Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot
1Energy and Wetland Research Group, CES TE 15, Environmental Information System, Centre for Ecological Sciences [CES], Indian Institute of Science, New Bioscience Building, Third Floor, E-Wing, [Near D-Gate], Bangalore 560012, India.
2Centre for Sustainable Technologies (ASTRA), Bangalore, India.
3Centre for Infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore, Karnataka 560 012, India
4To whom correspondence should be addressed; e-mail: tvr@iisc.ac.in, envis.ces@iisc.ac.in

References

  1. Achat, D. L., Fortin, M., Landmann, G., Ringeval, B., & Augusto, L. (2015). Forest soil carbon is threatened by intensive biomass harvesting. Scientific reports, 5, 15991. https://doi.org/10. 1038/srep15991.
  2. Agrawal, A., Nepstad, D., & Chhatre, A. (2011). Reducing emissions from deforestation and forest degradation. Annual Review of Environment and Resources, 36, 373–396.
  3. Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600–604.
  4. Armenteras, D., Murcia, U., Gonza´lez, T. M., Baro´n, O. J., & Arias, J. E. (2019). Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness.Global Ecology and Conservation, 17, e00567. https://doi.org/10.1016/j.gecco.2019.e00567.
  5. Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.
  6. Atkinson, G., & Gundimeda, H. (2006). Accounting for India's forest wealth. Ecological Economics, 59(4), 462–476.
  7. Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550–6555.
  8. Bellassen, V., & Luyssaert, S. (2014). Carbon sequestration: Managing forests in uncertain times. Nature News, 506(7487), 153–155.
  9. Bharath, S., Rajan, K.S., Ramachandra, T.V. (2013). Land surface temperature responses to land use land cover dynamics. Geoinfor Geostat: An Overview. https://doi.org/10.4172/2327-4581.1000112
  10. Bharath, S., Rajan, K. S., & Ramachandra, T. V. (2014). Status and future transition of rapid urbanizing landscape in central Western Ghats—CA based approach. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2(8), 69–75.
  11. Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.
  12. Canziani, P. O., & Gerardo, C. B. (2012). Climate impacts of deforestation/land-use changes in central South America in the PRECIS Regional Climate Model: Mean precipitation and temperature response to present and future deforestation scenarios. The Scientific World Journal, 2012, 1–20.
  13. Chandran, M. D. S., Rao, G. R., Gururaja, K. V., & Ramachandra, T. V. (2010). Ecology of the swampy relic forests of Kathalekan from Central Western Ghats, India. Bioremediation, Biodiversity and Bioavailability, 4(1), 54–68.
  14. Damandeep, S. (2017). Putting a price on carbon: A handbook for indian companies. New Delhi: TERI Press.
  15. Debortoli, N. S., Dubreuil, V., Hirota, M., Filho, S. R., Lindoso, D. P., & Nabucet, J. (2017). Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. International Journal of Climatology, 37(6), 2889–2900.
  16. Do, T. V., Trung, P. D., Yamamoto, M., Kozan, O., Thang, N. T., Thuyet, D. V., et al. (2018). Aboveground biomass increment and stand dynamics in tropical evergreen broadleaved forest. Journal of Sustainable Forestry, 37(1), 1–14.
  17. Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of Environmental Management, 206, 10–19.
  18. Funatsu, B. M., Dubreuil, V., Claud, C., Arvor, D., &Gan, M. A. (2012). Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2011JD017259
  19. Gallaun, H., Zanchi, G., Nabuurs, G. J., Hengeveld, G., Schardt, M., & Verkerk, P. J. (2010). EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management, 260(3), 252–261.
  20. Garg, A., Shukla, P. R., Kankal, B., &Mahapatra, D. (2017). CO2 emission in India: Trends and management at sectoral, subregional and plant levels. Carbon Management, 8(2), 111–123.
  21. Ghazoul, J., Butler, R. A., Mateo-Vega, J., & Koh, L. P. (2010). REDD: A reckoning of environment and development implications. Trends in Ecology & Evolution, 25(7), 396–402.
  22. Guthrie, G., ∓ Kumareswaran, D. (2009). Carbon subsidies, taxes and optimal forest management. Environmental & Resource Economics, 43(2), 275–293.
  23. Humphreys, D. (2008). The politics of Avoided Deforestation: Historical context and contemporary issues. International Forestry Review, 10(3), 433–442.
  24. IMD. (2018). Indian Meterological Department, Hydrometerological Services, Minist. Earth Sci. Gov. India. http://www.imd.gov.in/pages/services_hydromet.php. Accessed 15 Mar 2019.
  25. KSNDMC. (2018). Karnataka State Natural Disaster Monitoring Centre, Gov. Karnataka. http://dmc.kar.nic.in/default.asp Accessed 13 Feb 2019.
  26. Kueas, A., Trakimas, G., Baleiauskas, L.I., & Vaitkus, G. (2011). Multi-scale analysis of forest fragmentation in Lithuania. Baltic Forest, 17(1), 128–135.
  27. Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 242–258.
  28. Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79–86.
  29. Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1), 27–36.
  30. Le Que´re, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al. (2018). Global carbon budget 2018. Earth System Science Data. https://doi.org/10.5194/essd-10-2141-2018.
  31. Levy, P. E., Cannell, M. G. R., & Friend, A. D. (2004). Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change, 14(1), 21–30.
  32. Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2014). Remote sensing and image interpretation. New York: Wiley.
  33. Malhi, Y., Aragao, L. E., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., et al. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106(49), 20610–20615.
  34. McGarvey, J. C., Thompson, J. R., Epstein, H. E., & Shugart, H. H., Jr. (2015). Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink. Ecology, 96(2), 311–317.
  35. NCAR. (2019). Climate Data Guide. https://climatedataguide.ucar.edu/data-type/gridded-obs. Accessed 12 Jan 2019.
  36. Nogueira, E. M., Yanai, A. M., de Vasconcelos, S. S., de Alencastro Grac¸ a, P. M. L., & Fearnside, P. M. (2018). Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Regional Environmental Change, 18(1), 261–270.
  37. Nogueira, E. M., Yanai, A. M., Fonseca, F. O., & Fearnside, P. M. (2015). Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global Change Biology, 21(3), 1271– 1292.
  38. Pachauri, R. K., & Reisinger, A. (2007). Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Geneva, Switzerland: IPCC.
  39. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world's forests. Science, 333 (6045), 988–999.
  40. Pandey, R., Rawat, G. S., & Kishwan, J. (2011). Changes in distribution of carbon in various forest types of india from 1995 to 2005 changements dans la distribution du carbone dans differents types de Forets en Inde. Silva Lusit, 19(1), 41–54.
  41. Rai, S. N., & Proctor, J. (1986). Ecological studies on four rainforests in Karnataka, India: I. Environment, structure, floristics and biomass. The Journal of Ecology, 74(2), 439–454.
  42. Ramachandra, T. V., Aithal, B. H., & Sreejith, K. (2015). GHG footprint of major cities in India. Renewable and Sustainable Energy Reviews, 44, 473–495.
  43. Ramachandra, T. V., & Bharath, S. (2018). Geoinformatics based valuation of forest landscape dynamics in central western Ghats. India. J Remote Sensing & GIS, 7(1), 227–236.
  44. Ramachandra, T. V., & Bharath, S. (2019). Global warming mitigation through carbon sequestrations in the Central Western Ghats. Remote Sensing in Earth Systems Sciences, 2(1), 39–63.
  45. Ramachandra, T. V., Bharath, S., & Chandran, M. D. S. (2016). Geospatial analysis of forest fragmentation in Uttara Kannada District. India. Forest Ecosystems, 3(1), 10–25.
  46. Ramachandra, T. V., Bharath, S., & Gupta, N. (2018). Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. Journal of Environmental Management, 206, 1253–1262.
  47. Ramachandra, T. V., Chandran, M. D. S., Harish, B. R., et al.(2010). Biodiversity, ecology and socio economic aspects ofgundia river basin in the context of proposed mega hydro electric power project, CES Technical Report 122. Bengaluru: IISc.
  48. Ramachandra, T. V., Hegde, G., Setturu, B., & Krishnadas, G. (2014). Bioenergy: A sustainable energy option for rural India. Advances in Forestry Letters (AFL), 3(1), 1–15.
  49. Ramachandra, T. V., Joshi, N. V., & Subramanian, D. K. (2000a). Present and prospective role of bioenergy in regional energy system. Renewable and Sustainable Energy Reviews, 4(4), 375–430.
  50. Ramachandra, T. V., Subramanian, D. K., Joshi, N. V., Gunaga, S. V., & Harikantra, R. B. (2000b). Domestic energy consumption patterns in Uttara Kannada district, Karnataka state. India. Energy Conversion and Management, 41(8), 775–831.
  51. Rao, G. R., Krishnakumar, G., Dudani, S. N., Chandran, M. D. S., & Ramachandra, T. V. (2013). Vegetation changes along altitudinal gradients in human disturbed forests of Uttara Kannada. Central Western Ghats. Journal of Biodiversity, 4(2), 61–68.
  52. Ravindranath, N. H., & Ostwald, M. (2008). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects (Vol. 29). Springer Science & Business Media.
  53. Ravindranath, N. H., Somashekhar, B. S., & Gadgil, M. (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297– 320.
  54. Ricke, K., Drouet, L., Caldeira, K., & Tavoni, M. (2018). Countrylevel social cost of carbon. Nature Climate Change, 8(10), 895–900.
  55. Rodrı guez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E., Hoscilo, A., et al. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53–68.
  56. Riitters, K., Wickham, J., O'Neill, R., Jones, B., & Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation ecology. http://www.consecol.org/vol4/iss2/art3
  57. Riitters, K. H., Wickham, J. D., O’neill, R. V., Jones, K. B., Smith, E. R., Coulston, J. W., et al. (2002). Fragmentation of continental United States forests. Ecosystems, 5(8), 0815–0822. https://doi.org/10.1007/s10021-002-0209-2
  58. Schulp, C. J., Nabuurs, G. J., & Verburg, P. H. (2008). Future carbon sequestration in Europe—effects of land use change. Agriculture, Ecosystems & Environment, 127(3–4), 251–264.
  59. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., MurrayTortarolo, G., Ahlstrom, A., et al. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12(3), 653–679.
  60. Swamy, H. R. (1992). Organic productivity, nutrient cycling and small watershed hydrology of natural forests and monoculture plantations in Chikmagalur District, Karnataka (No. CONF9102202-). New York: Wiley.
  61. Syktus, J. I., & McAlpine, C. A. (2016). More than carbon sequestration: Biophysical climate benefits of restored savanna woodlands. Scientific Reports, 6, 29194. https://doi.org/10.1038/srep29194
  62. THRG (2019). Terrestrial Hydrology Research Group, Global Meteorological Forcing Dataset for land surface modeling, Princeton University.
  63. Vinay, S., Bharath, S., Bharath, H. A., & Ramachandra, T. V. (2013). Hydrologic model with landscape dynamics for drought monitoring. In Proceeding of joint international
  64. workshop of ISPRS WG VIII/1 and WG IV/4 on geospatial data for disaster and risk reduction, Hyderabad, November (pp. 21–22), India.
  65. WRI. (2014). Climate analysis indicators tool: WRI's climate data explorer. World Resources Institute, Washington, DC.
  66. Zaehle, S., Bondeau, A., Carter, T. R., Cramer, W., Erhard, M., Prentice, I. C., et al. (2007). Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems, 10(3), 380–401.
  67. Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X., & Liu, Y. (2018). Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Global ecology and conservation, 16, e00501. https://doi.org/10.1016/j.gecco.2018.e00501

  68.  

     

    TOP  »  BACK
Citation : Ramachandra, T.V. & Bharath, 2019, Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot, S. Nat Resour Res (2019): Pp1-19. https://doi.org/10.1007/s11053-019-09588-0
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Centre for Sustainable Technologies (ASTRA), Bangalore, India.
Centre for Infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore, Karnataka 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : tvr@iisc.ac.in, envis.ces@iisc.ac.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail