References

References

  1. Khatoon, N.; Khan, A.H.; Rehman, M.; Pathak, V. Correlation study for the assessment of water quality and its parameters of Ganga River, Kanpur, Uttar Pradesh, India. IOSR J. Appl. Chem. 2013, 5, 80–90. https://doi.org/10.9790/5736-0538090.
  2. Glatzle, A.; Reimer, L.; Núñez-Cobo, J.; Smeenk, A.; Musálem, K.; Laino, R. Groundwater dynamics, land cover and salinization in the dry Chaco in Paraguay. Ecohydrol. Hydrobiol. 2020, 20, 175–182. https://doi.org/10.1016/j.ecohyd.2019.10.003.
  3. Gleick, P.H. Basic water requirements for human activities: Meeting basic needs. Water Int. 1996, 21, 83–92. https://doi.org/10.1080/02508069608686494.
  4. Ramachandra, T.V.; Bharath, S.; Chandran, M.D.S. Geospatial analysis of forest fragmentation in Uttara Kannada District, India. For. Ecosyst. 2016, 3, 1–15. https://doi.org/10.1186/s40663-016-0069-4.
  5. Ramachandra, T.V.; Setturu, B.; Rajan, K.S.; Chandran, M.D.S. Modelling the forest transition in Central Western Ghats, India. Spat. Inf. Res. 2017, .25, 117-130. https://doi.org/10.1007/s41324-017-0084-8.
  6. Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa catchment. Water 2020, 12, 801. https://doi.org/10.3390/w12061801.
  7. Hyandye, C.B.; Worqul, A.; Martz, L.W.; Muzuka, A.N. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environ. Syst. Res. 2018, 7, 7, https://doi.org/10.1186/s40068-018-0110-4.
  8. Kummu, M.; Guillaume, J.H.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. https://doi.org/10.1038/srep38495.
  9. Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Eviron. Resour. 2003, 28, 205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459.
  10. Jain, S.K. Assessment of environmental flow requirements for hydropower projects in India. Curr. Sci. 2015, 108, 1815–1825. URL: https://www.currentscience.ac.in/Volumes/108/10/1815.pdf (accessed on 18 March 2020).
  11. Singh, R.; Singh, G.S. Integrated management of the Ganga River: An ecohydrological approach. Ecohydrol. Hydrobiol. 2019, 20, 153–174. https://doi.org/10.1016/j.ecohyd.2019.10.007.
  12. Ramachandra, T.V.; Bharath, S.; Bharath, H.A. Spatio-temporal dynamics along the terrain gradient of diverse landscape. J. Environ. Eng. Landsc. Manag. 2014, 22, 50–63. https://doi.org/10.3846/16486897.2013.808639.
  13. Ramachandra, T.V.; Chandran, M.D.S.; Vinay, S.; Sudarshan, P.B.; Vishnu, D.M.; Rao, G.R.; Shrikanth, N.; Bharath, H.A. Sacred Groves (Kan Forests) of Sagara Taluk, Shimoga District; Sahyadri Conservation Series: 54; ENVIS Technical Report 102; Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2016.
  14. Ramachandra, T.V.; Bharath, S.; Rajan, K.S.; Chandran, M.D.S. Stimulus of developmental projects to landscape dynamics in Uttara Kannada, Central Western Ghats. Egypt. J. Remote Sens. Sp. Sci. 2016, 19, 175–193. https://doi.org/10.1016/j.ejrs.2016.09.001.
  15. Bhat, M.; Nayak, V.N.; Chandran, M.D.S.; Ramachandra, T.V. Impact of hydroelectric projects on finfish diversity in the Sharavathi River estuary of Uttara Kannada district, central west coast of India. Int. J. Environ. Sci. 2014, 5, 58–66. https://doi.org/10.6088/ijes.2014050100006.
  16. Ramachandra, T.V.; Chandran, M.D.S.; Joshi, N.V.; Bhoominathan, M. Edible Bivalves of Central West Coast, Uttara Kannada District, Karnataka, India; Sahyadri Conservation Series 17, ENVIS Technical Report 48; Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2012; Available online: http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR48/conclusion.htm (accessed on 29 March 2020).
  17. Ramachandra, T.V.; Bharath, S.; Chandran, M.D.S.; Joshi, N.V. Salient ecological sensitive regions of Central Western Ghats, India. Earth Syst. Environ. 2018, 2, 15–34. https://doi.org/10.1007/s41748-018-0040-3.
  18. Ramachandra, T.V.; Setturu, B.; Vinay, S. Ecological sustainability of riverine ecosystems in Central Western Ghats. J. Biodivers. 2018, 9, 25–42. https://doi.org/11.258359/KRE-159.
  19. Vijay, K.; Ramachandra, T.V. Environmental Management; The Energy and Resources Institute (TERI): New Delhi, India, 2006.
  20. Ramachandra, T.V.; Soman, D.; Naik, A.D.; Chandran, M.D.S. Appraisal of forest ecosystems goods and services: Challenges and opportunities for conservation. J. Biodivers. 2017, 8, 12–33. https://doi.org/10.1080/09766901.2017.1346160.
  21. Ramachandra, T.V.; Vinay, S.; Bharath, S.; Chandran, M.D.; Aithal, B.H. Insights into riverscape dynamics with the hydrological, ecological, and social dimensions for water sustenance. Curr. Sci. 2020, 118, 1379–1393.
  22. Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Envi. 2020, 712, 136449. https://doi.org/10.1016/j.scitotenv.2019.136449.
  23. Sharma, D.; Kansal, A. Assessment of river quality models: A review. Rev. Environ. Sci. Biotechnol. 2013, 12, 285–311. https://doi.org/10.1007/s11157-012-9285-8.
  24. Peñas, F.J.; Juanes, J.A.; Galván, C.; Medina, R.; Castanedo, S.; Álvarez, C.; Bárcena, J.F. Estimating minimum environmental flow requirements for well-mixed estuaries in Spain. Estuar. Coast. Shelf Sci. 2013, 134, 138–149. https://doi.org/10.1016/j.ecss.2013.05.020.
  25. International Water Centre. The Brisbane Declaration. 2007. Available online: http://www.watercentre.org/news/declaration (accessed on 10 November 2019).
  26. Ramachandra, T.V.; Vinay, S.; Bharath, H.A. Environmental flow assessment in a lotic ecosystem of Central Western Ghats, India. Hydrol. Curr. Res. 2016, 7, 1000248. https://doi.org/10.4172/2157-7587.1000248.
  27. Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. https://doi.org/10.1002/rra.736.
  28. Stoeglehner, G.; Edwards, P.; Daniels, P.; Narodoslawsky, M. The water supply footprint (WSF): A strategic planning tool for sustainable regional and local water supplies. J. Clean. Prod. 2011, 19, 1677–1686. https://doi.org/10.1016/j.jclepro.2011.05.020.
  29. Davies-Colley, R.J. River Water Quality in New Zealand: An Introduction and Overview; In Ecosystem Services in New Zealand: Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 432–447.
  30. Xu, H.S.; Xu, Z.X.; Wu, W.; Tang, F.F. Assessment and spatiotemporal variation analysis of water quality in the Zhangweinan River Basin, China. Procedia Environ. Sci. 2012, 13, 1641–1652. https://doi.org/10.1016/j.proenv.2012.01.157.
  31. Gyawali, S.; Techato, K.; Yuangyai, C.; Monprapusson, S. Evaluation of surface water quality using multivariate statistical techniques: A case study of Utapao river basin, Thailand. KMITL Sci. Tech. J. 2012, 12, 7–20.
  32. Rytwinski, T.; Taylor, J.J.; Bennett, J.R.; Smokorowski, K.E.; Cooke, S.J. What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol. Environ. Evid. 2017, 9, 7. https://doi.org/10.1186/s13750-017-0093-z.
  33. Ramachandra, T.V.; Sudarshan, P.B.; Mahesh, M.K.; Vinay, S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manage. 2018, 206, 1204–1210. https://doi.org/10.1016/j.jenvman.2017.10.014.
  34. Ramachandra, T.V.; Narayan, N.R. Heavy metal in the food chain—consequences of polluting water bodies. Green Chem. Technol. Lett. 2021, 7, 7–17. https://doi.org/10.18510/gctl.2021.712.
  35. Naher, T.; Chowdhury, M.A. Assessment and correlation analysis of water quality parameters: A case study of Surma river at Sylhet division, Bangladesh. Int. J. Eng. Trends Technol. 2017, 53, 126–136. https://doi.org/10.14445/22315381/IJETT-V53P223.
  36. Liyanage, C.P.; Yamada, K. Impact of population growth on the water quality of natural water bodies. Sustainability 2017, 9, 1405. https://doi.org/10.3390/su9081405.
  37. Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Wat. Sci. Tech. 2017, 76, 1510–1522. https://doi.org/10.2166/wst.2017.279.
  38. Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. https://doi.org/10.3390/w10020183.
  39. Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Water quality assessment and apportionment of pollution sources of Tigris River (Turkey) using multivariate statistical techniques—A case study. River Res. Appl. 2012, 28, 1428–1438. https://doi.org/10.1002/rra.1533.
  40. Pejman, A.H.; Bidhendi, G.N.; Karbassi, A.R.; Mehrdadi, N.; Bidhendi, M.E. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. Available online: https://link.springer.com/content/pdf/10.1007%2FBF03326086.pdf (accessed on 12 January 2020).
  41. Ramachandra, T.V.; Vinay, S.; Bharath, S.; Shashishankar, A. Eco-Hydrological footprint of a river basin in Western Ghats. Yale. J. Biol. Med. 2018, 91, 431–444. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302628/ (accessed on 12 January 2020).
  42. Kamath, U.S. (Ed.) Gazetteer of India, Karnataka State-Uttara Kannada District; Director of Print, Stationery and Publications at the Government Press, Government of Karnataka: Bangalore, India, 1984; Available online: http://gazetteer.kar.nic.in/gazetteer/distGazetteer.html (accessed on 11 February 2020).
  43. Survey of India, Department of Science & Technology. Nakshe. 2018. Available online: http://www.soinakshe.uk.gov.in/ (accessed on 11 December 2019).
  44. University of Agriculture Sciences. E-Krishi. 2020. Available online: http://e-krishiuasb.karnataka.gov.in/Weather/ViewWeatherData.aspx?depID=10&QueryID=0 (accessed on 20 August 2020).
  45. Office of the Registrar General & Census Commissioner, The Ministry of Home Affairs. Census of India. 2011. Available online: http://www.censusindia.gov.in (accessed on 7 February 2017).
  46. National Bureau of Soil Survey and Land Use Planning. Soil status of Karnataka. ICAR-NBSS&LUP. 1996. Available online: https://www.nbsslup.in/ (accessed on 5 March 2019).
  47. United States Geological Survey. Earth Explorer; United States Geological Survey: Reston, VA, USA, 2015.
  48. Global Precipitation Climatology Centre (GPCC). National Oceanic and Atmospheric Administration. Earth System Research Laboratory. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html (accessed on 17 February 2019).
  49. India Meteorological Department, The Ministry of Earth Sciences (MoES). Hydrometeorological Services. Available online: http://www.imd.gov.in/pages/services_hydromet.php (accessed on 15 June 2019).
  50. Karnataka Government. Directorate of Economics and Statistics. 2017. Available online: des.kar.nic.in/ (accessed on 12 September 2019).
  51. Food and Agriculture Organization. Meteorological Data. 2017. Available online: http://www.fao.org/docrep/X0490E/x0490e07.htm (accessed on 30 January 2019).
  52. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.; Jarvis, A.; Richardson, K. WorldClim, version 1.4. 2007. Available online: http://www.worldclim.org (accessed on 11 August 2019).
  53. Department of Animal Husbandry and Veterinary Services, Government of Karnataka. Livestock Census, 2012 and 2018. Available online: http://www.ahvs.kar.nic.in/en-reportsstat.html (accessed on 2 February 17).
  54. Google. Google Earth. 2018. Available online: https://www.google.com/intl/en_in/earth/ (accessed on 1 May 2018; 22 June 2019, 20 May 2020).
  55. National Remote Sensing Centre, Indian Space Research Organization. Bhuvan. 2018. Available online: http://bhuvan.nrsc.gov.in/ (accessed on 1 May 2018; 22 June 2019, 20 May 2020).
  56. Mutreja, K.N. Applied Hydrology, 4th ed. Tata McGraw-Hill: New Delhi, India, 1995.
  57. Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed. Pearson: London, UK, 1996.
  58. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; Lloydia: Cincinnati, OH, USA, 2004.
  59. Ramachandra, T.V.; Bharath, H.A.; Gouri, K.; Vinay, S. Green Spaces in Bengaluru: Quantification through Geospatial Techniques. Indian For. 2017, 143, 307–320. 10.36808/if/2017/v143i4/113682 (accessed on 20 June 2020).
  60. Ramachandra, T.V. Hydrological responses at regional scale to landscape dynamics. J. Biodivers. 2014, 5, 11–32. Available online: http://wgbis.ces.iisc.ernet.in/energy/water/paper/Hydrological-Responses/index.html (accessed on 20 May 2018 30).
  61. American Public Health Association (APHA); American Water Works Association (AWWA); WEF (World Economic Forum). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005.
  62. PAST Statistical Software. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 2 February 2017).
  63. Daniels, R.R.J.; Venkatesan, J. Western Ghats-Biodiversity, People, Conservation; Rupa & Company: New Delhi, India, 2008.
  64. Jain, S.K. Assessment of environmental flow requirements. Hydrol. Process 2012, 27, 3472–3476. https://doi.org/10.1002/hyp.9455.
  65. Karnataka Forest Department. Karnataka Forest Department Management Plan for Sharavathi Valley Wildlife Sanctuary; Karnataka Forest Department: Bangalore, India, 2007.
  66. Ramachandra, T.V.; Bharath, S.; Vinay, S. Visualisation of impacts due to the proposed developmental projects in the ecologically fragile regions-Kodagu district, Karnataka. Prog. Disaster Sci. 2019, 3, 1–14. https://doi.org/10.1016/j.pdisas.2019.100038.
  67. Santoso, E.B.; Erli, H.K.D.M.; Aulia, B.U.; Ghozali, A. Concept of carrying capacity: Challenges in spatial planning (case study of East Java Province, Indonesia). Procedia Soc. Behav. Sci. 2014, 135, 130–135. https://doi.org/10.1016/j.sbspro.2014.07.336.
  68. Rao, G.R.; Chandran, M.D.S.; Ramachandra, T.V. Vegetation Studies in Sacred Groves and Adjacent Non-Sacred Forests of Central Western Ghats. In Proceedings of the Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats, Moodbidri, India, 28–30 December 2016.
  69. Vinay, S.; Bharath, S.; Bharath, H.A.; Ramachandra, T.V. Hydrologic model with landscape dynamics for drought monitoring. In Proceedings of the Joint International Workshop of ISPRS VIII/1 and WG IV/4 on Geospatial Data for Disaster and Risk Reduction, Hyderabad, India, 21–22 November 2013. Available online: http://wgbis.ces.iisc.ernet.in/energy/water/paper/isprs_drought_monitoring/index.htm (accessed on 30 May 2019).
  70. Bhat, M.; Nayak, V.N.; Chandran, M.D.S.; Ramachandra, T.V. Fish distribution dynamics in the Aghanashini estuary of Uttara Kannada, west coast of India. Curr. Sci. 2014, 106, 1739–1744.
  71. Ali, S.; Gururaja, K.V.; Ramachandra, T.V. Schistura nilgiriensis (Menon) in Sharavathi River Basin, Western Ghats, Karnataka. Zoos' Print J. 2005, 20, 1784–1785. Available online: http://wgbis.ces.iisc.ernet.in/biodiversity/sdev/sus_enews/menon/index.htm (accessed on 20 May 2019).
  72. Sreekantha; Gururaja, K.V.; Ramachandra, T.V. Nestedness pattern in freshwater fishes of the Western Ghats: An indication of stream islands along riverscapes. Curr. Sci. 2008, 95, 1707–1714.
  73. Sreekantha; Chandran, M.D.S.; Mesta, D.K.; Rao, G.R.; Gururaja, K.V.; Ramachandra, T.V. Fish diversity in relation to landscape and vegetation in central Western Ghats, India. Curr. Sci. 2007, 92, 1592–1603.
  74. Sreekantha; Gururaja, K.V.; Remadevi, K.; Indra, T.J.; Ramachandra, T.V. Two species of fishes of the genus Schistura McClelland (Cypriniformes: Balitoridae) from Western Ghats. Zoos' Print J. 2006, 21, 2211–2216. https://doi.org/10.11609/JoTT.ZPJ.1386.2211-6.
  75. ENVIS Sahyadri: Western Ghats Biodiversity Information System. 2017. Available online: http://wgbis.ces.iisc.ernet.in/biodiversity (accessed on 20 October 2017).
  76. India Biodiversity Portal. 2018. Available online: http://indiabiodiversity.org/ (accessed on 20 October 2017).
  77. Ramachandra, T.V.; Chandran, M.D.S.; Joshi, N.V.; Karthick, B.; Mukri, V.D. Ecohydrology of lotic systems in Uttara Kannada, Central Western Ghats, India. In Environmental Management of River Basin Ecosystems; Springer: Cham, Switzerland, 2015; pp. 621–665. https://doi.org/10.1007/978-3-319-13425-3_29.
  78. Ramachandra, T.V.; Chandran, M.D.S.; Prakash, M.; Rao, G.R.; Bharath, S.; Bharath, H.A.; Harish, R.B.; Sumesh, D.; Gautham, K.; Sudarshan, P.B.; et al. Biological Diversity, Ecology and Environment Impact Assessment with Mitigation Measures: Hubli-Ankola New Broad Gauge Railway Line; CES Technical Report 125; Environmental Information ,System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India, 2012.
  79. Talling, J.F. pH, the CO2 system and freshwater science. Freshw. Rev. 2010, 3, 133–146. https://doi.org/10.1608/FRJ-3.2.156.
  80. Alam, Md. J. B.; Islam, M.R.; Muyen, Z.; Mamun, M.; Islam, S. Water quality parameters along rivers. Int. J. Environ. Sci. Tech. 2007, 4, 159–167. https://doi.org/10.1007/BF03325974.
  81. Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. https://doi.org/10.4103/0019-5278.99696.
  82. Nas, S.S.; Bayram, A.; Nas, E.; Bulut, V.N. Effects of some water quality parameters on the dissolved oxygen balance of streams. Pol. J. Environ. Stud. 2008. 17, 531–538. Available online: http://www.pjoes.com/Effects-of-Some-Water-Quality-Parameters-r-non-the-Dissolved-Oxygen-Balance-of-Streams,88139,0,2.html (accessed on 12 January 2020).
  83. Kale, V.S. Consequence of temperature, pH, turbidity and dissolved oxygen water quality parameters. Int. Adv. Res. J. Sci. Eng. Technol. 2016, 3, 186–190. https://doi.org/10.17148/IARJSET.2016.3834.
  84. Lescesen, I.; Pavić, D.; Dolinaj, D. Correlation between discharge and water quality: Case study Nišavariver: Serbia. Geogr. Pannon. 2018, 22, 97–103. https://doi.org/10.5937/22-16674.
  85. Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2018, 4, 284–292. https://doi.org/10.1016/j.iswcr.2016.11.002.
  86. Maqbool, F.; Malik, A.H.; Bhatti, Z.A.; Pervez, A.; Suleman, M. Application of regression model on stream water quality parameters. Pak. J. Agri. Sci. 2012, 49, 95–100. Available online: https://pakjas.com.pk/papers/1982.pdf (accessed on 14 January 2020).
  87. Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. AJWR 2013, 1, 34–38. https://doi.org/10.12691/ajwr-1-3-3.
  88. Etim, E.E.; Odoh, R.; Itodo, A.U.; Umoh, S.D.; Lawal, U. Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria. Front. Sci. 2013, 3, 89–95. https://doi.org/10.5923/j.fs.20130303.02.
  89. Oni, O.; Fasakin, O. The use of water quality index method to determine the potability of surface water and groundwater in the vicinity of a municipal solid waste dumpsite in Nigeria. AJER 2016, 5, 96–101. Available online: http://www.ajer.org/papers/v5(10)/O0501096101.pdf (accessed on 14 January 2020).
  90. Seth, R.; Mohan, M.; Singh, P.; Singh, R.; Dobhal, R.; Singh, K.P.; Gupta, S. Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Appl. Water Sci. 2016, 6, 137–147. https://doi.org/10.1007/s13201-014-0213-7.
  91. Qian, Y.; Migliaccio, K.W.; Wan, Y.; Li, Y. Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. Water Resour. Res. 2007, 43, 1–10. https://doi.org/10.1029/2006WR005716.
  92. Devi, W.S.; Singh, K.; Meitei, N. Assessment of water quality index of Nambol river, Manipur, India. Univers. J. Environ. Res. Technol. 2015. 5, 165–172. Available online: http://www.environmentaljournal.org/5-3/ujert-5-3-5.pdf (accessed on 14 January 2020).
  93. Rameshbabu, K.; Selvanayagam, M. Water quality index of Kolavailake, Chengalpet, Tamil Nadu, India. IJOCC 2015, 1, 15–18.
  94. Zeinalzadeh, K.; Rezaei, E. Determining spatial and temporal changes of surface water quality using principal component analysis. J. Hydrol. Reg. Stud. 2017, 13, 1–10. https://doi.org/10.1016/j.ejrh.2017.07.002.
  95. Najar, I.A.; Khan, A.B. Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ. Earth Sci. 2012, 66, 2367–2378. https://doi.org/10.1007/s12665-011-1458-1.
  96. Chowdhury, S.; Al-Zahrani, M. Water quality change in dam reservoir and shallow aquifer: Analysis on trend, seasonal variability and data reduction. Environ. Monit. Assess. 2014, 186, 6127–6143. https://doi.org/10.1007/s10661-014-3844-0.
  97. Mazlum, N.; Özer, A.; Mazlum, S. Interpretation of water quality data by principal components analysis. Turk. J. Eng. Env. Sci. 1999. 23, 19–26. Available online: http://journals.tubitak.gov.tr/engineering/issues/muh-99-23-1/muh-23-1-3-96116.pdf (accessed on 15 January 2020).
  98. Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin. Japan. Environ. Modell. Softw. 2007, 22, 464–475. https://doi.org/10.1016/j.envsoft.2006.02.001.
  99. Park, S.; Kazama, F.; Lee, S. Assessment of water quality using multivariate statistical techniques: A case study of the Nakdong River basin, Korea. Environ. Eng. Res. 2014, 19, 197–203. https://doi.org/10.4491/eer.2014.008.
  100. Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, S.Y. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ. Pollut. 2003, 121, 377–388. https://doi.org/10.1016/S0269-7491(02)00234-8.
  101. Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.F.; Li, B.L. Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China. J. Hydro. Environ. Res. 2013, 7, 30–40. https://doi.org/10.1016/j.jher.2012.10.003.
  102. Isah, A.; Abdullahi, U.; Ndamitso, M.M. Application of multivariate methods for assessment of variations in rivers/streams water quality in Niger State, Nigeria. Am. J. Theor. Appl. Stat. 2013, 2, 176–183. https://doi.org/10.11648/j.ajtas.20130206.14.
  103. Mushatq, B.; Raina, R.; Yaseen, T.; Wanganeo, A.; Yousuf, A.R. Variations in the physicochemical properties of Dal Lake, Srinagar, Kashmir. Afr. J. Environ. Sci. Technol. 2013, 7, 624–633. https://doi.org/10.5897/AJEST2013.1504.
  104. Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of river water quality using multivariate analysis. Procedia Environ. Sci. 2015, 30, 79–84. https://doi.org/10.1016/j.proenv.2015.10.014.
  105. Raghunath, H.M. Hydrology—Principles, Analysis and Design; Wiley Eastern Limited: New Delhi, India, 1985.
  106. Kitamura, H. Leaching characteristics of anions and cations from evergreen leaves supplied to the stream bed and influences on stream water composition in the Southern Kyusyu Mountains. Bull. Minamikyushu Univ. 2009, 39A, 57–66. Available online: http://www.nankyudai.ac.jp/library/pdf/39A57-66.pdf (accessed on 15 January 2020).
  107. Kashaigili, J.J. Impacts of land-use and land-cover changes on flow regimes of the Usangu wetland and the Great Ruaha River, Tanzania. Phys. Chem. Earth 2008, 33, 640–647. https://doi.org/10.1016/j.pce.2008.06.014.
  108. Rodriguez-Martínez, J.; Santiago, M. The Effects of Forest Cover on Base Flow of Streams in the Mountainous Interior of Puerto Rico; 2010 (No. 2016-5142). U.S. Geological Survey Scientific Investigations Report 2016–5142; U.S. Geological Survey: Reston, VA, USA, 2017. Available online: https://pubs.usgs.gov/sir/2016/5142/sir20165142.pdf (accessed on 15 January 2020).
  109. Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface run-off, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. https://doi.org/10.1016/j.ejrh.2017.11.005.
  110. Alobaidy, A.H.M.J.; Abid, H.S.; Maulood, B.K. Application of water quality index for assessment of Dokan lake ecosystem, Kurdistan region, Iraq. J. Water Resource Prot. 2010, 2, 792–798. https://doi.org/10.4236/jwarp.2010.29093.
  111. Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 2002, 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0.
  112. Ramachandra, T.V.; Bharath, S. Geoinformatics based valuation of forest landscape dynamics in Central Western Ghats, India. J. Remote Sens. GIS. 2018, 7, 2. https://doi.org/10.4172/2469-4134.1000227.
  113. Sincy, V.; Asulabha, K.S.; Vinay, S.; Vishnu, D.M.; Srikanth, N.; Subashchandran, M.D.; Ramachandra, T.V. Ecological status of lotic ecosystems in kans and non-kans of central Western Ghats. In the proceedings of Lake 2016 : Conference on Conservation and Sustai nable Management of Ecologically Sensitive Regions in Western Ghats, Sahyadri Conservation Series 65, ENVIS Technical Report 120, Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.
  114. Vinay.S.; Bharath, S.; Chandran, M.D.S.; Bharath, H.A.; Shashishankar, A.; Ramachandra, T.V. Hydro-ecological footprint of Sharavathi river basin, In the proceedings of Lake 2018: Conference on Conservation and Sustainable Management of Riverine Ecosystems, Sirsi, Uttara Kannada district, India, 22–25 November 2018; Available online: wgbis.ces.iisc.ernet.in/biodiversity/sahyadri_enews/newsletter/Issue69/vinay.html (accessed on 20 January 2020).