- J.R. Jensen, Remote Sensing of Environment: An Earth resource perspective, Pearson Education, 2003.
- G. Camara, A.M.V. Monteiro, J. Paiva, and R. C. M. Souza, “Action-Driven Ontologies of the Geographical Space. In: M.J. Egenhofer and D.M. Mark (Editors),” GIScience, AAG, Savannah, GA, 2000.
- U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, “Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information,” Photogrammetry and Remote Sensing, vol. 58, pp. 239-258, 2004.
- H. Sun, S. Li, W. Li, Z. Ming, and S. Cai, “Semantic-Based Retrieval of Remote Sensing Images in a Grid Environment,” IEEE Geoscience and Remote Sensing Letters, vol. 2 (4), pp. 440-444, 2005.
- EEA & ETC/LC, Corine LC Technical Guide, 1999. Available: http://etc.satellus.se/the_data/Technical_Guide/index.htm
- M. Torma, and P. Harma, “Accuracy of CORINE LC Classification in Northern Finland,” Geoscience and Remote Sensing Symposium, 2004. IGARSS '04, Proceedings, 2004 IEEE International, vol. 1, pp. 227-230, 20-24 Sept. 2004.
- Natural Resources Census, “National Landuse and LC Mapping Using Multitemporal AWiFS Data (LULC – AWiFS),” Project Manual, Remote Sensing & GIS Applications Area, National Remote Sensing Agency, Department of Space, Government of India, Hyderabad, April 2005.
- P. Bosdogianni, M. Petrou, and K. Josef, “Mixture Models with Higher Order Moments,” IEEE Transaction on Geoscience and Remote Sensing, vol. 35(2), pp. 341-353, 1997.
- Y. J. Kaufman, and D. Tanre, “Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS,” IEEE Transaction on Geoscience and Remote Sensing, vol. 30 (2), pp. 261-270, 1992.
- A. Strahler, D. Muchoney, J. Borak, M. Fried, S. Gopal, E. Lambin, and A. Moody, “MODIS LC Product, Algorithm Theoretical Basis Document (ATBD) Version 5.0, MODIS LC and Land-Cover Change,” 1999.
- A. D. Stocker, I. S. Reed, X. Yu, “Multi-dimensional signal processing for electrooptical target detection,” Proc. SPIE Internatinal Society for Optical Eng, vol. 1305, pp. 1-7, 1990.
- R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, “Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm,” Summaries 3rd Annual JPL Airborne geoscience Workshop, vol. 1, pp. 147–149, 1992.
- J. T. Kent, and K. V. Mardia, “Spectral classification using fuzzy membership models,” IEEE Trans. Pattern Anal. Machine Intell, vol. 10(4), pp. 659–671, 1986.
- J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture modelling: A new analysis of rock and soil types at the Viking Lander 1 site,” Journal of Geophysical Research, vol. 91, pp. 8098 – 8112, 1986.
- J. J. Settle, N. A. Drak, “Linear mixing and the estimation of ground cover proportion,” International Journal of Remote Sensing, vol. 14 (6), pp. 1159–1177, 1993.
- J. Boardman, “Analysis, understanding and visualization of hyperspectral data as a convex set in n-space,” International SPIE symposium on Imaging Spectrometry, Orlando, Florida, pp. 23-36, 1995.
- H. M. Horwitz, R.F. Nalepka, P. D. Hyde, and J.P. Morgenstern, “Estimating the proportions of objects within a single pixel resolution elements of a multispectral scanner,” In Proc, 7th Int. Symp, Remote Sensing of Environment (Ann Arbor, MI), pp. 1307-1320, 1971.
- D. M. Detchmendy, and W.H. Pace, “A model for spectral signature variability for mixtures,” Remote Sensing of Earth Resources, vol 1 F, Shahrokhi, Ed. Tullahoma TN: Univ. Temmessee Press, pp.596-620, 1972.
- Y. E. Shimabukuro, and A. J. Smith, “The least-squares mixing models to generate fraction images derived from remote sensing multispectral data,” IEEE Transactions on Geoscience and Remote Sensing,” vol. 29(1), pp. 16–20, 1991.
- M. E. Winter, and E. M. Winter, “Comparison of Approaches for Determining End-members in Hyperspectral Data,” IEEE Transaction on Geoscience and Remote Sensing, vol 3, pp. 305-313, 2000.
- C. A. Bateson, G. P. Asner, and C. A. Wessman, “Endmember Bundles: A New Approach to Incorporating Endmember Variability into Spectral Mixture Analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38 (2), pp. 1083-1094, 2000.
- A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42(3), pp. 650-663, 2004.
- J. Settle, “On the effect of Variable Endmember Spectra in the Linear Mixture Model,” IEEE Transaction on Geoscience and Remote Sensing, vol. 44 (2), pp. 389-396, 2006.
- L.R. Inverson, E. A. Cook, and R. L. Graham, “A technique for extrapolation and validating forest cover across large regions: calibrating AVHRR data with TM data,” International Journal of Remote Sensing, vol. 10, pp. 1805-1812, 1989.
- N. Quarmbay, J. Townshend, J. Settle, K. White, M. Milnes, T. Hindle, and N. Silleos, “Linear mixture modelling applies to AVHRR data for crop area estimation,” International Journal of Remote Sensing, vol. 13(3), pp. 415-425, 1992.
- C. Palaniswami, A. K. Upadhyay, and H. P. Maheswarappa, “Spectral mixture analysis for subpixel classification of coconut,” Current Science, vol. 91(12), pp. 1706-1711, 2006.
- A. M. Cross, J. J. Settle, N. A. Drake, and R. T. M. Paivinin, “Subpixel measurement of tropical forest cover using AVHRR data,” International Journal of Remote Sensing, vol. 12(5), pp. 1119-1129, 1991.
- http://modis.gsfc.nasa.gov/data/dataprod/
- J. A. C. Ballantine, G. S. Okin, D. E. Prentiss, and D. A. Roberts, “Mapping North African landforms using continental scale unmixing of MODIS imagery,” Remote Sensing of Environment, vol. 97 (4), pp. 470-483, 2005.
- B. H. Braswell, S. C. Hagen, S. E. Frolking, W. A. Salas, “A multivariable approach for mapping sub-pixel LC distributions using MISR and MODIS: Application in the Brazilian Amazon region,” Remote Sensing of Environment, vol. 87 (2-3), pp. 243-256, 2003.
- http://edcimswww.cr.usgs.gov/pub/imswelcome/
- T. V. Ramachandra and G. R. Rao, “Inventorying, mapping and monitoring of bioresources using GIS and remote sensing,” Geospatial Technology for Developmental Planning, Allied Publishers Pvt. Ltd. New Delhi., pp: 49-76, 2005.
- T.V. Ramachandra and Uttam Kumar, “Geographic resources decision support system for land use, land cover dynamics analysis,” Proceedings of the FOSS/GRASS Users Conference - Bangkok, Thailand, .12-14 Sept 2004. http://gisws.media.osaka-cu.ac.jp/grass04/papers.php?first_letter=T
- L. Zhu, and R. Tateishi, “Application of Linear Mixture Model to tile series AVHRR data,” Paper presented at the 22nd Asian Conference on Remote Sensing, Singapore, 5 – 9 November, 2001.
- M. M. Dundar, and D. Landgrebe, “A Model-Based Mixture-Supervised Classification Approach in Hyperspectral Data Analysis,” IEEE Transaction on Geoscience and Remote Sensing, vol. 40 (12), pp. 2692-2699, 2002.
- R. Tateishi, Y. Shimazaki, and P. D. Gunin, “Spectral and temporal linear mixing model for vegetation classification,” International Journal of Remote Sensing, vol. 25(20), pp. 4208-4218, 2004.
- F. Maselli, “Multiclass spectral decomposition of remotely sensed scenes by selective pixel unmixing,” IEEE Transaction on Geoscience and Remote Sensing, vol. 36 (5), pp. 1809-1820, 2002.
- Z. Wang, D. Ziou, C. Armenakis, D. Li, and Q. Li, “A Comparative Analysis of Image Fusion Methods,” IEEE Transactions of Geoscience and Remote Sensing, vol. 43 (6), pp. 1391-1402, 2005.