l  
  l  
  l  
https://www.iisc.ac.in/
Examining the Effect of Ancillary and Derived Geographical Data on Improvement of Per-Pixel Classification Accuracy of Different Landscapes
http://wgbis.ces.iisc.ernet.in/energy/
Uttam Kumar1,5, Anindita Dasgupta1 , Chiranjit Mukhopadhyay2 and T. V. Ramachandra1,3,4
1Energy & Wetlands Research Group [CES TE15], Centre for Ecological Sciences, Indian Institute of Science,
Third Floor, E Wing, New Bioscience Building [Near D Gate], Bangalore, Karnataka 560012, India

2Department of Management Studies, Indian Institute of Science, Bangalore, Karnataka 560 012, India
3Centre for Sustainable Technologies (Astra), Indian Institute of Science, Bangalore, Karnataka 560 012, India
4Centre for Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP), Indian Institute of Science, Bangalore, Karnataka 560 012, India
5NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
l
l
l
l
l
l

References

  1. Augera, F., Aguilar, F. J., & Aguilar, M. A. (2008). Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS Journal of Photogrammetry and Remote Sensing, 63, 635–646.
  2. Breiman, L., & Cutler, A. (2010). Breiman and Cutler’s random forests for classification and regression. Version 4.5-36, Repository—CRAN. http://ugrad.stat.ubc.ca/R/library/randomForest/html/00Index.html.
  3. Chen, D., Stow, D. A., & Gong, P. (2004). Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. International Journal of Remote Sensing, 25, 2177–2192.
  4. Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., & Woodward, S. (2011). Development and evaluation of an Earth-system model HadGEM2. Geoscientific Model Development Discussion, 4, 997–1062.
  5. Do'pido, I., Villa, A., Plaza, A., & Gamba, P. (2011). A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2011.2176721.
  6. Dorren, L. K. A., Maier, B., & Seijmonsbergen, A. C. (2003). Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecology and Management, 183(2003), 31–46.
  7. Fahsi, A., Tsegaye, T., Tadesse, W., & Coleman, T. (2000). Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy. Forest Ecology and Management, 128(2000), 57–64.
  8. Germaine, K. A., & Hung, M.-C. (2011). Delineation of impervious surface from multispectral imagery and lidar incorporating knowlwdge based expert system rules. Photogrammetric Engineering and Remote Sensing, 77(1), 75–85.
  9. Gong, P., Marceau, D. J., & Howarth, P. J. (1992). A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, 40, 137–151.
  10. GRASS GIS. (2017). r.texture, https://grass.osgeo.org/grass72/manuals/r.texture.html
  11. Haack, B. N., Solomon, E. K., Bechdol, M. A., & Herold, N. D. (2002). Radar and optical data comparison/integration for urban delineation: A case study. Photogrammetric Engineering and Remote Sensing, 68, 1289–1296.
  12. Haralick, R. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. doi:10.1109/PROC.1979.11328.
  13. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.
  14. Hostert, P., Roder, A., & Hill, J. (2003). Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands. Remote Sensing of Environment, 87, 183–197.
  15. Huang, C., Song, K., Kim, S., Townshend, J. R. G., Davis, P., Masek, J. G., & Goward, S. N. (2008). Use of dark object concept and support vector machines to automate forest cover change analysis. Remote Sensing of Environment, 112(2008), 970–985.
  16. Hung, M., & Ridd, M. K. (2002). A subpixel classifier for urban landcover mapping based on a maximum-likelihood approach and expert system rules. Photogrammetric Engineering and Remote Sensing, 68, 1173–1180.
  17. Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socioeconomic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611–622.
  18. Lu, D., Batistella, M., & Moran, E. (2008a). Integration of Landsat TM and SPOT HRG images for vegetation change detection in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing, 74(4), 421–430.
  19. Lu, D., Batistella, M., Moran, E., & de Miranda, E. E. (2008b). A comparative study of Landsat TM and SPOT HRG images for vegetation classification in the Brazilian Amazon. Photogrammetric Engineering and Remote Sensing, 70(3), 311–321.
  20. Lu, D., Hetrick, S., & Moran, E. (2010). Land cover classification in a complex urban–rural landscape with Quickbird imagery. Photogrammetric Engineering and Remote Sensing, 76(10), 1159–1168.
  21. Lu, D., & Weng, Q. (2005). Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering and Remote Sensing, 71(11), 1275–1284.
  22. Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performances. International Journal of Remote Sensing, 28(5), 823–870.
  23. Masocha, M., &Skidmore, A. K. (2011). Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping. International Journal of Applied Earth Observation and Geoinformation, 13, 487–494.
  24. Na, X., Zhang, S., Li, Xiaofeng, Yu, H., & Liu, C. (2010). Improved land cover mapping using random forests combined with Landsat Thematic Mapper imagery and ancillary geographic data. Photogrammetric Engineering and Remote Sensing, 76(7), 833–840.
  25. Nemani, R., Votava, P., Michaelis, A., Metlon, M., & Milesi, C. (2011). Collaborative supercomputing for global change science. Eos, 92(13), 109–116.
  26. Pacheco, A., & McNairn, H. (2010). Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of Environment, 114, 2219–2228.
  27. Pu, R., Gong, P., Michishita, R., & Sasagawa, T. (2008). Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment, 112, 939–954.
  28. Ramachandra, T. V., & Kumar, U. (2008). Wetlands of greater Bangalore, India: Automatic delineation through pattern classifiers. The Greendisk Environmental Journal, (International Electronic Journal), 1(26), 1–22.
  29. Ramachandra, T. V., & Kumar, U. (2009). Land surface temperature with land cover dynamics: Multi-resolution, spatio-temporal data analysis of Greater Bangalore. International Journal of Geoinformatics, 5(3), 43–53.
  30. Recio, J. A., Hermosilla, L. A., & Fernandez-Sarria, A. (2011). Historical land use as a feature for image classification. Photogrammetric Engineering and Remote Sensing, 77(4), 377–387.
  31. Shaban, M. A.,& Dikshit, O. (2001). Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh. International Journal of Remote Sensing, 22, 565–593.
  32. Shaban, M. A., & Dikshit, O. (2002). Evaluation of the merging of SPOT multispectral and panchromatic data for classification of an urban environment. International Journal of Remote Sensing, 23, 249–262.
  33. Smith, M. O., Johnson, P. E., & Adams, J. B. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis. In Proceedings of the Lunar and Planetary Science Conference, 90, (pp. 797–904).
  34. Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment, 71, 282–296.
  35. Turner, B. L., II, Meyer, W. B., & Skole, D. L. (1994). Global landuse/land-cover change: Towards and integrated study. Ambio, Integrating Earth System Science, 23(1), 91–95.
  36. Xian, G., Crane, M., & McMahon, C. (2008). Quantifying multitemporal urban development characteristics in Las Vegas from Landsat and ASTER data. Photogrammetric Engineering and Remote Sensing, 74(4), 473–481.
  37. Xiaodong, Na, Shuqing, Z., Huaiqing, Z., Xiaofeng, L., & Chunyue, L. (2009). Integrating TM and ancillary geographical data with classification trees for land cover classification of marsh area. Chinese Geographical Science, 19(2), 177–185.
  38. Zhu, J., Shi, J., Chu, H., Hu, J., Li, X., & Li, W. (2011). Remote sensing classification using fractal dimension over a subtropical hilly region. Photogrammetric Engineering and Remote Sensing, 77(1), 65–74.
Citation:Uttam Kumar, Anindita Dasgupta, Chiranjit Mukhopadhyay, T. V. Ramachandra, 2017. Examining the Effect of Ancillary and Derived Geographical Data on Improvement of Per-Pixel Classification Accuracy of Different Landscapes, J Indian Soc Remote Sens, DOI 10.1007/s12524-017-0698-2
* Corresponding Author :
  Dr. T.V. Ramachandra
Energy & Wetlands Research Group,
Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, INDIA.
Tel : 91-80-23600985 / 22932506 / 22933099,    Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : tvr@iisc.ac.in, emram.ces@courses.iisc.ac.in, energy.ces@iisc.ac.in,    Web : http://wgbis.ces.iisc.ernet.in/energy
E-mail   |   Sahyadri   |   ENVIS   |   GRASS   |   Energy   |   CES   |   CST   |   CiSTUP   |   IISc   |   E-mail