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Abstract Effective conservation and management of nat-

ural resources requires up-to-date information of the land

cover (LC) types and their dynamics. Multi-resolution

remote sensing (RS) data coupled with additional ancillary

topographical layers (both remotely acquired or derived

from ground measurements) with appropriate classification

strategies would be more effective in capturing LC

dynamics and changes associated with the natural resour-

ces. Ancillary information would make the decision

boundaries between the LC classes more widely separable,

enabling classification with higher accuracy compared to

conventional methods of RS data classification. In this

work, we ascertain the possibility of improvement in

classification accuracy of RS data with the addition of

ancillary and derived geographical layers such as vegeta-

tion indices, temperature, digital elevation model, aspect,

slope and texture, implemented in three different terrains of

varying topography—urbanised landscape (Greater

Bangalore), forested landscape (Western Ghats) and rug-

ged terrain (Western Himalaya). The study showed that use

of additional spatial ancillary and derived information

significantly improved the classification accuracy com-

pared to the classification of only original spectral bands.

The analysis revealed that in a highly urbanised area with

less vegetation cover and contrasting features, inclusion of

elevation and texture increased the overall accuracy of

IKONOS data classification to 88.72% (3.5% improve-

ment), and inclusion of temperature, NDVI, EVI, elevation,

slope, aspect, Panchromatic band along with texture mea-

sures, significantly increased the overall accuracy of

Landsat ETM? data classification to 83.15% (7.6%

improvement). In a forested landscape with moderate ele-

vation, temperature was useful in improving the overall

accuracy by 6.7 to 88.26%, and in a rugged terrain with

temperate climate, temperature, EVI, elevation, slope,

aspect and Panchromatic band significantly improved the

classification accuracy to 89.97% (10.84% improvement)

compared to the classification of only original spectral

bands, suggesting selection of appropriate ancillary data

depending on the terrain.

Keywords Land cover � Classification � Accuracy �
Ancillary layers � DEM � Vegetation indices � Texture

Introduction

Classification of remote sensing (RS) data accurately is a

requirement for many applications such as global change

research (Nemani et al. 2011), geological research (Smith

et al. 1985), wetlands mapping (Ramachandra and Kumar

2008), crop estimation (Pacheco and McNairn 2010),

vegetation classification (Hostert et al. 2003), forest
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classification (Huang et al. 2008), urban studies (Pu et al.

2008), feature extraction (Dópido et al. 2011), land cover

(LC) change (Turner et al. 1994), Earth system modelling

(Collins et al. 2011), etc. Satisfactory classification of RS

data depends on many factors including (a) the character-

istics of study area, (b) availability of suitable RS data,

(c) ancillary and ground reference data, (d) proper use of

variables and classification algorithms, (e) user’s experi-

ence with reference to the application and (f) time con-

straints (Lu and Weng 2005). Furthermore, diverse

landscapes and terrain types have a mixture of both

homogeneous and heterogeneous LC classes and require

supplemental environmental or geographical layers for

improved classification accuracies. Increased spectral

variation is common with high degree of spectral hetero-

geneity; for example, urban landscapes are composed of

features having a complex mix of buildings, roads, trees,

lakes, lawns, concrete, etc., often responsible for low

classification accuracy. In landscapes with mountains and

dense forests, problems arise due to changes in elevation,

topographic differences and often shades (shadows) pro-

duced by hillocks and long trees due to altitudinal varia-

tions, which is a major challenge for selection of

suitable image processing approach. Fine spatial resolution

data such as IKONOS Multispectral (MS) and Panchro-

matic (PAN) often lead to high spectral variation within the

same LC class resulting in poor classification performance

(Lu et al. 2010). Therefore, reducing the spectral variation

within the same LC and increasing the separability of

different LC types are the keys for improving LC classi-

fication (Lu and Weng 2007). In practice, data acquired

from medium spatial resolution sensors such as Landsat

TM/ETM? or IRS LISS-III, being readily available for

multiple dates, are commonly used for most landscape

analysis (urban and forested terrain at a regional scale). In

this regard, different approaches such as multi-sensor data

integration (Haack et al. 2002), full spectral image classi-

fication (Stuckens et al. 2000; Shaban and Dikshit 2001),

expert classification (Hung and Ridd 2002), etc. have been

used. Traditional per-pixel spectral-based supervised clas-

sification is based only on spectral signatures, and does not

make use of rich spatial information inherent in the data

(Lu et al. 2010). Therefore, making full use of RS infor-

mation along with ancillary information (acquired or

derived environmental layers) would be an efficient way to

improve classification accuracy. For example, Na et al.

(2010) used 103 geographical layers to show improvement

in LC mapping using Landsat TM bands 1–5 and 7, NDVI

(Normalised Difference Vegetation Index), EVI (Enhanced

Vegetation Index), a data fusion transformation combining

the six bands information from the Landsat TM image (first

principal component—PC1) as additional predictors, image

texture measures (variance, homogeneity, contrast,

dissimilarity and entropy) with window size of 3 9 3

pixels and 11 9 11 pixels, DEM, slope and soil type with

Random Forest (RF), Classification and Regression Tree

(CART) and Maximum Likelihood Classifier (MLC) based

classification. Among these, RF yielded accurate classifi-

cation with an overall accuracy of 91% and kappa 0.8943.

They also quantified the effect of training set size on the

performance of classification algorithms. Xiaodong et al.

(2009) integrated TM data with NDVI, EVI, PC1, slope,

soil types and five texture measures (variance, homo-

geneity, contrast, dissimilarity and entropy) for LC classi-

fication of Marsh Area using Classification Trees and

MLC. They concluded that image spectral, textural, terrain

data and ancillary Geographical Information System (GIS)

improved the land use land cover (LULC) classification

accuracy significantly. Fahsi et al. (2000) evaluated the

contribution and quantified the effectiveness of DEM

(digital elevation model) in improving LC classification

using Landsat TM data over a rugged area in the Atlas

Mountains, Morocco which considerably improved the

classification accuracy by reducing the effect of relief on

satellite images, increasing the individual accuracies of the

different classes by up to 60%. Recio et al. (2011) used

historical land use (LU) and ancillary data and showed

improvement in overall classification accuracy considered

case-by-case for each class. Masocha and Skidmore (2011)

used DEM along with ASTER imagery and georeferenced

point data obtained from field to increase the accuracy of

invasive species (Lantana camera) mapping using Neural

Network and SVM (support vector machine) hybrid clas-

sifiers. The overall accuracy increased from 71% (kappa

0.61) to 83% (kappa 0.77) with Neural Network and from

64% (kappa 0.52) to 76% (kappa 0.67) with SVM hybrid

classifiers. Dorren et al. (2003) studied the effect of topo-

graphic correction and the role of DEM as additional band

using per-pixel and object based classification to classify

forest stand type maps using Landsat TM data in a steep

mountainous terrain. They concluded that both topographic

correction and classification with DEM as additional band

increased the overall accuracy. Xian et al. (2008) quantified

multi-temporal urban development characteristics in Las

Vegas from Landsat and ASTER Data. Apart from the

satellite imageries, NDVI, slope, aspect and temperature

were used for classification. Lu and Weng (2005) demon-

strated urban classification using full spectral information

of Landsat ETM? imagery in Marion County, Indiana

using PC’s of ETM? MS bands, texture, temperature and

data fusion of MS and PAN. They concluded that texture

and temperature may improve classification accuracy for

some classes, but may degrade for other classes. Data

fusion of MS and PAN are useful but high spatial resolu-

tion also increases spectral variation within the classes,

decreasing the classification accuracy. Data fusion
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combined with texture significantly improves classification

accuracy.

In this study, three different terrain types with varying

characteristics in the Indian context are considered for

classification with Landsat ETM? MS bands and several

other ancillary and derived layers using Random Forest

(RF) classifier. The role of vegetation indices such as

NDVI and EVI, elevation and derived layers (slope and

aspect), temperature, texture (Haralick et al. 1973; Haralick

1979; GRASS GIS 2017), and addition of PAN band in

addition to MS bands are examined in the process of image

classification.

Study Area and Data

Urban Classification: Greater Bangalore

The study area selected for urban classification is a part of

the city of Greater Bangalore as seen in Google Earth

image in Fig. 1a). The area in the scene is highly urbanised

with the central business district. It consists of highly

contrasting and heterogeneous features—race course (as

oval shape in the first quadrant of the image), bus stand

with semi-circular platforms, railway station with railway

lines in the second quadrant, a park below the race course,

Fig. 1 a Part of greater Bangalore City as seen in Google Earth (left) and IKONOS image (right); b location of the study area in Central Western

Ghats; and c location of study area in Western Himalaya (colour figure online)
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dense builtup with concrete roofs, and some buildings with

asbestos roofs, blue plastic roofs (one in the vicinity of the

race course and 2 near the railway lines), tarred roads with

flyovers, vegetation and few open areas (such as play

ground, walk ways and vacant land). Dense and medium

urban areas have high surrounding temperature compared

to vegetation patches, parks and lakes (Ramachandra and

Kumar 2009). The undulating terrain in the city ranges

from 735 to 970 m with varying textures due to different

urban structures. For this terrain two different data sets

were used for the demonstration of urban classification—

IKONOS MS and Landsat ETM? MS.

IKONOS data along with ancillary and derived layers

such as elevation, slope, NDVI, EVI and textures (ASM—

angular second moment, contrast, entropy and variance)

were used in separate experiments during classification as

summarised in Table 1. In another set of experiments,

Landsat ETM? data with 6 MS bands (resampled to 15 m)

Table 1 Details of geographical layers used for IKONOS data classification

Classification

No.

RS data and ancillary layers Total number of input

layers

1 IKONOS bands 1, 2, 3, 4 4

2 IKONOS bands 1, 2, 3, 4 and NDVI 5

3 IKONOS bands 1, 2, 3, 4 and EVI 5

4 IKONOS bands 1, 2, 3, 4 and DEM 5

5 IKONOS bands 1, 2, 3, 4, EVI, DEM 6

6 IKONOS bands 1, 2, 3, 4, DEM, slope and aspect 7

7 IKONOS bands 1, 2, 3, 4, DEM, slope, aspect and EVI 8

8 IKONOS bands 1, 2, 3, 4, DEM and Texture (ASM, contrast, entropy, variance) at 0, 45, 90 and 135

degrees for IKONOS bands 1, 2, 3, 4

5 ? (4 9 4 9 4) = 69

Table 2 Details of data and ancillary layers for Landsat ETM? MS classification of Bangalore City

Classification

No.

RS data and ancillary layers Total number of

input layers

1 ETM? bands 1, 2, 3, 4, 5 and 7 at 30 m 6

2 ETM? bands 1, 2, 3, 4, 5, 7 and Temperature 7

3 ETM? bands 1, 2, 3, 4, 5, 7, NDVI, EVI, elevation, slope and aspect 11

4 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, NDVI, EVI, elevation, slope and aspect 12

5 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, NDVI, EVI, elevation, slope and aspect, texture (ASM,

contrast, entropy, variance) at 0, 45, 90 and 135 degrees for ETM? bands 1, 2, 3, 4, 5, 7

108

6 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, NDVI, EVI, elevation, slope and aspect, texture (ASM,

contrast, entropy, variance) at 0, 45, 90 and 135 degrees for ETM? bands 1, 2, 3, 4, 5, 7

109

7 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, NDVI, EVI, elevation, slope and aspect, ETM? PAN, texture

(ASM, contrast, entropy, variance) at 0, 45, 90 and 135 degrees for ETM? bands 1, 2, 3, 4, 5, 7, and

ETM? PAN

125

Table 3 Details of data and ancillary layers for Landsat ETM? MS classification for a part of Central Western Ghats

Classification

No.

RS data and ancillary layers Total number of

input layers

1 ETM? bands 1, 2, 3, 4, 5 and 7 at 30 m 6

2 ETM? bands 1, 2, 3, 4, 5, 7 and Temperature 7

3 ETM? bands 1, 2, 3, 4, 5, 7, elevation 7

4 ETM? bands 1, 2, 3, 4, 5, 7, EVI 7

5 ETM? bands 1, 2, 3, 4, 5, 7, elevation, slope and aspect 9

6 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, EVI, PAN 9

7 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, EVI, PAN, texture (contrast, variance) at 0, 45, 90 and 135

degrees for ETM? bands 1, 2, 3, 4, 5, 7, and ETM? PAN

65
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along with geographical layers, PAN and texture measures

from PAN band making the total number of geographical

layers to 125, were used in the classification as summarised

in Table 2.

Forested Landscape with Undulating Terrain: Case

Study of Uttara Kannada District, Central Western

Ghats

This region has gentle undulating hills, rising steeply from

a narrow coastal strip bordering the Arabian sea to a pla-

teau at an altitude of 500 m with occasional hills rising

above 600–860 m. Climatic conditions range from arid to

humid due to physiographic conditions ranging from

plains, mountains to coast. Seven classifications were car-

ried out with different combinations of Landsat ETM?

bands and geographical layers (such as temperature, ele-

vation, EVI, slope, aspect, PAN and texture i.e. contrast

and variance as listed in Table 3) into agriculture, builtup,

forest, plantation, wasteland and water bodies that are the

six major land use categories in the forested and moun-

tainous terrain of Uttara Kannada district (Fig. 1b). The

total number of geographical layers were altogether 65 as

shown in Classification No. 7 in Table 3 which included

Landsat ETM? bands 1–5 and 7, temperature, EVI, PAN

and texture (contrast and variance computed at 0, 45, 90

and 135 degrees on ETM? bands 1–5, 7 and ETM? PAN

band).

Mountainous Terrain in Temperate Climate:

Mandhala Watershed, Western Himalaya

Mandhala watershed falls in lower Shivalik range of the

Himalayas (Fig. 1c), dominated by dry evergreen tree

species. This region is characterised by rugged terrain of

Western Himalaya with altitude ranging from 295 to

6619 m above mean sea level. Nine different classification

with combinations of Landsat ETM? spectral bands, PAN

and ancillary layers (viz. temperature, elevation, EVI,

slope, aspect and texture) were carried out into four cate-

gories—vegetation, water, snow and others (settlement,

rock, barren). In Classification No. 8, the combination of

Landsat ETM? bands, temperature, EVI and texture pro-

duced the highest number of input layers i.e. 104 (Table 4).

Finally in Classification No. 9, only original spectral bands

and their texture measures were considered (temperature

and EVI layers were ignored) to make the total number of

input layers in classification to 102 as seen in Table 4. It is

to be noted that high spatial resolution IKONOS data were

not available for forested landscape in Western Ghats and

for the Himalayan terrain.

The classifications were performed using RF which uses

bagging to form an ensemble of classification tree. At each

splitting node in the underlying classification trees, a ran-

dom subset of the predictor variables is used as potential

variables to define split. In training, it creates multiple

Classification and Regression Tree trained on a boot-

strapped sample of the original training data, and searches

only across randomly selected subset of the input variables

to determine a split for each node. The output of the

classifier is determined by a majority vote of the trees that

result in the greatest classification accuracy. It is superior

to many tree-based algorithms, because it lacks sensitivity

to noise and does not overfit. The trees in RF are not

pruned; therefore, the computational complexity is

reduced. As a result, RF can handle high dimensional data,

using a large number of trees in the ensemble (Breiman and

Cutler 2010). All the experiments were carried out on a

Desktop computer with Intel Pentium IV processor,

3.00 GHz clock speed and 3.5 Gb RAM in Linux with

GRASS GIS and R statistical package.

Table 4 Details of data and ancillary layers for Landsat ETM? MS classification in Western Himalaya

Classification

No.

RS data and ancillary layers Total number of

input layers

1 ETM? bands 1, 2, 3, 4, 5 and 7 at 30 m 6

2 ETM? bands 1, 2, 3, 4, 5, 7 and Temperature 7

3 ETM? bands 1, 2, 3, 4, 5, 7, elevation 7

4 ETM? bands 1, 2, 3, 4, 5, 7, EVI 7

5 ETM? bands 1, 2, 3, 4, 5, 7, elevation, slope and aspect 9

6 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, EVI, elevation, slope and aspect 11

7 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, EVI, elevation, slope, aspect and ETM? PAN 12

8 ETM? bands 1, 2, 3, 4, 5, 7, Temperature, EVI, texture (ASM, contrast, entropy, variance) at 0, 45, 90

and 135 degrees for ETM? bands 1, 2, 3, 4, 5, 7

104

9 ETM? bands 1, 2, 3, 4, 5, 7 and texture (ASM, contrast, entropy, variance) at 0, 45, 90 and 135 degrees

for ETM? bands 1, 2, 3, 4, 5, 7

102
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Results and Discussion

Urban classification using IKONOS MS bands

It was observed that EVI highlight non-woody vegetation

better than NDVI where the elevation ranged from 883 to

940 m. Figure 2 is the output from the 8 classifications as

explained in Table 5 using RF. Figure 2 (Classification No.

1) is the classified output of IKONOS 4 bands using RF.

Classification No. 2 is the output after adding NDVI as an

additional layer to the input in the classifier, where two

classes are missing (asbestos roof and open area). Overall,

blue plastic roof is over estimated (which is not a conse-

quence of training error) as evident from Fig. 2 and area

statistics in Table 5. The role of NDVI in discriminating

non-vegetation area is negligible and therefore asbestos

and open areas have merged with concrete roof and blue

plastic with a drastic decrease in overall accuracy (47%) as

shown in Table 6. When EVI was added as an additional

derived layer, classification was better compared to the

inclusion of NDVI. However, the class composition is

either under estimated (concrete roof, vegetation and open

area) or over estimated (blue plastic roof) lowering the

overall accuracy to 55%. Blue plastic roof was also over

estimated when both EVI and DEM were added as input

layers along with the original bands. As evident from

Fig. 2, concrete roof and open area have been misclassified

and merged to blue plastic roof, which is dominant in the

Fig. 2 Classified outputs from IKONOS by adding additional geographical layers (colour figure online)

J Indian Soc Remote Sens

123



scene. Asbestos roof and vegetation are the two classes

which showed higher producer’s and user’s accuracies.

However, the overall accuracy still remained low

(49.28%). Similar situation prevails when DEM, slope and

aspect were included with the input IKONOS MS bands to

the classifier. Concrete roof, open area and vegetation are

under estimated and blue plastic roof is over estimated,

bringing the overall accuracy to as low as 55%. The output

worsens when DEM, slope, aspect with EVI were consid-

ered additionally to the input. All the classes are either over

estimated or under estimated with overall accuracy of 51%

(Table 6).

In classification No. 8, when only DEM and texture

measures were added (Table 1) as input to the classifier

apart from IKONOS 4 MS bands, the overall accuracy

went high to 88.72% with high producer’s and user’s

accuracies for individual classes which were classified

properly (Table 5). The experiments conclude that in a

highly urbanised area with less vegetation cover and highly

contrasting features, texture plays a major role in dis-

criminating individual classes which are rather difficult to

distinguish using only original high spatial resolution

IKONOS MS bands as evident from high classification

accuracies in Table 6 and area statistics in Table 5 (Clas-

sification No. 4 and 8 highlighted in bold), compared to the

classification of only IKONOS 4 MS bands (Classification

No. 1 highlighted in bold). However, in Classification No.

4, concrete roof in top and bottom left areas of the image

have been misclassified as open area as also evident from

Table 5. DEM plays a role when the terrain is undulating

but derived layers such as slope and aspect did not aid in

discriminating classes when the elevation had low vari-

ance. Due to limited vegetation presence (a few parks) in

the study area, EVI was not useful in classification. Overall

3.5% improvement in accuracy was observed after

including elevation and texture along with the original

bands as input to the classifier.

Urban Classification Using Landsat ETM1 Bands

Figure 3 shows output from the seven classified images and

LU statistics are listed in Table 7. The producer’s, user’s,

overall accuracies and kappa are given in Table 8. Figure 3

indicates that outputs obtained from the original spectral

bands along with temperature, NDVI, EVI, elevation, slope

and aspect (Classification No. 1, 2, 3 and 4) have mis-

classified many pixels belonging to builtup, water and open

area. Many of the tarred or concrete road pixels that

actually belong to builtup have been classified as water.

Thus water class has been over estimated.

From accuracy assessment in Table 8, we see that

Classification No. 5, 6 and 7 have higher accuracies com-

pared to other classifications. Inclusion of temperature

increased accuracy whereas addition of vegetation index

layers along with elevation, slope and aspect decreased the

overall accuracy. When both temperature and vegetation

index with elevation, slope and aspect were used, the

accuracy still decreased. However, inclusion of texture and

Table 5 Area statistics obtained from the IKONOS classified images

Area Class

Concrete roof Asbestos roof Blue plastic roof Vegetation Open area Total

Classification No. 1 ha 351.74 9.53 1.88 260 158.80 781.76 ha

(100%)% 44.99 1.22 0.24 33.26 20.66

Classification No. 2 ha 324.51 – 285.02 172.23 –

% 41.51 – 36.46 22.03 –

Classification No. 3 ha 299.89 7.26 259.32 188.17 27.11

% 38.36 0.93 33.17 24.07 3.47

Classification No. 4 ha 344.74 8.82 1.42 259.98 166.8

% 44.1 1.13 0.18 33.25 21.34

Classification No. 5 ha 84.53 11.20 385.11 244.86 56.06

% 10.81 1.43 49.26 31.32 7.17

Classification No. 6 ha 142.56 17.44 331.30 218.02 72.44

% 18.24 2.23 42.38 27.89 9.27

Classification No. 7 ha 126.17 16.13 433.22 146.88 59.36

% 16.14 2.06 55.42 18.79 7.59

Classification No. 8 ha 354.88 7.93 0.95 259.33 158.66

% 45.40 1.22 0.12 33.17 20.30

J Indian Soc Remote Sens

123



PAN significantly increased the overall accuracy of all the

classes including urban and water bodies as evident from

Table 7 and Table 8 (highlighted in bold). There was a

7.6% increase in accuracy by adding temperature, NDVI,

EVI, elevation, slope, aspect, PAN along with texture

measures, which proved to be useful for medium spatial

resolution data such as ETM? while discriminating dif-

ferent classes in an urban environment.

Forested Landscape with Undulating Terrain

Classification: Uttara Kannada, Central Western

Ghats

Figure 4 shows output from the seven classified images and

the LU statistics are listed in Table 9. The producer’s,

user’s and overall accuracies with kappa are given in

Table 10. Inclusion of NDVI in spectral bands classifica-

tion produced very low accuracy, so was removed from

further analysis. Figure 4 shows that addition of elevation,

slope and aspect did not improve classification accuracy

(Classification No. 3 and 5), and hence were removed from

subsequent classifications. Addition of these layers mis-

classified forest as plantation ([40% of the area was mis-

classified as plantation) and wasteland were under

estimated. Water bodies could not be detected.

Outputs obtained from original spectral bands along

with temperature, EVI and PAN (Classification No. 2, 4

and 6) have improved classification results. Texture

could not resolve differences between plantation and

forest, and plantation was under estimated in classifica-

tion. From Table 10, it is evident that temperature plays

a major role in classification in a forested area which

had highest classification accuracy (Classification No. 2

with 88.26% overall accuracy highlighted in bold in

Table 10). EVI increased the classification accuracy by

4.3% (Classification No. 4) and temperature, EVI and

PAN together increased the overall accuracy by 1.6% (in

Classification No. 6) compared to the classification of

only original spectral bands. All other layer combinations

decreased the accuracy. Overall, the highest classification

Table 6 Accuracy assessment of the IKONOS classified images

Accuracy Class

Concrete roof Asbestos roof Blue plastic roof Vegetation Open area OA (%) Kappa

Classification No. 1

PA (%) 88.20 83.92 84.00 83.19 86.92 85.25 0.8250

UA (%) 88.99 81.00 87.00 82.77 88.00

Classification No. 2

PA (%) 76.22 – 17.01 48.55 – 47.63 0.4136

UA (%) 69.45 – 21.97 51.33 –

Classification No. 3

PA (%) 83.77 91.34 10.55 48.00 18.00 55.05 0.5117

UA (%) 70.53 97.63 42.31 41.38 17.09

Classification No. 4

PA (%) 84.15 89.48 88.53 85.07 82.18 85.88 0.8437

UA (%) 83.57 84.39 89.11 85.95 84.79

Classification No. 5

PA (%) 42.89 73.94 10.05 78.53 55.91 49.28 0.4577

UA (%) 22.05 75.9 19.23 83.91 30.37

Classification No. 6

PA (%) 57.55 67.58 18.06 78.66 57.81 55.37 0.5322

UA (%) 55.04 72.55 21.23 73.84 51.41

Classification No. 7

PA (%) 58.38 51.43 12.05 76.25 65.99 51.06 0.4719

UA (%) 51.31 58.45 17.69 64.37 54.70

Classification No. 8

PA (%) 92.57 89.25 89.00 86.13 88.37 88.72 0.8615

UA (%) 90.00 82.00 88.00 90.15 91.75

PA, Producer’s accuracy (%); UA, User’s accuracy (%); OA, Overall accuracy (%)
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accuracy improved by 6.7% with temperature as an

additional layer.

Mountainous Terrain: Mandhala Watershed,

Western Himalaya

Figure 5 shows output from the nine classified images, LC

statistics are listed in Table 11 and accuracy assessment is

given in Table 12. Figure 5 shows that classification of

only 6 spectral bands and addition of EVI (Classification

No. 1 and 4) have over estimated the ‘‘others’’ category.

In Classification No. 8 (ETM? bands 1, 2, 3, 4, 5, 7 with

temperature, EVI and texture) and Classification No. 9

(ETM? bands 1, 2, 3, 4, 5, 7 and texture), others category

was not identified. In both these cases, vegetation was over

estimated because of misclassification of others category.

Table 7 Area statistics

obtained from the Landsat

ETM? classified images for

Bangalore City

Area Class

Urban Vegetation Water Open area Total

Classification 1 ha 4543.14 1911.89 600.32 1999.25 9054.62 ha

(100%)% 50.17 21.12 6.63 22.08

Classification 2 ha 4014.78 1825.96 560.71 2653.15

% 44.34 20.17 6.19 29.30

Classification 3 ha 4245.71 1884.53 471.43 2446.04

% 46.93 20.83 5.21 27.03

Classification 4 ha 3450.37 1854.25 554.54 3188.55

% 38.14 20.49 6.13 35.24

Classification 5 ha 5262.71 1905.61 93.96 1754.99

% 58.36 21.13 1.04 19.46

Classification 6 ha 5226.04 1887.87 86.47 1816.89

% 57.96 20.94 0.96 20.15

Classification 7 ha 5164.41 1974.06 65.70 1813.11

% 57.27 21.89 0.73 20.11

Fig. 3 Classified outputs from Landsat ETM? bands by adding additional geographical layers (colour figure online)
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Table 8 Accuracy assessment

of the Landsat ETM? classified

images for Bangalore City

Accuracy Class

Urban Vegetation Water Open area OA (%) Kappa

Classification No. 1

PA (%) 73.94 87.45 66.91 74.62 75.50 0.7309

UA (%) 76.92 84.36 61.00 78.82

Classification No. 2

PA (%) 76.22 87.99 68.62 79.52 77.94 0.7548

UA (%) 78.73 83.05 65.28 81.03

Classification No. 3

PA (%) 71.88 78.87 69.96 71.09 73.12 0.7101

UA (%) 74.70 77.95 65.23 75.29

Classification No. 4

PA (%) 68.33 81.87 57.34 77.11 71.43 0.6811

UA (%) 75.19 78.33 59.61 72.55

Classification No. 5

PA (%) 83.57 82.41 78.91 81.88 81.84 0.7978

UA (%) 83.64 83.37 80.85 81.76

Classification No. 6

PA (%) 83.99 82.59 79.15 82.13 82.29 0.8077

UA (%) 83.94 83.77 81.17 82.44

Classification No. 7

PA (%) 84.91 88.21 81.11 83.62 83.15 0.8125

UA (%) 81.17 81.57 84.23 80.51

PA, Producer’s accuracy (%); UA, User’s accuracy (%); OA, Overall accuracy (%)

Fig. 4 Classified outputs of Landsat ETM? bands by adding additional geographical layers from a part of Central Western Ghats (colour

figure online)
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The optimum LC classification result with different layers

is highlighted in bold in Table 11 (Classification No. 7).

From accuracy assessment (Table 12), it is evident that

addition of each layer in subsequent classifications

improvised the classification accuracy (Classification No.

2–7), compared to only spectral bands (Classification No.

1). Output obtained from original spectral bands along with

temperature, EVI, elevation, slope, aspect and PAN

showed highest classification accuracy. However, addition

of texture did not show any improvement in classification

Table 9 Area statistics

obtained from the Landsat

ETM? classified images (part

of Central Western Ghats)

Area Class

Agriculture Builtup Forest Plantation Wasteland Water

Classification 1 ha 8721.71 730.03 37671.87 4197.55 885.99 651.34

% 16.5 1.38 71.26 7.94 1.68 1.23

Classification 2 ha 8179.03 853.60 36978.03 5194.64 929.38 723.79

% 15.47 1.61 69.96 9.83 1.76 1.37

Classification 3 ha 9314.73 889.17 20812.48 21359.72 482.38 –

% 17.62 1.68 39.37 40.41 0.91 –

Classification 4 ha 8973.28 709.15 37594.65 4058.98 898.02 624.40

% 16.98 1.34 71.12 7.68 1.70 1.18

Classification 5 ha 9737.47 851.73 19589.41 22217.03 462.84 –

% 18.42 1.61 37.06 42.03 0.88 –

Classification 6 ha 9455.82 892.81 36491.99 4745.47 604.38 666.02

% 17.89 1.69 69.04 8.98 1.14 1.26

Classification 7 ha 8558.35 8.50 42688.61 276.25 822.53 504.24

% 16.19 0.02 80.76 0.52 1.56 0.95

Total ha 52858.47

Table 10 Accuracy assessment

of the Landsat ETM? classified

images from a part of Central

Western Ghats

Accuracy Class

Agriculture Builtup Forest Plantation Wasteland Water OA Kappa

Classification No. 1

PA 74.36 81.15 79.55 81.00 78.72 81.88 81.56 0.7856

UA 86.67 83.85 77.80 84.62 80.00 82.59

Classification No. 2

PA 92.86 88.15 87.20 85.66 88.72 89.56 88.26 0.8643

UA 86.67 88.15 89.66 86.92 87.00 89.44

Classification No. 3

PA 61.76 68.18 61.90 53.85 55.22 – 61.59 0.4931

UA 66.67 59.22 65.14 62.31 57.48 –

Classification No. 4

PA 78.74 88.15 83.78 80.09 88.72 85.55 85.87 0.8326

UA 96.67 88.15 81.23 82.31 81.11 87.23

Classification No. 5

PA 61.84 68.19 61.81 59.49 65.19 – 61.69 0.4874

UA 63.34 60.33 55.59 60.31 60.65 –

Classification No. 6

PA 83.34 81.91 77.38 79.91 85.28 88.01 83.16 0.8014

UA 85.55 82.48 81.68 82.30 83.77 86.34

Classification No. 7

PA 84.55 71.88 74.88 – 72.00 81.00 77.64 0.7552

UA 80.73 62.96 78.02 – 83.51 88.58

PA, Producer’s accuracy (%); UA, User’s accuracy (%); OA, Overall accuracy (%)
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(Classification No. 8 and 9). Addition of temperature layer

increased the classification accuracy by 3.76% (Classifi-

cation No. 2), elevation by 4.18% (Classification No. 3),

EVI by 1% (Classification No. 4), elevation, slope and

aspect by 5.32% (Classification No. 5) and temperature,

EVI, elevation, slope, aspect and PAN together increased

the overall accuracy by 10.84% (in Classification No. 7)

compared to the classification of only original spectral

bands. From Table 12, it is evident that in a rugged terrain

with temperate climate, temperature, EVI, elevation, slope,

aspect and PAN play major role in improving the classi-

fication with highest accuracy (89.97% in Classification

No. 7 highlighted in bold in Table 12). However, texture

combinations decreased the accuracy.

In this work, derived and ancillary layers were assessed

for their performance in improving classification accuracy

in three different terrains such as urbanised landscape,

forested landscape with undulation and rugged terrain

with temperate climate. The results provided new insights

to the likelihood of improved performance of LC classi-

fication by use of supplemental layers related to the

region along with the RS data. IKONOS data were used

only for urban area classification along with many other

layers of elevation and texture. The enhanced character-

istics of IKONOS MS and PAN compared to Landsat

ETM? or IRS LISS-III highlighted some typical urban

features such as buildings and narrow roads in residential

areas compared to the latter (Fig. 2, 3). IKONOS image

Fig. 5 Classified outputs from Landsat ETM? bands by adding additional geographical layers (part of Western Himalaya) (colour figure online)
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not only reduced the mixed pixel problem, but also pro-

vided a rich texture and contextual information than

Landsat ETM? MS bands with 15 or 30 m spatial reso-

lution. Earlier works (Gong et al. 1992; Shaban and

Dikshit 2002) have used SPOT HRV data for urban

classification due to its high spatial resolution comparing

with Landsat ETM data. Knowledge based expert system

have also been used with MS imagery and LiDAR data to

delineate impervious surface in urban areas (Germaine

and Hung 2011). The study confirmed that high spatial

resolution is considered to be more important than high

spectral resolution in urban classification (Jensen and

Cowen 1999). In IKONOS data classification, when only

DEM and texture measures were added as input to the

classifier apart from IKONOS 4 spectral bands, the

overall accuracy went high to 88.72% (3.5% improve-

ment) with high producer’s and user’s accuracies for

individual classes, which is comparable to the overall

accuracy obtained by classifying QuickBird imagery for

LC classification in a complex urban environment based

on texture (overall accuracy—87.33%) and segmentation

(overall accuracy—88.33%) by Lu et al. (2010). Although

it is difficult to identify suitable texture which is depen-

dent on image band and window size for the specific

study (Chen et al. 2004), appropriate texture measures

reduce spectral variation within same LC and also

improves spectral separability among different LC classes

(Augera et al. 2008; Lu et al. 2008a, b). It is to be noted

that derived layers from elevation such as slope and

aspect did not aid in discriminating classes and EVI did

not prove useful in classification due to poor vegetation

cover in the urban area. Addition of temperature, NDVI,

EVI, elevation, slope, aspect, PAN and texture layers with

Landsat ETM? spectral bands 1, 2, 3, 4, 5 and 7, sig-

nificantly improved the classification accuracy by 7.6%,

which proved to be useful with medium spatial resolution

data in an urban area.

In a forested terrain, temperature played major role in

classification, producing highest classification accuracy

(88.26%), which is an improvement of 6.7% compared to

the classification of only spectral bands. Because of various

complex surface features, hilly regions are difficult to

classify using RS data. In a rugged terrain with temperate

climate and high altitudinal variations, inclusion of tem-

perature, EVI, elevation, slope, aspect and PAN layers

played a major role in increasing the classification accuracy

to 89.97% (improvement by 10.84%), compared to the

classification of only original spectral bands. This accuracy

is higher than use of fractal dimension data and original

ETM? data in a Chinese subtropical hilly region (accuracy

of 80.69%) by Zhu et al. (2011). Individually, the maxi-

mum increase in overall accuracy was noticed by the

addition of slope and aspect to the original spectral bands

(improvement in classification accuracy by 5.32%).

Table 11 Area statistics

obtained from the Landsat

ETM? classified images of

Western Himalaya

Area Class

Vegetation Water Snow Others (settlement, barren, rock)

Classification 1 ha 916357 12,725 168,825 352,291

% 63.19 0.88 11.64 24.29

Classification 2 ha 940,477 12,538 248,346 248,838

% 64.85 0.86 17.12 17.16

Classification 3 ha 939,836 12,410 269,573 228,379

% 64.81 0.86 18.52 15.75

Classification 4 ha 984,622 12,677 176,550 276,350

% 67.90 0.87 12.17 19.06

Classification 5 ha 962,457 12,484 276,213 199,044

% 66.37 0.86 19.05 13.73

Classification 6 ha 1,008,109 12,441 280,383 149,265

% 69.52 0.86 19.33 10.29

Classification 7 ha 1,009,705 12,423 279,577 148,493

% 69.63 0.86 19.28 10.24

Classification 8 ha 1,156,003 11,202 282,994 –

% 79.71 0.77 19.51 –

Classification 9 ha 1,172,211 20,207 257,781 –

% 80.83 1.39 17.78 –

Total ha 1,450,198

% 100
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However, in addition to the use of ancillary layers such as

textural images, selection of different seasonal images are

also needed to improve classification performance (Lu

et al. 2010; Masocha and Skidmore 2011). Selection of a

particular set of derived geographical input data along with

the original spectral bands for LC classification is generally

subjective or random without much insightful considera-

tion, and in most cases ancillary layers are used without the

knowledge of their meaningful impact on the final classi-

fication result. The present study showed that different

combination of the input data can lead to different sepa-

ration of classes in the feature space. Different classifica-

tion algorithms can also lead to different compartmentation

of the feature space with respect to the classes and both

choices can affect the final classification result. In such

cases, discussing the aspect of individual derived geo-

graphical layers is meaningful. Further, future analysis will

focus on the effect and role of ancillary and derived geo-

graphical layers in improving the classification accuracy

along with new methods of expert classification being

developed.

Conclusions

RS based LC mapping and monitoring of large areas has

created a new challenge with the varied spatial scale and

data volume, requiring automated classification algorithms

that minimise human interventions. This work has shown

that use of spatial information along with complimentary

ancillary and derived geographical layers is an effective

way to improve LC classification performance which was

demonstrated in three different terrains. In a highly urba-

nised area with less vegetation cover and highly contrasting

features, texture played a major role in discriminating

individual classes which were rather difficult to distinguish

using only original high spatial resolution IKONOS MS

bands. DEM played a role when the terrain is undulating,

however, due to limited vegetation cover, vegetation index

was not useful in classification. For the same urban area,

inclusion of temperature, NDVI, EVI, elevation, slope,

aspect, PAN and texture layers significantly increased the

overall accuracy by 7.6% while discriminating different

classes properly with Landsat ETM? data. In a forested

landscape with moderate elevation, temperature was the

only factor that increased the LC classification accuracy. In

a rugged terrain with temperate climate, addition of tem-

perature, EVI, elevation, slope, aspect and PAN layers

significantly improved the classification accuracy com-

pared to the classification of only original spectral bands.

Sometimes, improvements in spatial resolution of the data

by integration of the spectral and spatial details from

Multispectral and Panchromatic bands through image

fusion also helps in object recognition, delineation and

improves classification accuracy.
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