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Abstract
Eutrophication and metal contamination are the principal pollution problem for almost all inland lakes in world. Phytore-
mediation is one of the viable solutions for this concern. The present study analysed the concentration and distribution 
of six metals (cadmium, chromium, copper, nickel, lead and zinc) in sediment and macrophyte samples of Varthur Lake, 
Bangalore. Higher concentrations of studied metals in sediment were observed at the inlet and north shoreline regions of the 
lake. Alternanthera philoxeroides and Eichhornia crassipes accumulated higher concentration of metals than other species. 
Accumulation of metals in the sediment were Cu > Zn > Cr > Ni > Pb > Cd, whereas the order in macrophyte samples was 
Cu > Zn > Cr > Pb > Ni > Cd. Bioconcentration factor (BCF) and translocation factor (TF) of metals in macrophytes revealed 
metal pollution could be remediated through phytoextraction and phytostabilization.
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Wetlands are transition zones that play a major role in nutri-
ent dynamics and act as natural filters. The interaction of 
man with wetlands during the last few decades has been a 
concern largely due to rapid population growth accompanied 
by intensified industrial, commercial and residential devel-
opment, further leading to wetland pollution by domestic, 
industrial wastewaters and agricultural runoff (Ramachandra 
et al. 2018). Wetland plant (macrophyte) communities con-
stitute some of the most highly productive ecosystems in the 
world (Mitsch and Gosselink 2000).

Phytoremediation is the use of living green plants for 
in situ risk reduction of contaminated soil, sludge, sedi-
ments, and ground water through contaminant removal, 
degradation, or containment (U.S. Environmental Protec-
tion Agency 1998). The basis of phytoremediation is that 
plants may extract nutrients, including metals, from soil and 
water. Earlier studies highlight the phytoremediation and 
bio-monitoring ability of macrophytes. Galal and Farahat 

(2015) evaluated the nutrient (N, P, and K) and metal (Cu, 
Zn, Mn, Pb, Cd, and Ni) remediation ability of Pistia strati-
otes. Remediation potential of soil and water (contaminated 
with Ca, Cr, Cu, Pb, Zn, Mn, and Fe) by ten regional wetland 
species was studied by Chatterjee et al. (2011). Bioaccu-
mulation and bioremediation capability of Phragmites aus-
tralis to Fe, Al, Mn, Zn, As, Cu, Cr, Pb, Ni, Co, V, and Cd 
was reported by Esmaeilzadeh et al. (2016). Rana and Maiti 
(2018) reported metal bioaccumulation ability of Colocasia 
esculenta, Scirpus grossus and Typha latifolia.

Metals such as Pb, Cd, Cr, Zn, and Cu are one of the 
most significant pollutants in lake ecosystems due to their 
environmental persistence, toxicity, and capacity to bioac-
cumulate and biomagnify in food webs (Yang et al. 2014). 
Under certain circumstances they can be further transformed 
into more toxic compounds (Chen et al. 2010). Metals may 
enter aquatic ecosystems in the dissolved or particulate 
phase from domestic, industrial, or agricultural runoff, as 
well as from atmospheric deposition (Ahmed et al. 2015). 
Metals released into aquatic systems are generally bound to 
particulate matter, which eventually settle and become incor-
porated into sediments. Surface sediment therefore is the 
most important reservoir or sink of metals and other pollut-
ants in aquatic environments (Kejian et al. 2008). Analyses 
of spatial and temporal distribution of metals in wetlands are 
useful to recognize degradation processes and trace sources 
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of pollutants for environmental assessment and manage-
ment. Bottom sediments, water bodies, plants, and other 
organisms in polluted wetlands contain metals and their con-
centrations fluctuate from year to year (Govindasamy et al. 
2011). Objectives of the current research are to assess the 
metal [cadmium (Cd), chromium (Cr), copper (Cu), nickel 
(Ni), lead (Pb) and zinc (Zn)] concentrations in sediments 
and accumulation strategies in macrophytes of Varthur Lake, 
Bangalore, using bioconcentration and translocation factors.

Materials and Methods

Varthur Lake (12.9407° to 12.9566° N and 77.67189° to 
77.7476° E) is the second largest lake in Bangalore (Fig. 1) 
and has an average depth of 1.05 m. The lake is located in 
Varthur ward with a spatial extent of 180.8 ha and spreads 
across Amanikere Bellandur Khane village. Varthur Lake 
has a catchment area of nearly 279  km2 with 96 cascad-
ing interlinked lakes. Land use analyses in Varthur using 
temporal (1970 to 2016) remote sensing data shows an 
increase in built-up (paved surfaces: buildings, roads, etc.) 
from 3.8% (1973) to 89% (2016), with a sharp decline in 
vegetation (58.7% to 6.1%), water bodies (4.5% to 1.2%) and 
other (open lands, agriculture) land uses (33.1% to 5.0%) 
(Ramachandra et al. 2017).

Macrophytes and sediments were collected from inlet 
to outlet following random method. A total of 45 macro-
phyte and sediment samples were collected from the lake 
(Fig. 2). Eichhornia crassipes and Alternanthera philoxe-
roides were the dominant species of macrophytes. Collected 

macrophytes were stored in polythene bags after species 
identification using taxonomic literature (Cook 1996). 
Approximately 1 kg of sediment was collected through a 
cylindrical PVC cores with 5 cm of internal diameter at a 
depth of 0–20 cm (root growing zone) from each sampling 
location. Collected macrophytes were washed to eliminate 
sediments and epiphytes and separated by species. Above-
ground and belowground parts were then separated and oven 
dried at 60°C for 2–3 days until constant weight. Sediments 
were air dried and sieved (1 mm) to remove coarse debris. 
Samples were powdered using a mortar and sieved (1 mm) 
to get fine powders. Powdered samples (0.5 g; macrophyte 
and sediment) were subjected to acid digestion according to 
established protocols (APHA 1995). Digested samples were 
filtered using 0.45 µm filter paper and made up to 50 mL 
using double distilled water for further analyses. Digested 
samples were analysed for six metals (Cd, Cr, Cu, Ni, Pb, 
and Zn) with reagent blanks and standards using Flame 
Atomic Absorption Spectrophotometry (GBC Avanta ver-
sion 1.31).

Bioconcentration factor (BCF) is the ratio of metal con-
centration in the plant to that in sediment. The larger the 
factor, the more easily the plant absorbs the metal from the 
sediment and the higher possibility of redistribution for the 
metal (Zhang et al. 2009). A BCF value higher than one may 
indicate that a plant species could act as a hyperaccumulator 
of trace elements (Zhang et al. 2002). Translocation factor 
(TF) describes the efficiency of a plant to translocate metal 
from its root to shoot. It is calculated as the ratio of concen-
tration (mg  kg−1) of metal in plant shoot to the concentration 
of the same metal in plant root. TF provides information 

Fig. 1  Map of India showing location of Bangalore and Varthur Lake



413Bulletin of Environmental Contamination and Toxicology (2020) 104:411–417 

1 3

about the mobility of a given element from roots to leaves, 
and higher TF values result in greater mobility (Deng et al. 
2004).

Results and Discussion

Metal concentrations in sediment and macrophyte sam-
ples are provided in Tables  1 and 2. Mean metal con-
centrations in sediments showed the following order 
Cu > Zn > Cr > Ni > Pb > Cd, whereas the order in macro-
phytes was Cu > Zn > Cr > Pb > Ni > Cd. All studied metals 
in sediment samples were above the threshold effect level 
(TEL), whereas Cd, Cr and Cu were above the probable 
effect level (PEL) and world common trace metal range 
levels in lake sediments (WCTMRL). More than half of 
the sampling points reported Cr above the PEL. Veeranam 
Lake and Bellandur Lakes had Cr concentrations similar to 
this study, whereas Renuka Lake, Yercaud Lake, Akkulam 
Veli Lake, and Kodaikanal Lake showed higher concentra-
tions of Cr (Balamurugan et al. 2014; Das et al. 2008; Gopal 
et al. 2017; Ramachandra et al. 2018; Suresh et al. 2012; 
Swarnalatha et al. 2014). Almost all samples had Cu above 
the WCTMRL (Table 1). Nickel concentrations in current 
samples were within PEL and WCTMRL levels. Overall, the 
north shoreline (V12, V21) and inlet (V5) sediment sam-
ples had the highest concentration of studied metals. This is 
because of the untreated effluents entering the lake through 
these points. Middle samples (V36, V37) had lower concen-
tration of metals.

Cadmium concentrations were within toxic limits as 
reported by Kabata-Pendias (2010), in all macrophyte 
samples. A study by Jumbe and Nandini (2009) at Var-
thur Lake reported mean Cd concentration of 8 mg kg−1 

in E. crassipes, which is higher than results from the cur-
rent study. Findings from another study in A. philoxeroides 
and E. crassipes reported 5.64 and 5.79 mg kg−1 Cd (Jha 
et al. 2016), which were higher values of Cd than this 
study. Similarly, high concentrations of Cd were reported 
in E. crassipes shoot (128 mg kg−1) by Singh et al. (2016), 
and 9.13 mg kg−1 and 5.59 mg kg−1 in root and shoot of 
E. crassipes (Singh et al. 2017) all of which were much 
higher than those values observed in the present study. 
Rana and Maiti (2018) reported Cd concentration of 
2.3 mg kg−1 and 1.9 mg kg−1 in shoot and root (respec-
tively) of C. esculenta, which is again higher than present 
study results. Chromium is generally considered toxic 
for plants because it may alter N metabolism by affect-
ing protein formation (Bonanno and Cirelli 2017). The 
concentration of Cr ranged from 34 to 54.8 mg kg−1, with 
a mean value of 42.33 mg kg−1 in macrophytes (Table 2). 
Typha angustifolia root had the lowest Cr concentrations, 
while E. crassipes shoot had higher Cr concentrations; 
however, all samples exceeded toxic levels (Kabata-Pen-
dias 2010). Jha et al. (2016) observed Cr concentration 
of 41.5 mg kg−1 in A. philoxeroides in Kolkata wetlands, 
which is consistent with the current study. Rana and Maiti 
(2018) recorded Cr concentrations of 11.9 mg kg−1 and 
7.6 mg kg−1 in root and shoot (respectively) of C. escu-
lenta at a natural wetland contaminated with coke oven 
effluent. These reported values are lower compared to the 
present study. Chromium concentrations of 8.06 mg kg−1 
and BDL in root and shoot (respectively) of E. crassipes 
at Kanjli wetland were observed by Singh et al. (2017) 
which were low compared to the current study. Copper in 
macrophytes ranged from 21.3 to 263.5 mg kg−1, with the 
maximum concentration found in A. philoxeroides shoot 
material (Table 2). A study by Chatterjee et al. (2011) in 

Fig. 2  Sampling locations of 
macrophytes and sediments in 
Varthur Lake
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East Calcutta wetlands, West Bengal, reported Cu con-
centrations of 23.2 mg kg−1 and 12.5 mg kg−1 in E. cras-
sipes and C. esculenta, which are below values observed 
in the current study. Meitei and Prasad (2016) observed 
lower levels of Cu than the present study in E. crassipes 
(5.6 mg kg−1 in root and 2.5 mg kg−1 in shoot), A. philox-
eroides (4.8 mg kg−1 in root and 0.5 mg kg−1 in shoot) 
and C. esculenta (1.3 mg kg−1 in root and 0.8 mg kg−1 
in shoot). Rana and Maiti (2018) reported Cu concen-
tration of 80.7 mg kg−1 in C. esculenta root, and Kumar 
et al. (2008) observed Cu level of 104.2 mg kg−1 in T. 
angustifolia which are both higher compared to current 
results. Lead is not an essential element for plant metab-
olism and is considered among the most toxic metals, 

even at low concentrations (Bonanno and Cirelli 2017; 
Prasad 2004). Macrophyte Pb concentrations ranged from 
8.7 to 56.7 mg kg−1, with a mean value of 21.9 mg kg−1 
(Table 2). Colocasia esculenta root had lowest Pb concen-
tration, while A. philoxeroides shoot had the highest Pb 
concentration. Singh et al. (2016) reported a Pb concen-
tration of 256 mg kg−1 in E. crassipes shoot which is 10 
times higher than present results. Similarly studies by Jha 
et al. (2016) (26.97 mg kg−1 in shoot and 80.95 mg kg−1 
in root) and Singh et al. (2017) (83.42 mg kg−1 in root and 
79.99 mg kg−1 in shoot) showed higher concentrations of 
Pb in E. crassipes compared to the current study. Findings 
from Mazumdar and Das (2015) reported Pb concentra-
tions of 21.6 mg kg−1 in shoot and 27.9 mg kg−1 in root 

Table 1  Comparison of metal (mg kg−1) in sediments of Varthur Lake, Bangalore, with other Indian lakes and standard values

TEL threshold effect level, PEL probable effect level, WCTMRL world common trace metal range in lake sediment

Name of the 
Lake

Metal concentration (mg kg−1) References

Cd Cr Cu Ni Pb Zn

Varthur Lake, 
Bangalore

5.80 (1.40–23.7) 102 (36.5–162) 211 (86.5–422) 54.8 (26.7–80.0) 45.3 (23.4–59.9) 132 (26.8–353) This study

Varthur Lake, 
Bangalore

BDL − 17.3 BDL − 21.4 131–134 16.2–68.0 4.40–88.5 25.7–220 Jumbe and Nan-
dini (2009)

Bellandur Lake, 
Bangalore

1.60–55.3 33.9–199 105–1148 15.1–138 31.2–208 126–2001 Ramachandra 
et al. (2018)

Veeranam Lake, 
Chennai

0.20–3.90 40.0–150 65.0–125 34.0–95.0 20.0–41.0 65.0–599 Suresh et al. 
(2012)

Hussain Sagar 
Lake

– 40.0–60.0 – 170–210 40.0–60.0 – Rao et al. (2008)

Renuka Lake – 196 340 36.7 35.9 148 Das et al. (2008)
Jannapura Lake 1.90 – 89.8 40.1 – 259 Puttaiah and Kiran 

(2008)
Mansar Lake – 63.0 26.4 46.0 32.7 67.0 Das et al. (2006)
Yercaud Lake – 322–441 480–687 147 15.5–48.0 101–258 Gopal et al. (2017)
Anchar Lake 

Kashmir
0.70–3.60 3.10–8.70 2.80–28.7 2.10–10.1 0.40–4.30 1.40–13.8 Irfana et al. (2018)

Akkulam Veli 
Lake, Thiru-
vananthpuram

– 49.0–642 1.00–126 5.00–259 18.0–189 19.0–279 Swarnalatha et al. 
(2014)

Vembanad Lake – 108 30.9 48.7 32.6 185 Selvam et al. 
(2012)

Kodaikanal Lake – 452 54.5 115 44.7 113 Balamurugan 
et al. (2014)

Urban Pond, 
Dhanbad

1.70–5.00 74.0–109 – – 23.3–36.0 1055–1804 Pal and Maiti 
(2018)

GB Pant Sagar 0.30–5.60 0.60–32.3 1.30–30.7 0.30–38.3 1.00–11.0 5.00–59.9 Rai (2010)
Korba Basin 

Pond
0.10–1.20 29.0–79.0 18.0–92.0 – 26.0–125 42.0–294 Sharma et al. 

(2017)
TEL 0.60 37.3 35.7 35.0 18.0 123 MacDonald et al. 

(2000)
PEL 3.53 90.0 197 91.3 36.0 315 MacDonald et al. 

(2000)
WCTMRL 0.10–1.50 20.0–190 20.0–90.0 30.0–250 10.0–100 50.0–250 Forstner and 

Whitman (1981)
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of C. esculenta, which is higher compared to the current 
study. Suthari et al. (2017) observed Pb concentration of 
383.3 mg kg−1 in A. philoxeroides root, which is more than 
ten times higher compared to current findings. Yadav and 
Chandra (2011) observed Pb content of 32.5 mg kg−1 in 
root of T. angustifolia which is almost two times higher 
compared to the current study. Chatterjee et al. (2011) in 
C. esculenta and Ramachandra et al. (2018) in T. angus-
tifolia, A. philoxeroides and E. crassipes reported similar 
Pb concentrations as in the current study. Nickel is another 
toxic metal that may affect plant growth, metabolism and 
physiology. In the macrophyte samples the concentration 
of Ni ranged from 3.5 to 17.1 mg kg−1, which was below 
toxic levels (Table 2) (Kabata-Pendias 2010). Studies 
by Ramachandra et al. (2018) (T. angustifolia, E. cras-
sipes, A. philoxeroides) and Yadav and Chandra (2011) (T. 
angustifolia) reported similar Ni concentrations to those of 
the current study. The range of Zn in macrophytes ranged 
from 14.8 to 155.5 mg kg−1 (mean 64.76 mg kg−1), with 
A. philoxeroides accumulating highest Zn concentrations 
and E. crassipes accumulating the lowest (Table 2). Higher 
accumulation of Zn was reported in the same macrophytes 

by Chatterjee et al. (2011), Yadav and Chandra (2011), 
Singh et al. (2017), and Mazumdar and Das (2015). A 
similar Zn concentration range was seen in T. angustifo-
lia, A. philoxeroides, and E. crassipes by Ramachandra 
etal. (2018) and C. esculenta by Meitei and Prasad (2016). 
Alternanthera philoxeroides and E. crassipes had most of 
the metals in higher concentration among the studied mac-
rophyte samples.

The metal accumulation strategy of macrophytes was 
studied using BCF and TF. The BCFs ranged from 0.5 to 
1.45, 0.38 to 1.28, 0.19 to 0.28, 0.75 to 0.9, 0.13 to 0.27, and 
0.35 to 1.14 for Pb, Zn, Ni, Cr, Cd, and Cu, respectively. The 
order of BCF for metals was Zn > Pb > Cr > Cu > Ni > Cd. 
Alternanthera philoxeroides had higher BCFs for Pb, Zn, 
and Cu, which was similar to that reported by Suthari et al. 
(2017). Typha angustifolia had higher BCFs for Ni and 
Cd which were similar to results obtained by Yadav and 
Chandra (2011). The BCF for Cr was highest for C. escu-
lenta. The TFs ranged from 0.9 to 1.45, 0.22 to 0.71, 0.45 
to 1.13, 0.7 to 1.32, 0.25 to 1.5, and 0.65 to 1.43 for Pb, Zn, 
Ni, Cr, Cd, and Cu, respectively. The TFs for metals was 
Pb > Cr > Cu > Cd > Ni > Zn. Colocasia esculenta had higher 

Table 2  Mean, range, and critical concentration of metal in macrophytes of Varthur Lake, Bangalore

Metal Mean (range) (mg  kg−1) Plant Shoot (mean ± SD) Root (mean ± SD) Excess/toxic level in plants 
Kabata-Pendias, (2010) (mg 
 kg−1)

Cd 0.21 (0.00–0.80) Eichhornia crassipes 0.10 ± 0.05 0.20 ± 0.15 10.0–30.0
Alternanthera philoxeroides 0.20 ± 0.08 0.10 ± 0.01
Colocasia esculenta 0.10 ± 0.04 0.10 ± 0.02
Typha angustifolia 0.20 ± 0.07 0.70 ± 0.06

Cr 42.3 (34.0–54.8) Eichhornia crassipes 44.7 ± 5.99 42.4 ± 3.85 5.00–30.0
Alternanthera philoxeroides 45.1 ± 3.43 37.9 ± 5.44
Colocasia esculenta 38.1 ± 3.23 50.8 ± 3.56
Typha angustifolia 43.8 ± 3.59 33.0 ± 3.21

Cu 66.8 (21.3–264) Eichhornia crassipes 58.5 ± 31.1 89.4 ± 12.5 20.0–100
Alternanthera philoxeroides 148 ± 109 103 ± 10.1
Colocasia esculenta 28.9 ± 3.89 44.4 ± 5.66
Typha angustifolia 42.1 ± 6.23 32.1 ± 2.13

Ni 8.44 (3.50–17.1) Eichhornia crassipes 6.20 ± 2.57 12.6 ± 0.65 10.0–100
Alternanthera philoxeroides 5.60 ± 0.71 7.90 ± 2.19
Colocasia esculenta 5.60 ± 1.62 4.90 ± 1.11
Typha angustifolia 7.70 ± 2.26 16.2 ± 0.56

Pb 21.9 (8.70–56.7) Eichhornia crassipes 22.7 ± 5.18 24.8 ± 2.39 30.0–300
Alternanthera philoxeroides 32.4 ± 18.7 33.2 ± 19.0
Colocasia esculenta 13.5 ± 2.87 9.30 ± 0.25
Typha angustifolia 20.5 ± 5.65 18.8 ± 6.22

Zn 64.8 (14.8–156) Eichhornia crassipes 38.8 ± 39.2 122 ± 6.85 100–400
Alternanthera philoxeroides 28.6 ± 6.54 140 ± 22.7
Colocasia esculenta 20.6 ± 2.96 28.9 ± 4.74
Typha angustifolia 23.1 ± 3.96 117 ± 5.87
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TFs for Pb, Zn, and Ni than other macrophytes. Similar TFs 
were observed for Pb and Zn by Mazumdar and Das (2015) 
in C. esculenta. The TFs for Cd and Cu were highest in A. 
philoxeroides, and T. angustifolia had the highest TF for Cr.

Phytostabilization acts as an efficient remediation tech-
nique when plants show high BCF and low TF (BCF > 1 
and TF < 1), while phytoextraction is suitable when both 
BCF and TF > 1 (Yang et al. 2015). Thus, A. philoxeroides 
and E. crassipes had potential for phytostabilization of Pb 
and Zn, respectively. Lead and Zn phytostabilization by 
E. crassipes was reported earlier by Jha et al. (2016) and 
Meitei and Prasad (2016), respectively. Copper was accu-
mulated mainly by phytoextraction by A. philoxeroides. 
Nickel, Cr and Cd had higher mobility in C. esculenta, 
T. angustifolia, and A. philoxeroides, respectively, as 
BCF < 1 and TF > 1.

The present study revealed metal concentration and accu-
mulation capabilities of sediments and macrophytes from 
Varthur Lake, Bangalore. Studied metals were higher in inlet 
and shoreline regions of the lake. Sediments were sinks for 
metals. The phytoremediation ability of macrophytes were 
revealed through metal accumulation. Alternanthera philox-
eroides and E. crassipes remediated most metals through 
phytostabilization and phytoextraction.
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