1. |
Abd El-Karim, M.S. (2014). Epipelic algal distribution in Ismailia Canal and the possible use of diatoms as bioindicators and a biomonitoring tool. The Egyptian Journal of Aquatic Research, 40(4), 385-393. http://dx.doi.org/10.1016/j.ejar.2014.12.005 |
2. |
Abdulwahid, K.D. (2016). Assessment of water quality in Khreisan river from Baquba city, Diyala (Iraq) by using algae as a bioindicator, International Journal of Current Research, 8(6), 33108-33115. |
3. |
Adamczuk, M., Pawlik-Skowrońska, B., & Solis, M. (2020). Do anthropogenic hydrological alterations in shallow lakes affect the dynamics of plankton? Ecological Indicators, 114, 1-14. https://doi.org/10.1016/j.ecolind.2020.106312. |
4. |
Afonina, E.Y., & Tashlykova, N.A. (2018). Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia. Saudi Journal of Biological Sciences, 25(2), 399-408. |
5. |
AlgaeBase, (2021). https://www.algaebase.org/ |
6. |
Alves, J.D.P.H., Fonseca, L.C., Chielle, R.D.S.A., & Macedo, L.C.B. (2018). Monitoring water quality of the Sergipe river basin: An evaluation using multivariate data analysis. RBRH, 23, 1-12. https://doi.org/10.1590/2318-0331.231820170124 |
7. |
APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater. 21st Edition. D.C., Washington: American Public Health Association. |
8. |
Avvannavar, S.M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143(1-3), 279-290. DOI 10.1007/s10661-007-9977-7 |
9. |
Beaver, J.R., Tausz, C.E., Scotese, K.C., Pollard, A.I., & Mitchell, R.M. (2018). Environmental factors influencing the quantitative distribution of microcystin and common potentially toxigenic cyanobacteria in US lakes and reservoirs. Harmful Algae, 78, 118-128. doi: 10.1016/j.hal.2018.08.004. |
10. |
Belokda, W., Khalil, K., Loudiki, M., Aziz, F., & Elkalay, K. (2019). First assessment of phytoplankton diversity in a Marrocan shallow reservoir (Sidi Abderrahmane). Saudi Journal of Biological Sciences, 26(3), 431-438. doi.org/10.1016/j.sjbs.2017.11.047 |
11. |
Berger, W.H., & Parker, F.L. (1970). Diversity of planktonic foraminifera in deep-sea sediments. Science, 168, 1345– 1347. |
12. |
Bose, R., Bose, A.K., Das, A.K., Parashar, A., & Roy, K. (2019). Fish diversity and limnological parameters influencing fish assemblage pattern in Chambal River Basin of Madhya Pradesh, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2), 461-473. https://doi.org/10.1007/s40011-017-0958-5 |
13. |
Brönmark, C., &Hansson, L.A. (2002). Environmental issues in lakes and ponds: Current state and perspectives. Environmental Conservation, 29(3), 290-307. https://doi.org/10.1017/S0376892902000218 |
14. |
Catherine, Q., Susanna, W., Isidora, E.S., Mark, H., Aurelie, V., & Jean-François, H. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Research 47(15), 5464-5479. http://dx.doi.org/10.1016/j.watres.2013.06.042 |
15. |
Çelekli, A., & Şahin, G. (2021). Bio-assessment of wastewater effluent conditions with algal pollution index and multivariate approach. Journal of Cleaner Production, 310, 1-11. |
16. |
Chen, J., & Lu, J. (2014). Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East China. Plos one, 9 (8), 1-12. https://doi.org/10.1371/journal.pone.0102714 |
17. |
Chen, R., Ju, M., Chu, C., Jing, W., & Wang, Y. (2018). Identification and quantification of physicochemical parameters influencing chlorophyll-a concentrations through combined principal component analysis and factor analysis: A case study of the Yuqiao reservoir in China. Sustainability, 10(4), 1-15. doi:10.3390/su10040936 |
18. |
Cheraghpour, J., Afsharzadeh, S., Sharifi, M., Ghadi, R.R., & Masoudi, M. (2013). Phytoplankton diversity assessment of Gandoman Wetland, West of Iran. Iranian Journal of Botany, 19(2), 153-16. |
19. |
Das, S., Nath, K., & Chowdhury, R. (2021). Comparative studies on biomass productivity and lipid content of a novel blue-green algae during autotrophic and heterotrophic growth. Environmental Science and Pollution Research, 28(10), 12107-12118. https://doi.org/10.1007/s11356-020-09577-4 |
20. |
Desikachary, T.V. (1959). Cyanophyta. Indian Council for Agricultural Research, New Delhi. |
21. |
Devercelli, M., & O’Farrell, I. (2013). Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica, 43(2), 67-78. http://dx.doi.org/10.1016/j.limno.2012.05.001 |
22. |
Du, X., Liu, H., Yuan, L., Wang, Y., Ma, Y., Wang, R., Chen, X., Losiewicz, M.D., Guo, H., & Zhang, H. (2019). The diversity of cyanobacterial toxins on structural characterization, distribution and identification: A systematic review. Toxins, 11(9), 1-34. doi:10.3390/toxins11090530 |
23. |
El-Kassas, H.Y., & Gharib, S.M. (2016). Phytoplankton abundance and structure as indicator of water quality in the drainage system of the Burullus Lagoon, southern Mediterranean coast, Egypt. Environmental Monitoring and Assessment, 188(9), 1-14. DOI 10.1007/s10661-016-5525-7 |
24. |
Elliott, J.A. (2012). Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Research, 46(5), 1364-1371. |
25. |
Fang, S., Del Giudice, D., Scavia, D., Binding, C.E., Bridgeman, T.B., Chaffin, J.D., Evans, M.A., Guinness, J., Johengen, T.H., & Obenour, D.R. (2019). A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent. Science of the Total Environment, 695, 1-12. |
26. |
Fetahi, T., Schagerl, M., & Mengistou, S. (2014). Key drivers for phytoplankton composition and biomass in an Ethiopian highland lake. Limnologica, 46, 77-83. http://dx.doi.org/10.1016/j.limno.2013.10.007 |
27. |
Ghobara, M., & Salem, Z.E. (2017). Spatiotemporal fluctuations in phytoplankton communities and their potential indications for the pollution status of the irrigation and drainage water in the middle Nile Delta area, Egypt. In Conventional Water Resources and Agriculture in Egypt, 74, 317-345. DOI 10.1007/698_2017_185 |
28. |
Gogoi, P., Sinha, A., Sarkar, S.D., Chanu, T.N., Yadav, A.K., Koushlesh, S.K., Borah, S., Das, S.K., & Das, B.K. (2019). Seasonal influence of physicochemical parameters on phytoplankton diversity and assemblage pattern in Kailash Khal, a tropical wetland, Sundarbans, India. Applied Water Science, 9(7), 1-13. |
29. |
He, G., Fang, H., Bai, S., Liu, X., Chen, M., & Bai, J. (2011). Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China. Ecological Modelling, 222(8), 1491-1501. |
30. |
Hussien, N.R., & Zaghloul, F.A. (2017). Assessment of Phytoplankton Community as a bio indicator of organic pollution in the drainage system of the Edku Lagoon, Egypt. Asian Journal of Advanced Basic Sciences, 5(1), 59-71. |
31. |
Ji, D., Wells, S.A., Yang, Z., Liu, D., Huang, Y., Ma, J., & Berger, C.J. (2017). Impacts of water level rise on algal bloom prevention in the tributary of three Gorges Reservoir, China. Ecological Engineering, 98, 70-81. |
31. |
Jiang, Y.J., He, W., Liu, W.X., Qin, N., Ouyang, H.L., Wang, Q.M., Kong, X.Z., He, Q.S., Yang, C., Yang, B., & Xu, F.L. (2014). The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecological Indicators, 40, 58-67. http://dx.doi.org/10.1016/j.ecolind.2014.01.006 |
33. |
Jose, L., & Kumar, C. (2011). Evaluation of pollution by Palmer's algal pollution index and physicochemical analysis of water in four temple ponds of Mattancherry, Ernakulam, Kerala. Nature, Environment and Pollution Technology, 10(3), 471-472. |
34. |
Kantachote, D., Dangtago, K., & Siriwong, C. (2009). Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators. Songklanakarin Journal of Science & Technology, 31(5), 567-576. |
35. |
Ke, Z., Xie, P., & Guo, L. (2008). Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China). Hydrobiologia, 607(1), 41-49. |
36. |
Kim, S., Chung, S., Park, H., Cho, Y., & Lee, H. (2019). Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water, 11(6), 1-24. doi:10.3390/w11061163 |
37. |
Kiran, M. T., Bhaskar, M. V., & Tiwari, A. (2016). Phycoremediation of eutrophic lakes using diatom algae. Lake Sciences and Climate Change, 103-115. DOI: 10.5772/64111 |
38. |
Kireta, A.R., Reavie, E.D., Sgro, G.V., Angradi, T.R., Bolgrien, D.W., Hill, B.H., & Jicha, T.M.(2012). Planktonic and periphytic diatoms as indicators of stress on great rivers of the United States: Testing water quality and disturbance models.Ecological Indicators,13 ,222-231. |
39. |
Kouhanestani, Z.M., Roelke, D.L., Ghorbani, R., & Fujiwara, M. (2019). Assessment of spatiotemporal phytoplankton composition in relation to environmental conditions of Gorgan Bay, Iran. Estuaries and Coasts, 42 (1),173-189. |
40. |
Kozak, A., Budzyńska, A., Dondajewska-Pielka, R., Kowalczewska-Madura, K., & Gołdyn, R. (2020). Functional groups of phytoplankton and their relationship with environmental factors in the restored Uzarzewskie Lake. Water, 12(2), 1-14. doi:10.3390/w12020313 |
41. |
Krupa, E.G., Barinova, S.S., Romanova, S.M., & Malybekov, A.B. (2016). Hydrobiological assessment of the high mountain Kolsay lakes (Kungey Alatau, Southeastern Kazakhstan) ecosystems in climatic gradient. British Journal of Environment and Climate Change, 6(4), 259-278. |
42. |
Kshirsagar, A.D. (2013). Use of algae as a bioindicator to determine water quality of river Mula from Pune city, Maharashtra (India). Universal Journal of Environmental Research & Technology, 3(1), 79-85. |
43. |
Kumar, P., & Mahajan, A.K. (2020). Trophic status and its regulating factor determination at the Rewalsar Lake, northwest Himalaya (HP), India, based on selected parameters and multivariate statistical analysis. SN Applied Sciences, 2(7), 1-11. https://doi.org/10.1007/s42452-020-3082-8 |
44. |
Lavoie, I., Campeau, S., Zugic-Drakulic, N., Winter, J.G., & Fortin, C. (2014). Using diatoms to monitor stream biological integrity in Eastern Canada: An overview of 10 years of index development and ongoing challenges. Science of the Total Environment, 475, 187-200. |
45. |
Le, T.T.H., Zeunert, S., Lorenz, M., & Meon, G. (2017). Multivariate statistical assessment of a polluted river under nitrification inhibition in the tropics. Environmental Science and Pollution Research, 24(15), 13845-13862. DOI 10.1007/s11356-017-8989-2 |
46. |
Li, H., Fan, Y., Gong, Z., & Zhou, D. (2020). Water accessibility assessment of fresh water wetlands in the Yellow River Delta National Nature Reserve, China. Ecohydrology & Hydrobiology, 20(1), 21-30. https://doi.org/10.1016/j.ecohyd.2019.02.006 |
47. |
Lu, X., Tian, C., Pei, H., Hu, W., & Xie, J. (2013). Environmental factors influencing cyanobacteria community structure in Dongping Lake, China. Journal of Environmental Sciences, 25(11), 2196-2206. DOI: 10.1016/S1001-0742(12)60297-6 |
48. |
Lv, J., Wu, H., & Chen, M. (2011). Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41(1), 48-56. doi: 10.1016/j.limno.2010.03.003 |
49. |
Mahapatra, D.M., Chanakya, H.N., & Ramachandra, T.V. (2011). Assessment of treatment capabilities of Varthur Lake, Bangalore, India. International Journal of Environmental Technology and Management, 14(1/2/3/4), 84-102. |
50. |
Mahapatra, D.M., Chanakya, H.N., & Ramachandra, T.V. (2013). Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. Journal of Applied Phycology, 25(3), 855–865. https://doi.org/10.1007/s10811-013-9979-5. |
51. |
Marchello, A.E., Lombardi, A.T., Dellamano-Oliveira, M.J., & de Souza, C.W. (2015). Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Brazilian Journal of Microbiology, 46(1), 75-84. |
52. |
Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303-327. http://dx.doi.org/10.1016/j.envint.2013.06.013 |
53. |
Miao, X., Wang, S., Liu, M., Ma, J., Hu, J., Li, T., & Chen, L. (2019). Changes in the phytoplankton community structure of the Backshore Wetland of Expo Garden, Shanghai from 2009 to 2010. Aquaculture and Fisheries, 4(5), 198-204. https://doi.org/10.1016/j.aaf.2019.02.004 |
54. |
Mishra, P., Garg, V., & Dutt, K. (2019). Seasonal dynamics of phytoplankton population and water quality in Bidoli reservoir. Environmental Monitoring and Assessment, 191(3), 1-12. |
55. |
Muthukumar, C., Muralitharan, G., Vijayakumar, R., Panneersevam, A., & Thajuddin, N. (2007). Cyanobacterial biodiversity from different freshwater ponds of Thanjavur, Tamil Nadu (India). Acta Botanica Malacitana, 32, 17-25. |
56. |
Nandigam, J., Rangaiah, S.G., & Geddada, M.N.R. (2016). A study on seasonal changes of microalgae in relation to the physico-chemical parameters of Satyavaram Pond, Srikakulam Dist, India. Indian Journal of Geo Marine Sciences, 45(12), 1660-1668. |
57. |
Narchonai, G., Arutselvan, C., LewisOscar, F., & Thajuddin, N. (2019). Deciphering the microalgal diversity and water quality assessment of two urban temple ponds in Pondicherry, India. Biocatalysis and Agricultural Biotechnology |
58. |
Noel, S.D., & Rajan, M.R. (2015). Evaluation of organic pollution by Palmer’s algal genus index and physico-chemical analysis of Vaigai River at Madurai, India. Natural Resources and Conservation, 3(1), 7-10. DOI: 10.13189/nrc.2015.030102 |
59. |
Ntengwe, F.W. (2006). Pollutant loads and water quality in streams of heavily populated and industrialised towns. Physics and Chemistry of the Earth, 31(15-16), 832-839. https://doi.org/10.1016/j.pce.2006.08.025 |
60. |
Paerl, H.W., Hall, N.S., & Calandrino, E.S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10), 1739-1745. doi: 10.1016/j.scitotenv.2011.02.001 |
61. |
Parvez, M.A., Uddin, M.M., Islam, M.K., & Kibria, M.M. (2019). Physicochemical and biological monitoring of water quality of Halda river, Bangladesh. International Journal of Environmental and Science Education, 14(4), 169-181. |
62. |
Prescott, G.W. (1970). How to Know Freshwater Algae.2nd ed., W.C. Brown. Dubuque, Iowa. |
63. |
Qu, Z., Duan, P., Cao, X., Liu, M., Lin, L., & Li, M. (2019). Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production. Environmental Science and Pollution Research, 26(20), 20961-20968. https://doi.org/10.1007/s11356-019-05339-z |
64. |
Ramachandra T.V., Sincy V., & Asulabha K.S. (2020a). Efficacy of rejuvenation of lakes in Bengaluru, India. Green Chemistry & Technology Letters, 6(1), 14-26. doi.org/10.18510/gctl.2020.613 |
65. |
Ramachandra, T. V., Vinay, S., Asulabha, K. S., Sincy V., Bhat, S. P., Mahapatra, D.M., & Aithal, B. H. (2017). Rejuvenation blueprint for lakes in Vrishabhavathi Valley. ENVIS Technical Report 122, Energy & Wetlands Research Group, CES, Indian Institute of Science, Bangalore, 2017. |
66. |
Ramachandra, T.V., & Aithal, B.H. (2015). Wetlands: Kidneys of Bangalore's landscape. National wetlands, 37,12-16. |
67. |
Ramachandra, T.V., Asulabha, K.S., & Lone, A.A. (2014). Nutrient enrichment and proliferation of invasive macrophytes in urban lakes. Journal of Biodiversity, 5(1-2), 33-44. |
68. |
Ramachandra, T.V., Asulabha, K.S., Sincy, V., Vinay, S., Bhat, S.P., & Aithal, B.H. (2015). Sankey Lake: Waiting for an immediate sensible action. ENVIS Technical Report 74, CES, Indian Institute of Science, Bangalore 560012. |
69. |
Ramachandra, T.V., Meera, D.S., & Alakananda, B. (2013). Influence of catchment land cover dynamics on the physical, chemical and biological integrity of wetlands. Environment and We-International Journal of Science and Technology, 8(1), 37-54. |
70. |
Ramachandra, T.V., Sincy, V., Asulabha, K.S., Mahapatra, D.M., Bhat, S.P. & Aithal, B.H. (2018). Optimal treatment of domestic wastewater through constructed wetlands. Journal of Biodiversity, 9(1-2), 81-102. DOI: 10.31901/24566543.2018/09.1-2.077 |
71. |
Ramachandra, T.V., Sudarshan, P., Vinay, S., Asulabha, K.S., & Varghese, S., (2020b). Nutrient and heavy metal composition in select biotic and abiotic components of Varthur wetlands, Bangalore, India. SN Applied Sciences, 2(8), 1-14. |
72. |
Ray, J.G., Santhakumaran, P., & Kookal, S. (2021). Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environment, Development and Sustainability, 1-32. https://doi.org/10.1007/s10668-019-00579-y |
73. |
Salem, Z., Ghobara, M., & El Nahrawy, A.A. (2017). Spatio-temporal evaluation of the surface water quality in the middle Nile Delta using Palmer’s algal pollution index. Egyptian Journal of Basic and Applied Sciences, 4(3), 219-226. |
74. |
Saxena, A., Tiwari, A., Kaushik, R., Iqbal, H. M., & Parra-Saldívar, R. (2020). Diatoms recovery from wastewater: Overview from an ecological and economic perspective. Journal of Water Process Engineering, 39, 1-14. doi: 10.1016/j.jwpe.2020.101705 |
75. |
Shahare, P.C.A. (2017). Systematic account of the fresh water diatom from Chulband river of Gondia district, Maharashtra (India). IJRBAT, 5(1),72-75. |
76. |
Shams, M., & Shamsabadi, K.S. (2019). Identification of algae as pollution bioindicators in Shakh-Kenar, Gavkhouni Wetland, Isfahan. Journal of Phycological Research, 3(2), 386-394. |
77. |
Shanthala, M., Hosmani, S.P., & Hosetti, B.B. (2009). Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environmental Monitoring and Assessment, 151(1), 437-443. |
78. |
Sharma, R.C., Singh, N., & Chauhan, A. (2016). The influence of physicochemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: A case study. The Egyptian Journal of Aquatic Research, 42(1), 11-21. http://dx.doi.org/10.1016/j.ejar.2015.11.004 |
79. |
Shil, S., Singh, U.K., & Mehta, P. (2019). Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9(7), 1-21. https://doi.org/10.1007/s13201-019-1045-2 |
80. |
Singh, S.P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431-444. http://dx.doi.org/10.1016/j.rser.2015.05.024 |
81. |
Su, M., Yu, J., Pan, S., An, W., & Yang, M. (2014). Spatial and temporal variations of two cyanobacteria in the mesotrophic Miyun reservoir, China. Journal of Environmental Sciences, 26(2), 289-298. DOI: 10.1016/S1001-0742(13)60433-7 |
82. |
Taipale, S.J., Vuorio, K., Aalto, S.L., Peltomaa, E., & Tiirola, M. (2019). Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environmental Research, 179, 1-13. https://doi.org/10.1016/j.envres.2019.108836 |
83. |
Teta, R., Romano, V., Della Sala, G., Picchio, S., De Sterlich, C., Mangoni, A., Tullio, G.D., Costantino, V., & Lega, M. (2017). Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing and in situ data. Environmental Research Letters, 12(2), 1-12. |
84. |
Tian, C., Pei, H., Hu, W., & Xie, J. (2012). Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. Journal of Environmental Sciences, 24(8), 1394-1402. DOI: 10.1016/S1001-0742(11)60964-9 |
85. |
Udhayakumar, R., Manivannan, P., Raghu, K., & Vaideki, S. (2016). Assessment of physico-chemical characteristics of water in Tamil Nadu. Ecotoxicology and Environmental Safety, 134, 474-477. http://dx.doi.org/10.1016/j.ecoenv.2016.07.014 |
86. |
Varol, M., 2020. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environmental Pollution, 266, 1-10. |
87. |
Vishal, R., & Meeta, B. (2020). Algal indices as a biomonitoring tool to assess eutrophication in the urban ponds: A case study. Pollution, 6(4), 751-757. |
88. |
Wang, X., Wang, Y., Liu, L., Shu, J., Zhu, Y., & Zhou, J. (2013). Phytoplankton and eutrophication degree assessment of Baiyangdian Lake Wetland, China. The Scientific World Journal, 2013, 1-9. https://doi.org/10.1155/2013/436965 |
89. |
Wijeyaratne, W.M.D.N., & Nanayakkara, D.B.M. (2020). Monitoring of water quality variation trends in a tropical urban wetland system located within a Ramsar wetland city: A GIS and phytoplankton based assessment. Environmental Nanotechnology, Monitoring & Management, 14, 1-10. |
90. |
Wu, Y., Li, L., Gan, N., Zheng, L., Ma, H., Shan, K., Liu, J., Xiao, B., & Song, L. (2014). Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. Journal of Environmental Sciences, 26(9), 1921-1929. http://dx.doi.org/10.1016/j.jes.2014.06.031 |
91. |
Xu, C., Poon, K., Choi, M.M., & Wang, R. (2015). Using live algae at the anode of a microbial fuel cell to generate electricity. Environmental Science and Pollution Research, 22(20), 15621-15635. DOI 10.1007/s11356-015-4744-8 |
92. |
Xu, G., Li, P., Lu, K., Tantai, Z., Zhang, J., Ren, Z.,Wang, X., Yu, K., Shi, P., & Cheng, Y. (2019). Seasonal changes in water quality and its main influencing factors in the Dan river basin. Catena, 173, 131-140. https://doi.org/10.1016/j.catena.2018.10.014 |
93. |
Yang, J., Lv, H., Liu, L., Yu, X., & Chen, H. (2016). Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment, 557, 445-452. |
94. |
Yang, J., Yu, X., Liu, L., Zhang, W., & Guo, P. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environmental Science and Pollution Research, 19(5), 1432-1442. DOI 10.1007/s11356-011-0683-1 |
95. |
Yilmaz, N., Yardimci, C. H., Elhag, M., & Dumitrache, C. A. (2018). Phytoplankton Composition and Water Quality of Kamil Abduş Lagoon (Tuzla Lake), Istanbul-Turkey. Water, 10(5), 1-13. doi:10.3390/w10050603 |
96. |
Zhang, M., Yu, Y., Yang, Z., & Kong, F. (2016). Deterministic diversity changes in freshwater phytoplankton in the Yunnan–Guizhou Plateau lakes in China. Ecological Indicators, 63, 273-281. http://dx.doi.org/10.1016/j.ecolind.2015.12.017 |
97. |
Zhao, G., Gao, X., Zhang, C., & Sang, G. (2020). The effects of turbulence on phytoplankton and implications for energy transfer with an integrated water quality-ecosystem model in a shallow lake. Journal of Environmental Management, 256, 1-11. https://doi.org/10.1016/j.jenvman.2019.109954. |