular models of urban systems work, Centre for Advanced Spatial Analysis, University College London, Working Paper Series, Paper 28.

  61. Veldkamp, A., Verburg, P.H., 2004. Modelling land use change and environmental impact: editorial. J. Environ. Manage. 72, 1–3.

  62. Verburg, P., Kok, K., Veldkamp, T., 2005. Pixels or agents? Modelling land-use and land-cover change IHDP Newsletter, 3, pp. 8–9.

  63. White, R., Engelen, G., 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput. Environ. Urban Syst. 24 (5), 383–400.

  64. Wooldridge, M.J., 2009. An introduction to multiagent systems. John Wiley & Sons. Yeh, A.G.O., Li, X., 2002. A cellular automata model to simulate development density for urban planning. Environ. Plann. B: Plann. Des. 29 (3), 431–450.

  65. Zhang, Y., Ban, J., Liu, Y., 2011. Hu Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China Computers. Environ. Urban Syst. 35, 126–139.

Citation : H.A. Bharath, M.C. Chandan, S. Vinay, T.V. Ramachandra, 2018. Modelling urban dynamics in rapidly urbanising Indian cities. The Egyptian Journal of Remote Sensing and Space Science, Volume 19, Issue 2, December 2016, Pages 175-193, https://doi.org/10.1016/j.ejrs.2016.09.001

    * Corresponding author

    H.A. Bharath
    Ranbir and Chitra Gupta School of Infrastructure
    Design and Management (RCGSIDM), Twin Science Block, IIT-Kharagpur, Kharagpur,
    West Bengal 721302, India.
    E-mail : bharathhaithal@gmail.com
E-mail   |   Sahyadri   |   ENVIS   |   GRASS   |   Energy   |   CES   |   CST   |   CiSTUP   |   IISc   |   E-mail