References
Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., Bruce, L.M., 2007. Comparison of pansharpening algorithms: outcome of the 2006 GRS-S datafusion contest. IEEE Trans. Geosci. Remote Sens. 45 (10), 3012e3021. http://dx.doi.org/10.1109/tgrs.2007.904923
Bharath, H.A., Ramachandra, T.V., 2016. Visualization of urban growth pattern in Chennai using geoinformatics and spatial metrics. J. Indian Soc. Remote Sens. 44, 617e633. http://dx.doi.org/10.1007/s12524-015-0482-0
Bharath, H.A., Vinay, S., Ramachandra, T.V., 2014. Landscape dynamics modeling through integrated Markov, Fuzzy-AHP and cellular automata. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3160e3163. http://dx.doi.org/10.1109/IGARSS.2014.6947148
Bhuvan, virtual globe. Available at: http://bhuvan.nrsc.gov.in, (Accessed on 1 August 2017).
Brandtberg, T., 1999. Automatic individual tree based analysis of high spatial resolution aerial images on naturally regenerated boreal forests. Can. J. For. Res. 29, 1464e1478.
Chen, F., Guan, Z., Yang, X., Cui, W., 2011. A novel remote sensing image fusion method based on independent component analysis. Int. J. Remote Sens. 32 (10), 2745e2763. http://dx.doi.org/10.1080/01431161003743207.
Choi, M., 2006. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans. Geosci. Remote Sens. 44, 1672e1682. http://dx.doi.org/10.1109/TGRS.2006.869923.
Dong, Z., Wang, Z., Liu, D., Zhang, B., Zhao, P., Tang, X., Jia, M., 2013. SPOT5 multispectral (MS) and panchromatic (PAN) image fusion using an improved wavelet method based on local algorithm. Comput. Geosci. 60, 134e141. http://dx.doi.org/10.1016/j.cageo.2013.07.002.
Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification. http://dx.doi.org/10.1038/npp.2011.9 New York John Wiley, Sect. Enquist, B.J., West, G.B., Brown, J.H., 2009. Extension and evaluations of a generalquantitative theory of forest structure and dynamics. PNAS 106 (17), 7046e7051.
Gerland, P., Raftery, A.E., ev ikova, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B.K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., Wilmoth, J., 2014. World population stabilization unlikely this century. Science (80) 346, 234e237.http://dx.doi.org/10.1126/science.1257469
Gonzalez-Audicana, M., Saleta, J.L., Catalan, R.G., Garcia, R., 2004. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42 (6), 1291e1299. http://dx.doi.org/10.1109/tgrs.2004.825593
Google earth. A virtual Globe. www.earth.google.com, (Accessed on 4 March 2017).
Gougeon, F.A., Leckie, D.G., 2006. The individual tree crown approach applied to ikonos images of a coniferous plantation area. Photogramm. Eng. Remote Sens. 72 (11), 1287e1297.
Government of India, 1991, 2001, 2011. . Census of India 2011, State of Literacy. http://dx.doi.org/10.2105/AJPH.2010.193276
Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M., 2007. Single tree detection in very high resolution remote sensing data. Remote Sens. Environ 110, 533e544. http://dx.doi.org/10.1016/j.rse.2007.02.029 Karnataka State, 1981. Bangalore District Gazetteer, first ed. State publication, India
Konijnendijk, C.C., 2003. A decade of urban forestry in Europe. For. Policy Econ. 5 (2), 173e186. http://dx.doi.org/10.1016/s1389-9341(03)00023-6
Kumar, U., Mukhopadhyay, C., Ramachandra, T.V., 2009. Fusion of multisensor data: review and comparative analysis. In: Global Congress on Intelligent Systems, pp. 418e422. http://dx.doi.org/10.1109/GCIS.2009.457
Kumar, U., Dasgupta, A., Mukhopadhyay, C., Ramachandra, T.V., 2012. Advanced machine learning algorithms based free and open source packages for landsat ETMþ data classification. In: OSGEO-India: FOSS4G.
Larsen, M., 1998. Finding an optimal match window for spruce top detection based on an optical tree model. Proc. Int. Forum Autom. Interpret. High Spat. Resolut. Digit. Imag. For. 55e66.
Lillesand, T., Kiefer, R.W., Chipman, J., 2015. Remote Sensing and Image Interpretation, seventh ed. John Wiley and Sons, Inc., New York.
McHale, M.R., Burke, I.C., Lefsky, M.A., Peper, P.J., McPherson, E.G., 2009. Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 12 (1), 95e113. http://dx.doi.org/10.1007/s11252-009-0081-3
Nikolakopoulos, K.G., 2008. Comparison of nine fusion techniques for very high resolution data. Photogramm. Eng. remote Sens. 74 (5), 647e659. http://dx.doi.org/10.14358/pers.74.5.647
Padwick, C., Scientist, P., Deskevich, M., Pacifici, F., Smallwood, S., 2010. WorldView2 pan-sharpening. Asprs 2010 (48), 26e30. Parker, G.G., 1995. Structure and microclimate of forest canopies. In: Lowman, M., Nadkarni, N. (Eds.), Forest Canopies. Academic Press, California, USA, pp. 73e106.
Petrovic, V.S., Xydeas, C.S., 2004. Gradient-based multiresolution image fusion. IEEE Trans. Image Process 13, 228e237. http://dx.doi.org/10.1109/TIP.2004.823821
Preto, G., 1992. Past and present of inventorying and monitoring systems. In Forest resource inventory and monitoring and remote sensing Technology. In: Proceedings of the IUFRO Centennial Meeting, Berlin, pp. 1e10.
Ramachandra, T.V., Bharath, H.A., 2016. Bengaluru's reality: towards unlivable status with unplanned urban trajectory. Curr. Sci. 110.
Ramachandra, T.V., Vishnu, B., Bharath, H.A., Bharath, S., Kumar, U., 2011. Exposition of urban structure and dynamics through gradient landscape metrics for sustainable management of greater Bangalore. FIIB Bus. Rev. 1, 17e34.
Ramachandra, T.V., Bharath, H.A., Sanna, D.D., 2012a. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. Geoinf. http://dx.doi.org/10.1016/j.jag.2012.03.005
Ramachandra, T.V., Setturu, B., Bharath, H.A., 2012b. Peri-urban to urban landscape patterns elucidation through spatial metrics. Int. J. Eng. Res. Dev. 58e81.
Ramachandra, T.V., Bharath, H.A., Vinay, S., 2013. Comprehension of temporal land use dynamics in urbanising landscape. In: Proceedings of User Interaction Meet-2013, Balanagar, Hyderabad, pp. 21e22.
Ramachandra, T.V., Bharath, A.H., Sowmyashree, M.V., 2015. Monitoring urbanization and its implications in a mega city from space: spatiotemporal patterns and its indicators. J. Environ. Manage. 148, 67e81. http://dx.doi.org/10.1016/j.jenvman.2014.02.015
Sekhar, M., Kumar, M.M., 2009. Geo-hydrological Studies along the Metro Rail Alignment in Bangalore. Technical report. Indian Institute of Science, India. http://bmrc.co.in/pdf/news/IISc-Report.pdf (Accessed on 4 August 2017).
Siddiqui, Y., 2003. The modified IHS method for fusing satellite imagery. In: ASPRS 2003 Annual Conference Proceedings. Anchorage, Alaska.
Sudhira, H.S., Ramachandra, T.V., Subrahmanya, M.H.B., 2007. Bangalore cities, 24 (5), 379e390. http://dx.doi.org/10.1016/j.cities.2007.04.003
Vishwanath, B., Bharath, H.A., Ramachandra, T.V., 2015. Spatial patterns of urban growth with globalisation in India's Silicon Valley. In: OSGIS 2015. Indian Institute of Technology (BHU), Varanasi, India.
Walsworth, N.A., King, D.J., 1999. Image modelling of forest changes associated with acid mine drainage. Comput. Geosci. 25 (5), 567e580.http://dx.doi.org/10.1016/s0098-3004(98)00169-1
Ward, K.T., Johnson, G.R., 2007. Geospatial methods provide timely and comprehensive urban forest information. Urban For. Urban Green. 6 (1), 15e22. http://dx.doi.org/10.1016/j.ufug.2006.11.002
West, G.B., Enquist, B.J., Brown, J.H., 2009. Ageneral quantitative theory of foreststructure and dynamics. PNAS 106 (17), 7040e7045.
Yakhdani, M.F., Azizi, A., 2010. Quality assessment of image fusion techniques for multisensor high resolution satellite images (Case study: IRS-P5 AND IRS-P6 satellite images). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 38, 204e209.