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ARTICLE INFO ABSTRACT

Keywords: Burgeoning dependence on fossil fuels for transport and industrial sectors has been posing challenges such as
B?oenergy depletion of fossil fuel reserves, enhanced greenhouse gas (GHG) footprint, with the imminent changes in the
Biofuel climate, etc. This has necessitated an exploration of sustainable, eco-friendly and carbon neutral energy alter-
Enteromorpha intestinalis : di biofuels indi hat aleal bi icularly fi i 1 d

Macroalgae natives. Recent studies on biofuels indicate that algal biomass, particularly from marine macroalgae (seaweeds)
Seaweeds have the potential to supplement oil fuel. Marine macroalgae are fast growing and carbohydrate rich biomass
Ulva lactuca having advantage over other biofuel feedstock in terms of land dependence, freshwater requirements, not

competing with food crops, which were the inherent drawback of the first- and second-generation feedstock. The
present communication reviews the macroalgal feedstock availability, screening and selection of viable feedstock
based on the biochemical composition, process involved, scope and opportunities in bioethanol production as
well as technology interventions. The prospect of bioethanol production from algal feedstock of Central West
Coast of India has been evaluated taking into account challenges (feedstock sustenance, technical feasibility,
economic viability) in order to achieve energy sustainability. The green algae exhibited growth during all seasons
and highest total carbohydrate was recorded from green seaweed Ulva lactuca (62.15 + 12.8%). Elemental (CHN)
analyses of seaweed samples indicate 25.31-37.95% of carbon, 4.52-6.48% hydrogen and 1.88-4.36% Nitrogen.
Highest carbon, hydrogen and nitrogen content were recorded respectively from G.pusillum (C: 37.95%), G.
pusillum (H: 6.48%) and E.intestinalis (N: 4.36%). Green seaweeds are rich in cellulose content (>10%) compared
to other seaweeds (2-10%). Higher cellulose content was estimated in U.lactuca (14.03 + 0.14%), followed by E.
intestinalis (12.10 + 0.53%) and C.media (10.53 £ 0.17%). Cellulose is a glucan present in green seaweeds, which
can easily be hydrolysed through enzyme and subsequently fermented to produce bioethanol. Lower sugar
removal in acid hydrolysate neutralization process (NazCO3) was recorded in U.lactuca (39.8%) and E.intestinalis
(14.7%). Highest ethanol yield of 1.63 g and 0.49 g achieving 25.8% and 77.4% efficiency in SHF (Separate
Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation) process respectively
was recorded for green alga E. intestinalis.

1. Introduction

Fossil fuels such as oil, coal and natural gas are the major commercial
energy sources and about 87% of global COy emitted due to the
anthropogenic activities [1,2] are contributed by utilization of coal
(43%), oil (36%) and natural gas (20%). Earth endows finite source of
oil reserve and its increased consumption in several sectors has led to
increased oil production, exerting pressure on the reserves which is
apprehended to peak and no longer suffice the world’s demand with the
fast dwindling stock [3]. Rising population with higher consumption

levels coupled with a fast pace of development have spurred higher
exploitation of fossil fuels leading to the escalating prices and resultant
greenhouse gases (GHGs) posing problems for planet’s climatic stability
[4-6]. It is imperative to ensure energy security through the sustainable
alternative energy sources [7,8]. Globally, nations are actively
addressing the issues concerning greenhouse gases and peak oil crisis
through several mitigation measures such as; energy conservation, fuel
substitution, incentives for the use of unconventional and renewable oil,
and policy reforms such as carbon tax [8]. Therefore, the current focus is
on carbon neutral renewable sources, notably photovoltaic, wind,

* Corresponding author. Energy & Wetland Research Group, CES TE 15 Centre for Ecological Sciences, New Bioscience Building, Third Floor, E-Wing [Near D-
Gate], Indian Institute of Science, Bangalore, 560012, India. Tel.: 91-080-22933099/22933503;Fax: 91-080-23601428.
E-mail addresses: cestvr@ces.iisc.ernet.in, energy.ces@iisc.ac.in, tvr@iisc.ac.in (T.V. Ramachandra), deepthih@iisc.ac.in (D. Hebbale).

URL: http://ces.iisc.ernet.in/energy (T.V. Ramachandra).

https://doi.org/10.1016/j.rser.2019.109479

Received 24 February 2019; Received in revised form 23 September 2019; Accepted 8 October 2019

Available online 17 October 2019
1364-0321/© 2019 Elsevier Ltd. All rights reserved.


mailto:cestvr@ces.iisc.ac.in
mailto:energy.ces@iisc.ac.in
mailto:tvr@iisc.ac.in
mailto:deepthih@iisc.ac.in
http://ces.iisc.ac.in/energy
www.sciencedirect.com/science/journal/13640321
https://http://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2019.109479
https://doi.org/10.1016/j.rser.2019.109479
https://doi.org/10.1016/j.rser.2019.109479
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2019.109479&domain=pdf

T.V. Ramachandra and D. Hebbale

hydrogen, etc. These alternative sources were useful in addressing the
electricity requirement, but the exploration for viable alternatives to oil
in order to meet the requirement of transport sector, etc. is quintes-
sential. Despite the existence of possible solutions such as renewable
resources, energy efficient products (CFLs and LEDs) have not been
widely adopted due to market barriers. Wind power contributes 2.5% of
world electricity output and are weather dependent, susceptible to
geographic and climatic changes [9,10]. Dependency on conventional
generation coupled with the depleting stock and the enhanced envi-
ronmental awareness in the public have been the major constraints faced
by the land based energy systems [11,12]. Nuclear power witnessed 2%
growth in Europe, but encountered resistance with respect to disposal of
waste, safety during nuclear accident and declining global uranium
stocks. Nuclear disaster at Fukushima Daiichi nuclear power plant in
2011 [13], led Germany to rethink its energy policy [14].

India has been the 3rd largest energy consumer surpassing Russia,
China and USA and about 80% of India’s energy consumption was
contributed by imported crude oil [15], which was estimated to be
213.93 Million Metric Ton (MMT) in the year 2016-17. This is attributed
to the poorly endowed natural reserve of hydrocarbon in India, however
crude oil production in India is about 36.01 MMT, from the 0.3% oil
reserves [15]. India is emerging as the fastest growing economy next to
China with the growing energy demand, burgeoning population (at
1.58% annual) and dwindling stock of fossil fuel in next few decades, it
is challenging to support this growing economy demand [16]. The total
CO; emission in India accounts for 965.9Tg/yr, with electricity gener-
ation (343Tg/yr) and transport (246.23Tg/yr) sectors as the major
contributors [17]. The higher level of CO, emissions necessitates
implementation of efficient management strategies to mitigate changes
in climate [18]. The new renewable energy resources are being explored
to meet the energy demand in all sectors and also research is underway
to address the intermittency problems associated with wind and solar
based energy systems [19-21].

In this context, studies have shown that biofuels are emerging as
promising alternative to liquid fuels. Realizing the potential of biomass,
different technologies have evolved towards the conversion of biomass
into fuels, popularly known as biofuels [22-24]. Produced from
renewable plant sources or other organic wastes, biofuels have the ad-
vantages of cutting down carbon emission and dependency on oil [25].
In India, around 80% of rural energy [26] is met by biomass energy
consumption, in the form of firewood, agriculture residues, cow dung
cake and other natural feedstock [24,27,28]. Fig. 1 represents the share
of each country in the global bioethanol production, which highlights
that India’s share is only 2% [29] despite burgeoning demand for fossil
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fuel. This emphasizes the need for augmentation with the viable indig-
enous alternative feedstock to minimize fossil fuel dependence.

Biofuel from first generation feedstock involved food crops like corn
and sugarcane which were exploited for biofuel production over three
decades, but this technique encountered resistance due to the limited
stock and competition with food crops [25]. The inadequacy of first
generation feedstock in augmenting the growing energy demand led to
the evolution of second generation feedstock involving lignocellulose
biomass (Fig. 2). However, biofuel from second-generation feedstock
also failed, due to the difficulty in scaling up and process technology
involved in the cost-intensive delignification process [30]. Due to this,
the cost of production of cellulosic ethanol is two to three fold higher
than the price of corn grain ethanol [31]. In the US, it was seen that, the
fossil energy required to produce bioethanol from corn, grain, soybean
and wood biomass was more than the energy content of the biofuel,
while sufficing only 12% of gasoline and 6% of the diesel demand.
Though first and second generation feedstock are explored for biofuel
production and assessed for carbon sequestration, environmental im-
pacts and production potential only marginally complies with various
other sustainability criteria’s such as; disruption of global food supply,
soil erosion, extensive usage of fertilizers, conversion of ecologically
vulnerable wetlands, rainforests, peat lands, savannas into energy crop
lands contributing to several magnitude of CO5 [32,33]. GHGs footprint
of major cities in India [34], recorded aggregation of carbon dioxide
equivalent emission of GHGs in the range of 13,734.59-38,633.2 Gg,
with transportation being one of the major sector next to the energy
generation. Emergence of a strong global biofuel feedstock is expected to
realize a positive balance between energy and ecological footprints [35].

Table 1 illustrates the prospects of algal biomass emerging as an ideal
alternative to the first and second generation [37,38]. Though, algae is
being utilized as an energy feedstock since 1950s [26], the oil crisis of
1970’s spurted the research [39]. Algal feedstock do not require prime
agricultural land and can be grown in fresh water, wastewater [40] and
saline waters with zero nutrient input and non-interference with the
land used for food production [38,41]. Algal biomass have higher
photosynthetic efficiency (up to 5%) as compared to terrestrial biomass
(1.8-2.2%) [42], and require for their growth light, carbon dioxide and
nutrients (such as nitrogen, phosphorus, potassium, etc.), which are
maintained through continuous flow of water [42]. Algae have a higher
yield per unit area compared to terrestrial plants e.g. brown algae under
the cultured condition, yields ~13.1 kg dry weight/m? over 7 months as
compared to sugarcane yield of ~10kg dry weight/m?/yr [43]. Algae
based on their morphology and size are grouped into micro and mac-
roalgae [29]. Microalgae accumulate large quantities of neutral lipids

Worldwide Bioethanol production
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Fig. 1. Worldwide bioethanol production.
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Table 1
Yield and Ethanol production of First, Second and Third generation feedstocks.

Biofuel Crop Yield(ton/ha/yr)  Ethanol (litres/ha/yr)
First generation Sugarcane 50-90 3500-8000
Sweet sorghum 45-80 1750-5300
Sugar beet 15-50 1350-5500
Fodder Beet 100-200 4400-9350
Wheat 1.5-2.1 510-714
Barley 1.2-2.5 300-625
Rice 2.5-5.0 1075-2150
Irish potatoes 10-25 1110-2750
Cassava 10-65 1700-11,050
Sweet potatoes 8-50 1336-8350
Grapes 10-25 1300-3250
Second generation  Nipa palm 2300-8000
Maize 1.7-5.4 600-1944
Sorghum 1.0-3.7 350-1295
Third generation Algal biomass 730 23400

Source: [36].

which serves as raw material for biodiesel production [44,45], whereas
macroalgae are carbohydrate rich biomass which are useful for bio-
ethanol production. Large scale cultivation of macroalgae in Korea re-
veals an uptake of 8-10 tonne CO; per hectare [42].

1.1. Potential macroalgal feedstock available

Marine macroalgae or seaweeds establish on hard substratum and
grow luxuriantly along nutrient rich coastal zone (Fig. 3). One of the
richest seaweed resources in the world is in Nova Scotia/Gulf of St.
Lawrence area [46]. Global seaweed distribution can be summarized as:
(i) Least flora <200 Spp in latitudes >60° in both hemispheres, (ii)
Moderate flora of 600-700 spp. that occur throughout warm and cold
tropical and temperate regions, (iii) Highest flora of 900-1100 spp.
occur in four regions Southern Australia, Mediterranean, Japan and
Philippines.

Seaweed resources and their uses are well established across regions
in the world. Red seaweeds are mostly utilized for extraction of hydro-
colloid valuing $585 million [47] and source of food (e.g. Salads)
valuing $5 billion [48] with Asia as its prime market [43]. Cultivation of
macroalgae is a promising option as seventy percent of the Earth surface

is covered by water [39,42,49,50], therefore in order to satisfy these
industrial demands, macroalgae are cultivated in large scale, mainly of
the genus Laminaria, Undaria, Poryphyra, Eucheuma, Enteromorpha and
Gracilaria representing 76% of total macroalgae aquaculture production
[51].

In recent years, algal genera of Kappaphycus, Gelidium, Gracilaria,
Sargassum, Laminaria and Ulva (Fig. 2), are the promising potential
feedstock for biofuel production in addition to the value added products
for phycocolloids extraction, human food, cosmetics, fertilizer and other
chemicals [52,53]. These algal feedstock have been chosen considering
the availability and assessment of resources around the globe, ease of
cultivation and harvesting. However, there is still scope to assess other
potential macroalgal species based on their availability, biochemical
composition and prospects for cultivation.

1.2. Bioethanol production from macroalgal feedstock

Bioethanol from algal biomass is a sustainable and eco-friendly op-
tion of renewable biofuel production [39]. Macroalgae or seaweed,
saltwater thriving algae have proved to be the viable biofuel feedstock
[54] for sustainable biofuel production as it avoids the competition with
fresh water, food crops or cultivable land [39,55]. Seaweeds are
multicellular marine macroalgae, broadly grouped as green, brown and
red based on the pigment present in the thallus. Seaweed consists of
carbohydrates (Table 2), which are converted to bioethanol by appro-
priate microorganisms such as yeast or bacteria. The common processes
involved in ethanol production are (i) pretreatment, (ii) hydrolysis and
(iii) fermentation.

1.2.1. Pretreatment and hydrolysis for extraction of macroalgal sugar

Different types of biomass contain different amounts of sugars and
the complexity of the biomass is reflected between structural and car-
bohydrate components [62,63]. Plant biomass is mostly composed of
lignin (13.6-28.1%), cellulose (40.6-51.2%) and hemicellulose
(28.5-37.2%) biopolymer [64], which serves as raw material for pro-
duction of fuels. However, critical step involved in biofuel production is
the conversion of biomass to sugars [65]. It is therefore important to
carefully choose the pretreatment process based on the biomass and an
optimal pretreatment process towards better yield of sugar with the low
energy input [66].
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Fig. 3. Prominent coastal regions of the world rich in seaweed resources and potential feedstock for bioethanol production.

Pretreatment involves physical, chemical and biological (or combi-
natorial) process to expose the cell constituents and cell wall materials of
feedstock [67]. Physical pretreatment involves reduction in size of the
feedstock to increase the surface area for better transport of acid/base
catalysts, enzymes and steam to the fibers (cellulose) [68]. Chemical
pretreatment involves dilute acid, alkaline, ammonia, organo solvent
and other chemicals. Biological pretreatment involves microorganisms
like bacteria and fungi (rich in cellulase enzyme) to degrade the biomass
and release the sugars [69]. Integrated pretreatment involves combi-
nation of all the process such as acid catalyzed steam explosion,
ammonium fiber explosion (AFEX), acid pretreated enzyme hydrolysis
etc [66].

First generation biomass is starch based and requires no stringent
pretreatment conditions to extract sugar, whereas lignocellulose
biomass is complex in structure due to the presence of biopolymer lignin
that embeds cellulose in a matrix resulting in a higher degree of poly-
merization and crystallization, which is the main factor responsible for
recalcitrance [66,70-72] requiring a high cost for delignification pro-
cess [73]. Therefore, the process of sugar extraction requires severe
pretreatment conditions such as steam explosion at 200°C [74], at
121 °C [75], AFEX, Sulphite pretreatment to overcome recalcitrance of
lignocellulose (SPORL) [31], pressurized steam liquefaction [76]. It is
seen that alkaline based pretreatment is effective in solubilizing signif-
icant portion of lignin from lignocellulose biomass [69]. Lignin was
removed from cotton stalk pretreated using sodium hydroxide at high
temperature and 96% fermentable sugars were recovered [77,78].
Around 11.4 MMT cotton plant wastes available in India, can generate
3533 billion litres of ethanol considering 90% fermentation efficiency
[78]. Removal of 89% lignin and 69.77% hemicellulose in rice husk was
achieved through wet air oxidation pretreatment method [79]. Hydro-
thermal pretreatment of wheat straw was carried out and viewed under
scanning electron microscope (SEM), which reveal partial de-fibration
of the lignin fibers due to pretreatment, whereas in delignification
process lignin appears as layer of globular deposits exposing the cellu-
lose structure [71].

Compared to this, macroalgae with the large concentration of
structural polysaccharides (Table 3) and low lignin contents [80] re-
quires mild and low-cost processes for extraction of sugars. The most
widely used chemical pretreatment method for macroalgal biomass is

dilute acid (Table 4), as it solubilizes hemicellulose and exposes cellu-
lose fibers for further enzyme hydrolysis [68]. The energy consumed in
acid pre-treatment is comparatively low as compared to other
pre-treatments and higher sugar yields are achieved [69]. Dilute acid
concentration for hydrolysis varies based on the feedstock, listed in
Table 3. However, limitation of dilute acid pretreatment is the formation
of Hydroxymethyl furfurals (HMF) and Levulinic acid (LA) resulting
from the degradation of sugars that inhibit the subsequent process
(fermentation) in ethanol production [81,82]. These inhibitors are
mitigated by neutralization process before fermentation [83,84] or by
employing other sustainable alternatives such as biological pretreat-
ment: enzyme hydrolysis [53,85-94].

Enzyme hydrolysis of cellulose is carried out efficiently by cellulolytic
(cellulase) enzyme, which is comprised of exo-, endo-glucanases and
cellobiase (- p-glucosidase) enzymes [71]. Endoglucanases cleave cel-
lulose at random sites of -1, 4-bond and form free reducing ends and
short-chain oligosaccharides [84] Exoglucanases cleaves the accessible
ends of cellulose molecules to liberate glucose and cellobiose. f-
p-glucosidase hydrolyses soluble cellobiose and other cellodextrin to
produce glucose molecules [95]. Enzyme conversion is substrate specific
without any by-product formation. The process could be enhanced [7],
by exposing the cellulose fibres through pre-treatment using acid.
Enzymatic hydrolysis disintegrates the cellulose and hemicellulose into
simple sugars [96]. Along with this, depolymerization of xylan (poly-
saccharide composed of xylose) can be achieved by dilute-acid pre-
treatment [88] with about 64% xylose conversion efficiency.
Pretreatment techniques include high thermal liquefaction process
(HTLP) [971], alkali pretreatment, CaO, Ozonolysis, etc. However it was
seen that the acid treated biomass was more susceptible for enzyme
attack than HTLP, NaOH, CaO and other pretreatment [87].

Algal cell wall is composed of cellulose I (triclinic crystalline form)
unlike the cellulose If (monoclinic crystalline form) in plant cell wall.
Cellulose I consists of weaker hydrogen bonds resulting from spatial
arrangement of individual cellulose chains, resulting in easy access to
endocellulases enzymes during enzyme hydrolysis [98]. Most common
categories of enzymes considered for cell wall depolymerization are
cellulases, hemicellulases and accessory enzymes [99], produced from
wood-rot (soft rot) fungi such as Trichoderma, Penicillium, and Aspergillus
[100]. The production costs of these enzymes are relatively higher.
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Table 2

Detailed characteristics of different types of Seaweeds.

Characteristics Green seaweed Red seaweed Brown seaweed
Number of 6032% 7105° 2039°¢
species
recorded
Habitat Freshwater and Strictly marine Strictly marine
Marine
Photosynthetic Chlorophylla, b,  Phycoerythrin Fucoxanthin
pigment carotene and
present Xanthophyll
Photosynthetic 30 to 1786 20-1808.7 100-500
rate (pmol
COy/h) g/dry
Productivity 7100 3300-11300 3300-11300
[dry g/(m?
year)]

Nature of cell

Cellulose, pectin

Cellulose and pectic

Cellulose with

wall rarely hemi- material with alginic acid and
cellulose polysulphate esters fucocinic acid
Sexuality Isogamy to Advanced and Isogamy to oogamy
oogamy complex
(oogamous)
No. of flagella 2 or 4, equal Absent Only in
and their anterior, reproductive cells,
insertion whiplash 2 unequal, lateral
whiplash and tinsel
Cell structure Eukaryotic Eukaryotic Eukaryotic
Phycolibins Absent Allophycocyanin, r- Absent
Phycoerythrin
r-Phycocyanin
Carotenoids o-, B-, - a-, - carotene o-, B-, e- carotene
carotene
Xanthophylls Lutein Lutein Fucoxanthin,
Prasinoxanthin Violaxanthin,
Diadinoxanthin,
Heteroxanthin,
Vacheriaxanthin
Carbohydrate 30-60 30-50 20-30
(%)
Protein (%) 10-20 6-15 10-15
Lipid (%) 1-3 0.5-1.5 1-2
Ash (%) 13-22 5-15 14-28
Photosynthetic Starch Floridean starch Laminarin and
reserve* (intermediate mannitol
(Stored food) between true starch (hexahydride
and dextrin) alcohol)

Source: [50,54,56-61].

Table 3

Sugar profile of Macroalgae.

Green seaweeds

Red seaweeds

Brown seaweeds

Structural Cellulose Cellulose, Cellulose, Alginate
polysaccharide lignin
Storage Starch, Ulvan, Agar, Fucoidan, laminarin
polysaccharide Mannan Carrageenan
Monosaccharides Glucose, Glucose, Glucose, Galactose,
Mannose, Galactose, Fucose, Xylose
Rhamnose, Agarose

Sugar alcohol
Sugar Acid

Xylose, Galactose

Uronic acid,
Glucuronic acid

Mannitol

Uronic acid,
Mannuronic acid,
Glucuronic acid,
Alginic acid

Source [47-50]:

Commercial industrial enzymes are produced from aerobic fungi Tri-
choderma reesei, which produces over 100 g per liter of crude cellulase
enzyme with higher specific activity, achieved by genetic engineered
strains [101]. Most common enzymes employed for seaweed hydrolysis
are commercial enzymes such as Cellulase, Celluclast 1.5 L, Viscozyme
L, Novozyme 188, Termamyl 120 L, p-glucosidase, Multifect, Meicelase,
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Amyloglucosidase etc operated at pH 4.5-5.5 and temperature
35-55 °C, incubation time varies based on the algal feedstock [56,71,89,
90,102-109].

Cellulase producing microbes have been screened and isolated from
various sources such as soil from forest and nature reserves, hot water
springs, marine bacteria [90] compost, sewage, animal manure and
bovine rumen [91]. Enzymatic hydrolysis has been done conventionally
at <50 °C, resulting in lower sugar yield [95]. Therefore, research is
under progress for isolating efficient cellulolytic enzyme systems from a
wide variety of bacteria, fungi, aerobes, anaerobes, mesophiles, ther-
mophiles and thermo-stable microbes [92,93,96] which can overcome
low sugar yield for biofuel production. Cellulase from thermophilic and
psychrophilic microbes are preferred as they are resistant to high and
low temperatures respectively [91]. Thermo-stable enzymes increase
solubility of reactants and products, facilitating easy recovery of end
products [96] while reducing hydrolysis time, decreasing contamination
and cost of energy.

Marine fungus Cladosporium sphaerospermum was isolated to extract
cellulase enzyme and used to hydrolyze U. pertusa biomass, which
yielded 112 mg/g of reducing sugar at pH 4 and temperature 25 °C for
42h [94]. Similarly, marine bacteria was isolated from degrading U.
lactuca to extract cellulase enzyme, which is tolerant to high salt con-
centration and alkaline pH [86]. Polysaccharolytic enzymes extracted
from the gut of the abalone Haliotis midae degraded the polysaccharides
laminarin, carboxymethylcellulose (CMC), alginate, agarose and carra-
geenan [109].

1.2.2. Fermentation of macroalgal sugars

Macroalgal biomass contain different types of polysaccharides,
exclusively composed of glucose i.e., glucans. Main glucans present in
green: cellulose and starch; red: cellulose and floridean starch; brown:
cellulose and laminarin [46,50,61]. Non-glucans are sulphated poly-
saccharides such as agar, carrageenan and alginate. In order to obtain
higher ethanol, hydrolysis of glucan as well as non-glucan with the
fermentation of the resulting sugars is essential [60]. Sugar released
from the pretreatment process has been fermented using microorgan-
isms such as yeast, bacteria, and fungi, which ferment these sugars to
produce ethanol as a by-product [41,110]. Saccharomyces cerevisiae is
the commonly used yeast microorganism for fermentation as it readily
ferments glucose [111]. However, pretreatment releases mixed sugars
namely; glucose, galactose, mannitol, rhamnose and xylose. Due to the
lack of xylose transport system, S.cerevisiae is not capable of utilizing
xylose [112]. Its uptake takes place through glucose transport system
and is regulated by the concentration of glucose. At only low concen-
tration of glucose, xylose is consumed by the yeast [113]. As a result,
studies related to isolation of wild yeast strains from various sources is
done that can ferment both hexose and pentose sugars yielding higher
ethanol. Bacteria, yeast and fungi are explored for xylose fermenting
organisms, and mostly preferred organisms are bacteria and yeast as
fungi are too slow for competitive industrial process [7].

Single or combination of strains are being attempted for utilization of
sugars. Laminaran and mannitol obtained from L. hyperborea were
subjected to fermentation using one bacterium (Zymobacter palmae
T109) and three yeast strains (Pichia angophorae, Pacchysolen tannophilus
and Kluyveromyces marxianus). It was seen that only P. angophorae is
capable of fermenting laminaran and mannitol at higher oxygen transfer
rate to produce 0.43 g ethanol/g substrate [114]. Utilization of mannitol
by Zymobacter palmae resulted in the production of 0.37 g ethanol/g
mannitol [115], however mannitol was utilized at lower oxygen rate in
fermentation media. Mannitol was effectively fermented by E.coli KO11
for production of 0.41 g ethanol/g mannitol [116]. Similarly, glucuronic
acid fermentation was attempted using Pachysolen tannophilus and E. coli.

Bioethanol production from all forms of macroalgal biomass; wet,
dried and residues (after extraction of hydrocolloid) was attempted.
Residues after extraction of hydrocolloids are rich in cellulose, which
have been utilized for bioethanol production. Floating residue of
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Table 4
Bioethanol production from macroalgal biomass.

Green Pretreatment conditions Enzyme hydrolysis conditions Yeast/Bacterial strain and Reducing Ethanol Theoretical Reference

Seaweeds Fermentation process Sugar g/L yield g/g yield (%)

E.intestinalis Hydrothermal process (75 mM Celluclast 1.5L and Viscozyme L. Saccharomyces cerevisiae 40.4 0.21 41.74 [120]
for 90min) (55°C, 120 rpm for 54 h) KCTC 1126 (pH 5.5, 30 °C,

220 rpm for 12h)
U.fasciata H2S04 (0.1% at 100 °C for 1 h) Cellulase 22119 (Sodium acetate Saccharomyces cerevisiae 20.6 0.45 88.24 [89]
buffer pH 4.8 at 45 °C for 36 h) (10° CFU/ml 28 °C,
120 rpm for 48 h)
U.lactuca Cellulase isolated from Saccharomyces cerevisiae 112mg/g 0.47 92.16 [94]
Cladosporium sphaerospermum MTCC180 (28°C for 12h)
(pH 4, 25°C, 42h)
U.pertusa Citric acid buffer (0.1 M Meicelase (combined Saccharomyces cerevisiae 59.1 0.47 91.24 [70]
sterilized using autoclave) saccharification) T1AM4178 (30°C for 36 h)
(pH 5.5, 50°C, 100 rpm for
120h)
HTLP + Enzyme (150 °C, 15 Cellulase & Amyloglucosidase Saccharomyces cerevisiae 26 0.48 93.51 [97]
min) (pH 4.8, 50 °C, 150 rpm for 24 h) ATCC24858 (pH 5.5,
150 rpm, 30 °C for 24 h)
Red Seaweeds
G. elegans Meicelase (pH 5.5 at 50 °C for Saccharomyces cerevisiae 49 0.38 73.63 [70]
120h) 1AM4178 (30 °C for 36 h)
G. amnasii H»S04 (56-168mM,45-240min) Enzyme Viscozyme L (0.024 Scheffersomyces stipitis 43.5 0.47 92.40 [108]
FBG/ml) (pH 5.5, 30°C, 200 rpm)
H2S04 (2%, 150 °C for 4 h) Brettanomyces custersii 42.2 0.38 74.51 [126]
KCCM11490 (pH 4.8-5.5,
27-30°C)
G. verrucosa H,S04 (1.5%, at 80 °C for 2 h) 87 0.43 84.29 [60]
373 mM H,SO04 Celluclast 1.5L and Viscozyme L. Saccharomyces cerevisiae 20.4 0.48 94 [110]
(pH 5, 45°C, 150 rpm for 72 h) KCTC1126 (pH 5, 30°C,
150 rpm for 114 h)
Gracilaria sp. H2S04 (0.1 N,121 °C for 30min) Commercial enzyme (pH 4.5, Saccharomyces cerevisiae 11.46 0.42 82.80 [132]
50°C) (30°C for 48 h)

K. alvarezii Soaked in 1.6 L distilled water Celluloclast 1.5 L & Novozyme Saccharomyces cerevisiae 79.2 0.25 49 [88]
for 30 min and boiled at 90 °C (pH 5, 50 °C, 150 rpm for 24 h) (pH 5,35°C, 130 rpm for (SHF)
for1h 6h) 0.27 52.9

(SSF)

H2S04 (0.2 M, 130 °C for 15min) Commercial brewer’s yeast 20.4 0.21 41.18 [133]

(30°C 120 rpm pH 5 for

72h)
H>S04 (0.9N, 100 °C for 1 h) Saccharomyces cerevisiae 51.9 0.42 82.36 [117]
5 cycles NCIM (5% v/v, 30°C

150 rpm, pH 6.4-6.8 for

48h)

P. palmata Acid hydrolysis 21.84 0.173 33.92 [133]

Brown Seaweeds

A. crassifolia Citric acid buffer (0.1 M Meicelase (5g/1 at 50 °C for Saccharomyces cerevisiae 66.3 0.38 75 [70]
sterilized using autoclave) 120h) IAM 4178 (30 °C for 36 h)

L. hyperborea Extracted in water at 65°C Pichia angophorae 30 0.43 84.31 [114]
Extracted in water 121 °C for Zymobacter palmae (pH 6, 3.8 0.38 74.51 [115]
20min 30°QC) (mannitol)

S. sagamianum Pichia stipitis (pH 5, 19.8 0.35 69.32 [125]

200 rpm)

S. janponica H,S04 (1 mM, 121 °C, for Cellulase and cellobiase (pH 4.8, Saccharomyces cerevisiae 34 0.41 80.74 [103]
120min) 50°C, 150 rpm for 48 h) (pH 6.5, 30°C for 36 h)

Acid hydrolysis (0.1N, 121 °C Celluclast 1.5L, Viscozyme L, E.coliKO11 (30 °C for 24 h) 30.54 0.41 80.39 [116]
for 15min) Novoprime 959, Novoprime 969

or AMG 300L (50 °C, 150 rpm for

24h)
H,S04 (40 mM, 121 °C for Novozyme (Termamyl 120L) Pichia angophorae KCTC 45.6 0.16 33.3 [52]
60min) 17574 (5% 30°C at

200 rpm, 136 h)

Shredding and enzymatic (23 °C Ethanol Red yeast (32°C) 35 0.45 88.24 [126]
for 30min)

U. pinnatifida Dilute acid (5% H2S04, 120°C Celluloclast 1.5L & E.coli (pH 7170 rpm, 37°C 20 0.144 28.2 [107]

for 24 h)

Novozymel88 (pH 4.6, 45 °C)

for 12h)

L. japonica was subjected to acid pretreatment followed by enzyme hy-
drolysis, an ethanol yield of 14g/L was obtained from 34 g/L of
reducing sugar achieving 41.2% conversion efficiency [103]. Similarly,
K. alvarezii dried residues after extraction of sap were utilized for pro-
duction of bioethanol [117]. Wet biomass of G. amansii was used as
bioethanol feedstock, Brettanomyces custersii KCTC 18154P strain was
utilized for fermentation of the hydrolysate due to the ability of the
strain in exhibiting co-fermentability. Utilization of raw or wet

macroalgal biomass is not feasible for bioethanol production due to high
viscosity of the medium for fermentation [118]. In green seaweeds,
studies have focused on conversion of cellulose and starch to bioethanol.
Whereas conversion of other sulphated polysaccharides such as Ulvan to
produce ethanol is yet to be explored [60]. Non availability of natural
strains capable of fermenting alginate, a major polysaccharide of brown
algae [60], makes it difficult to achieve higher ethanol production.
Fermentation is carried out in two process, Separate Hydrolysis and
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Fermentation (SHF) and Simultaneous Saccharification and Fermenta-
tion (SSF) [119]. SHF involves hydrolysis and fermentation performed
sequentially, whereas SSF involves performing simultaneous hydrolysis
and fermentation [74]. Saccharina japonica, Undaria pinnatifida and
Poryphyra were subjected to SSF using Pichia angophorae KCTC strain
and obtained 7.7 g/L of ethanol [52]. SHF process is faster but presence
of inhibitors resulting from acid pretreatment has significant impact on
yeast microorganisms. SSF is preferred over SHF as the sugars released
are readily metabolized by yeast microorganisms, which results in a
faster ethanol production rate and lower capital costs. SSF has a draw-
back due to the difference in temperature optima of cellulase (50 °C) and
fermenting microorganism (35 °C). SHF and SSF of Enteromorpha intes-
tinalis or Ulva (Enteromorpha) intestinalis produced 8.6 g/L and 7.6 g/L
with 30.5% and 29.6% fermentation efficiency respectively. Conversion
of ethanol to acetic acid by yeast and suboptimal temperature of 30 °C
than the optimum temperature of 55 °C for enzyme activity was attrib-
uted to the lower ethanol yield in SSF [120].

Higher temperature shortens the exponential phase of the yeast cell
[121] affecting the ethanol production. However, this has been over-
come through thermotolerant yeast strains or cell immobilization
technique which allows higher processing temperatures [120-123].
Thermotolerant yeast species such as Candida tropicalis and Kluyver-
omyces marxianus (38-45 °C) are mainly utilized to produce bioethanol
from lignocellulosic biomass [123,124].

Bioethanol production from macroalgae utilized commercial yeast
strains such as S. cerevisiae KCTC 1126 [110,111], MTCC 180 [60], IAM
4178 [70], ATCC 24858 [97], KCTC 17574 [52], Pichia stipitis [125],
Pichia angophorae [114], Scheffersomyces stipitis [108], Brettanomyces
custersii KCCM 11490 [126], Ethanol red yeast [36] and bacterial strains
such as Zymobacter palmae [115] and Escherichia coli SJL2526 [107].
Fermentation of macroalgal polysaccharides is carried out at pH 4.5-6.8
and temperature 25-30°C and the incubation time is largely strain
dependent. The yeast growth rate is dependent on temperature and
fermentation time [131]. However, exponential phase of yeasts are
shortened at large temperatures and pH < 4, requiring longer incubation
for higher ethanol production, as reported in S.cerevisiae BY4742 [64].
Shorter fermentation time causes inadequate growth of microorganisms
resulting in inefficient fermentation [132].

In order to optimize ethanol yield and improve substrate utilization
range [129], studies focused on immobilization of yeast cells [121-130].
Immobilized yeast cells have enhanced the ethanol productivity and
reusable for 15 cycles with bacterial cellulose-alginate sponge [121].
Free and immobilized strains were used for molasses fermentation. Free
cells were unable to ferment at temperatures greater than 38°C,
compared to immobilized yeast. Immobilized yeast strains exhibited
both psychrophilic and thermo-tolerant characteristics, suitable for
fermentation in a wide range of temperatures [131] and increased
ethanol yield and higher cellular stability, while reducing downstream
processing expenses [132]. Fermentation of U.lactuca biomass done
using immobilized Saccharomyces cerevisiae strain, yielded ethanol
(concentration of 12 g/g of sugar) with conversion efficiency of 47.1%
[130]. Table 4 summarizes ethanol yield from the three types of mac-
roalgae along with the process conditions and strains utilized for hy-
drolysis (pretreatment) and fermentation. Fermentation of red seaweed
Gracilaria using free yeast cells yielded 0.41 g/g of ethanol and immo-
bilized yeast cells yielded 0.42 g/g achieving 80 and 82.8% fermenta-
tion efficiency [132].

Studies emphasize on production of bioethanol from readily avail-
able carbohydrates of brown and red seaweeds, but utilization of red and
brown seaweeds such as Kappaphycus, Gelidium, Gracilaria, Sargassum,
and Laminaria have the likelihood to override the existing multi-billion
dollar hydrocolloid industry [89]. This can be addressed in two ways: (i)
utilization of cellulosic rich residue after hydrocolloid extraction, (ii)
exploration of green seaweeds which are abundantly recorded from
various estuaries and abandoned aquaculture ponds across maritime
states in India [134]. Green seaweeds exhibit characteristics of a
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potential feedstock for biofuel production by their cosmopolitan distri-
bution, wide environmental tolerance, higher growth rates and year
around productivity [135]. In India, seaweeds are seldom consumed as a
food source, and the suitability for biofuel production is still underex-
plored as several species accumulate different levels of carbohydrate.
Seaweeds contain low amounts of polysaccharides composed of glucose,
highlighting the need for ethanol production from carbohydrates
including sulphated polysaccharides, sugar acids and sugar alcohols.
Not all the reported microorganisms are capable of fermenting these
sugars and a major limitation is lack of tractable microorganisms that
can efficiently ferment all sugars extracted from seaweed into ethanol.
Isolation of yeast strains to ferment both pentose (C5) and hexose (C6)
sugars are vital for achieving high ethanol yield. In this backdrop, the
current study explores bioethanol prospects from viable feedstock
habituated in the west coast of India, which involves:

(i) screening and prioritizing potential macroalgal feedstock for
bioethanol production based on the biochemical composition;
(ii) comparative performance analysis of chemical and biological
pretreatment method for extraction of sugar from macroalgal
biomass; and
(iii) bioethanol potential assessment of green seaweeds and compar-
ative analysis of ethanol yield across macroalgal species.

2. Materials and methods

2.1. Macroalgal resource assessment and screening of potential feedstock
for biofuel production

Macroalgal sampling has been done monthly during low tide period.
Due to the immersion and emersion periods in rocky shore, a 0.25 m?
random quadrats sampling was carried out. Algal biomass within the
quadrat were handpicked, species-wise sorted and washed in seawater
to remove adhering epiphytes. Collected samples were identified using
standard identification keys [61,136] and standing biomass was deter-
mined, which is expressed in g/mz. In areas, where seaweeds were not
accessible, only qualitative data such as the presence of seaweed species
were recorded with location details using high spatial resolution virtual
remote sensing data (Google Earth).

2.2. Biochemical composition along Central West Coast of India

Species samples were washed thoroughly in seawater, followed by
tap water to clean debris of extraneous material. Cleaned seaweeds were
sun dried in the shade for 2-3 days, followed by drying in the hot air
oven, below 60 °C till constant weight is attained. The dried material
was pulverized and sieved to obtain a uniform particle size. The powder
was preserved in a zip lock pouches for subsequent analysis of total
carbohydrate [137], cellulose [138], protein [139], and lipid [140]
contents. Carbon, hydrogen and nitrogen were estimated using CHN
elemental analyser. These samples were analyzed in triplicates and the
mean values were considered for further calculations and results are
expressed in mean + SD.

2.3. Macroalgal pretreatment process

Sugar from macroalgae was extracted using boiling water, sonicat-
ion, dilute acid and alkali pretreatment. Seaweed was boiled in a 10 ml
water for 30 min, sonication was carried out using an ultrasonic bath
(frequency 35kHz) for 30min. Dilute acid pretreatment involved
0.7 N H2SO4 and alkali pretreatment was carried out using 5 N NaOH for
30 min. Neutralization was carried out for U.lactuca and E.intestinalis
acid hydrolysate using NapCO3, NaOH, Activated charcoal and Ca(OH),
The sugar removal (%) by these agents was calculated as per equation
(Eq. (1)).
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% Sugar removal = X 100 (€D)]

(A-B)
A

where, A is the amount of reducing sugar (mg/g) before treatment, and B
is the amount of reducing sugar (mg/g) after treatment [141].

2.4. Enzyme hydrolysis

Enzyme was isolated from marine bacteria Vibrio parahaemolyticus
[90] and hydrolysis was carried out for direct biomass and acid pre-
treated biomass for U.lactuca and E.intestinalis to demonstrate the effect
of acid pretreatment in enzyme hydrolysis. Enzyme hydrolysis was
carried out at 55 °C up to 48 h and reducing sugar was estimated every
6h.

2.5. Bioethanol production from selected macroalgae

Dried biomass (5% w/v) was pretreated using dilute (0.7 N) HySO4 to
release sugars and estimated for reducing sugars by 3, 5 dinitrosalicylic
acid method [142]. Acid hydrolysate neutralized using NayCOs
Released fermentable sugars were subjected to fermentation using
cashew yeast (CY) and toddy yeast (TY) at 30°C for 18 h in Separate
hydrolysis and fermentation (SHF). Saccharification and Fermentation
(SSF) was carried out using 2% (w/v) pretreated biomass and 6% (v/v)
enzyme and yeast were added to the medium and fermented using CY
and TY at 55 °C for 18 h. Co-fermentation of algal hydrolysate was also
carried out for SHF and SSF. Ethanol was estimated using GC-FID. Bio-
ethanol production from all the macroalgal biomass was estimated
based on published literatures and the probable relationship of ethanol
yield and multivariate is determined through regression analyses.
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3. Results and discussions
3.1. Scope for bioethanol production from macroalgal biomass

The availability of spectrum of species amenable for biofuel pro-
duction is one of the unique aspect of algae when compared to other
advanced feedstock [35]. Production of different types of biofuels
(bioethanol, diesel, bio-oil, and bio-hydrogen) is optimized by priori-
tizing species.

Characteristics of prioritized macroalgal feedstock for sustainable
biofuel production are (i) availability throughout the year (during all
seasons) and (ii) presence of higher quantum of sugar.

3.1.1. Macroalgal feedstock availability and selection

Indian coast has about 1153 marine algal species belonging to 271
genera, of which 60 species are commercially important. Rocky beaches,
mudflats, estuaries, coral reefs and lagoons are the preferred habitats for
macroalgae. Indian coast harbors predominantly intertidal and subtidal
algal communities [143]. Macroalgal feedstock (for bioethanol pro-
duction) distribution along the Indian Coast and islands were compiled
from various secondary data sources [144-150] along with the locations
based on the current field investigations is represented in Fig. 4.
Seaweed species belonging to Laminaria genera (Brown algae or
Phaeophyta) are not recorded in India and these are algae of cold waters
and certain brown algae of orders Dictyotales and Fucales (e.g.
Sargassum) are distinctly warm-water plants [151] are abundantly
spread and are recorded from Indian Coast. Kappaphycus alvarezii, a red
algae is native of Indonesia and Philippines and introduced in India for
commercial cultivation purpose [152], which has now colonized in
various parts of Gulf of Mannar.

Setting up of bio refinery necessitates easier cultivation strategies
apart from ensuring the availability of feedstock during all seasons.
During the current field investigations covering 24 months, 25 seaweed
species belonging to 19 genera were recorded from intertidal zone.

INDIA
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Fig. 4. Distribution of potential macroalgal feedstock of Indian coast.



T.V. Ramachandra and D. Hebbale

Among these, eight seaweed species abundantly grows during post-
monsoon season in the Central West Coast. These species include
Enteromorpha intestinalis (938.5 g/mz), Ulva lactuca (1024.5 g/mz),
Chaetomorpha media (441.8 g/mz), Gracilaria corticata (1039.5 g/mz),
Gelidium pusillum (205.4 g/m?), Grateloupia lithophila (196.6 g/m?),
Sargassum ilcifolium (1175.7 g/m?) and Padina tetrastromatica (1506.7 g/
m?), which were considered for further analysis of biochemical
composition (Fig. 5). It was seen that green seaweeds; U.lactuca and E.
intestinalis, and red seaweed G.corticata occurred in sufficient quantity
during all seasons. Occurrence of Ulva and Enteromorpha in all the sea-
sons is attributed to their euryhaline nature, whereas G.corticata species
are strictly marine and are restricted to open ocean environment [153].
Year round optimal biomass production of these macroalgal species,
overcomes the seasonal constraints faced by the first and second gen-
eration biofuel feedstock [45].

3.1.2. Biochemical composition of selected seaweeds

Macroalgal species with the higher quantum of sugar plays an
important role as the composition of sugar influences the ethanol yield.
Biochemical composition of chosen macroalgae were carried out
focusing mainly on higher carbohydrate content which is an essential
parameter for prioritizing feedstock for bioethanol production (Table 5).
Algal biomass are composed of large quantities of carbohydrates in the
cell wall mostly in the form of structural (cellulose) and storage (starch)
polysaccharides, that serve as substrate for fermentation. Highest total
carbohydrate was recorded from green seaweed Ulva lactuca
(62.15 +12.8%) followed by G. lithophila (60.5+ 11.4%), G.pusilum
(50.1 + 3.4%) and E.intestinalis (40.1 +14.6%). Among these, G.lith-
ophila and G.pusilum have lower biomass production as compared to
Ulva and Enteromorpha, which makes them unsuitable as feedstock for
biofuel production. Protein ranged from 3.7 £+ 0.94 to 27.3 +15.21%.
Highest protein content was recorded from C. media (27.3 £+ 15.21%)
followed by E. intestinalis (20.4 + 0.67%) and U. lactuca (17.3 £+ 1.68%).
In green seaweed Ulva, protein concentration ranged from 9 to 33%.
Lowest protein recorded was from G. lithophila (3.7 + 0.94%). In gen-
eral, protein fraction is lower in brown seaweeds (3-15% DW) compared
to green or red seaweeds (10-47% DW) similar to the earlier report
[154]. Lipid ranged from 0.5 + 0.2 to 6 &+ 4.4%. Highest lipid was esti-
mated in U. lactuca (6 +4.4%) followed by G. pusillum (3.7 +1.4%),
P. tetrastromatica (2.8 +0.3%). Lowest lipid content estimated in
G. corticata (0.5 + 0.2%). Transesterification of lipids extracted from
Enteromorpha biomass yielded 90.6% biodiesel [135], which highlights
that Enteromorpha as a promising feedstock for biodiesel production.

Elemental analysis of the seaweeds indicates 25.31-37.95% of car-
bon, 4.52-6.48% hydrogen and 1.88-4.36% Nitrogen. Highest carbon,
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hydrogen and nitrogen content were recorded respectively from G.
pusillum (C: 37.95%), G.pusillum (H: 6.48%) and E.intestinalis (N: 4.36%)
respectively. Higher cellulose content was estimated in U.lactuca
(14.03 £+ 0.14%), followed by E.intestinalis (12.10 & 0.53%) and C.media
(10.53 £0.17%) least cellulose content was estimated in G. corticata
(0.87 +0.07%). Cellulose is a glucan present in green seaweeds, which
can be easily hydrolysed by using enzyme and subsequently fermented
to produce bioethanol. Green seaweeds are rich in cellulose content
(>10%) [37,89,105] when compared to red and brown seaweed
(2-10%).

3.1.3. Reducing sugar extraction using pretreatment methods

Chosen seaweeds composed of all the three types of algae (green, red
and brown) with varied amounts of sugar and the complexity of the
seaweed is reflected between structural and carbohydrate components
[105,155,156]. It is therefore important to carefully choose the pre-
treatment process based on the biomass and an appropriate efficient
pretreatment process to achieve a high yield of sugar for low energy
input. The reducing sugar was determined using various pretreatment
method as shown in Fig. 5. Pretreatment using boiling water yielded
very low reducing sugar and it was observed that red and brown algae
formed gel during this pretreatment process due to the presence of
sugars like Agar, Carrageenan and Alginate which possess hydrocolloid
properties [70,157,158]. It is seen that, liquid hot water pretreatment
releases most of oligosaccharides [159]. U. lactuca biomass was sub-
jected to four different pretreatments namely; ethanol organ solvent,
alkaline, liquid hot water and ionic liquid treatments. Organo solvent
and liquid hot water treatment produced highest glucan recovery of
80.8g/100 g DW and 62.9 g/100 g DW respectively [160]. Sonication
pretreatment also yielded lower reducing sugar, since sonication is most
commonly used in extraction of lipid from microalgae [161], highest
fatty acid composition of C16:0 and C18:1 was achieved in Spirogyra sp.
employing sonication as cell disruptions technique [40]. Higher
reducing sugar was extracted from all types of seaweeds during the
dilute acid pretreatment. Dilute acid reduces the degree of polymeri-
zation resulting in recovery of 80-90% of hemicellulose exposing
cellulosic fraction accessible to enzyme digestion [162]. Pre-treated
Palmaria palmata, a red alga was exposed to acid hydrolysis, generated
218 mg/g of reducing sugar [133] and Grateloupia lithophila gave
191 mg/g of reducing sugar in the current study. Hence, it is feasible to
obtain fermentable sugars with lower inhibitor concentration using
extremely lower acid concentration [163]. Benefits of treating biomass
with extremely low acid concentration simplifies downstream process
such as neutralization and waste treatment. Reducing sugar of 14.7 g/L
was obtained from E.intestinalis by dilute acid concentration of

BDA BAT

Fig. 5. Reducing sugar (mgg ') extracted using various pretreatment methods for selected seaweeds.
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Table 5

Biochemical composition (%) of seaweeds along Central West Coast of India.
Seaweeds Total carbohydrate Soluble carbohydrate Insoluble carbohydrate Protein Lipid Cellulose C H N
U.lactuca 62.15+12.8 5.5+ 0.07 56.5+12.7 17.3+1.68 6+4.4 14.03+0.14 25.31 5.44 2.61
E.intestinalis 40.1 £ 14.6 7.54+0.02 32.5+14.5 20.4 +£0.67 2.8+0.1 12.10+0.53 33.00 6.44 4.36
C.media 25.5+11.2 5.3+0.02 20.1+11 27.3+£15.21 0.6 +0.01 10.53+0.17 30.14 5.31 3.28
G.corticata 28.2+11.1 13.4+0.01 14.7 £11 14.4+1.33 0.5+0.2 0.87 £0.07 26.46 5.01 1.89
G. pusillum 50.1+3.4 4.7 +£0.01 45.4+3.4 8+2.04 3.7+1.4 1.55+0.05 37.95 6.48 3.45
G. lithophila 60.5+11.4 14.8 £0.01 45.7 £ 11 3.7+ 0.94 24+1.3 6.23£0.16 29.60 6.15 2.52
S. ilcifolium 26.4+13.4 3.6+0.01 22.7+13 12.4+0.67 1.9+0.01 1.30+0.09 26.20 4.52 1.88
P.tetrastromatica 32.5+13.23 3.54+0.02 28.9+13.2 9.7+1.76 2.84+0.3 1.48 +£0.07 30.68 5.54 2.35

75 mM H3SO4 [120]. Sequential acid hydrolysis was carried out to
concentrate the sugar: hydrolysate of first cycle was utilized as hydro-
lyzing liquid for the 2nd cycle and up to 5th cycle [117] and generated
72 g/L of reducing sugar at the end of 5th cycle during 0.9 N HySO4
hydrolysis from the seaweed granules. However, loss of liquid volume
encountered in the hydrolysate that is attributed to the sorption loss by
residue. Pulverized wet biomass of Gelidium amansii, red seaweed was
subjected to continuous acid hydrolysis which yielded higher galactose
and lower inhibitor concentration than batch reactor [126].

Utilization of red and brown seaweeds biomass for bioethanol pro-
duction can lead to debate on hydrocolloid versus fuel affecting the
existing multibillion hydrocolloid industry [89]. Therefore, for further
processes of detoxification, enzyme hydrolysis and fermentation, two
seaweeds Ulva lactuca and Enteromorpha intestinalis were selected as both
the species satisfy the criteria of potential feedstock for bioethanol
production such as; annual availability, carbohydrate rich biomass,
producing higher reducing sugar concentration, ease of harvest by me-
chanical means, amenable to transplanting and reproducing prolifically
in given environment [89].

3.1.3.1. Detoxification of acid hydrolysate. Detoxification of inhibitors
(HMF and LA) resulting from acid hydrolysis was carried out using
activated charcoal [164], which removed 38.8% LA and 70.37% HMF.
However activated charcoal also removed sugars 14.5% glucose and
20.3% galactose present in the hydrolysate [141]. In the current study,
highest sugar removal of 63.5% and 52% was recorded from activated
charcoal for U.lactuca and E.intestinalis acid hydrolysate respectively.
Similarly, Ca(OH) was used for neutralizing the hydrolysate, which led
to gypsum (calcium sulphate) formation, which was removed through
filtration [117] also calcium ions catalyzes alkaline degradation of
mono-saccharides in the over liming process, resulting in removal of
fermentable sugars [141]. Similar results were observed in the current
study, where Ca (OH), treatment removed sugar from U.lactuca (56.1%)
and E.intestinalis (23.3%) acid hydrolysate. Least effect of sugar removal
was recorded in NapyCOs neutralization process (Table 6) U.lactuca
(39.8%) and E.intestinalis (14.7%).

3.2. Enzyme hydrolysis

Enzyme hydrolysis of U.lactuca and E.intestinalis yielded lower
reducing sugar, compared to pretreated biomass during the incubation
period. In order to overcome recalcitrance in second generation feed-
stock, the biomass was pretreated prior to enzyme hydrolysis. The pre-
treatment removed the lignin and hemicellulose exposing the cellulose

Table 6
Comparison of reducing sugar removal after neutralization process.

fibers for enzyme hydrolysis [64,66,99,165]. Pretreated biomass is then
subjected to enzyme hydrolysis, where cellulase enzymes bind to cellu-
lose and disintegrate it into simple sugars (glucose). Algal biomass in the
current study was pretreated using dilute acid and then subjected to
enzyme hydrolysis (Fig. 6a and b). Pre-treatment breaks down the
crystalline cellulose structure, the major constituents in the biomass cell
walls and maximize enzymatic conversion to reducing sugars [53,105,
155,166]. Despite longer incubation period for sugar release, enzyme
hydrolysis is widely preferred due to the absence of any inhibitors for-
mation [70].

3.3. Bioethanol production from selected macroalgae

Production of bioethanol from carbohydrate rich biomass is
economical and sustainable. However, investigations are focused on
improving the yield of bioethanol from seaweeds using appropriate
microorganisms that have capabilities to convert all sugars present in
the seaweeds and achieve ethanol yield of 0.47 g/g reducing sugar [89,
167,168]. SHF and SSF process was carried out for E.intestinalis and U.
lactuca feedstock.

3.3.1. SHF and SSF

Macroalgal feedstock E.intestinalis (EI) and U.lactuca (UL) were pre-
treated using 0.7 N and 0.5 N H,SO4 respectively. Seaweed hydrolysate
was neutralized and then subjected to fermentation using CY and TY
strain and conversion efficiency calculated assuming the sugar available
in the hydrolysate are fermentable (Table 7). Higher ethanol yield of
1.63g and 25.8% efficiency was recorded for EITY combination,
whereas ULCY produced lower ethanol yield of 0.37 g achieving 12.1%
efficiency. Co-fermentation of E.intestinalis hydrolysate yielded 0.8 g
with 21.7% efficiency, whereas U.lactuca yielded 0.63 g/g achieving
20.4% efficiency [120]. Pretreated E.intestinalis to 75 mM HySO4 and
subjected to SHF and obtained ethanol of 8.6 g/L (0.86 g) achieving
30.5% efficiency at 48 h. At the end of fermentation 10 g/L of reducing
sugar remained unutilized indicating presence of non-fermentable sugar
not consumed by the yeast S.cerevisiae. U.fasciata enzyme hydrolysate
was subjected to fermentation and 1.28 g of ethanol yield was produced
achieving 88.27% efficiency indicating higher reducing sugar conver-
sion efficiency and ethanol yield than those reported for red and brown
seaweeds [169].

SSF of E.intestinalis produced 7.6 g/L with 26.9% efficiency, lower
yield was attributed to the suboptimal temperature of 32°C which is
unsuitable for enzyme hydrolysis [120]. In this study, SSF process
(Table 8) produced higher efficiency when compared to SHF. The

Ulva lactuca

Enteromorpha intestinalis

Before treatment (mg/g) After treatment (mg/g)

% Sugar removal

Before treatment (mg/g) After treatment (mg/g) % Sugar removal

Na,CO3 206.34 124.12 39.8
NaOH 113.78 44.9
Activated Charcoal 75.29 63.5
Ca(OH), 90.51 56.1

201.09 171.53 14.7
153.88 23.5
96.50 52.0
154.18 23.3
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Fig. 6. a) Enzyme hydrolysis for direct biomass (DB) and acid pretreated biomass (PB) for E.intestinalis. b) Enzyme hydrolysis for direct biomass (DB) and acid

pretreated biomass (PB) for U.lactuca.

Table 7

Fermentation of macroalgal feedstock by the process of separate hydrolysis and fermentation (SHF) and Separate hydrolysis and Co-fermentation (SHCF).
Macroalgal feedstock ~ Process ~ Combinations  Biomass (g) Initial sugar Final sugar Fermented sugar Ethanol yield Theoretical Efficiency

DW (8) ® (€3] ® yield (%)

Enteromorpha SHF EICY 50 22.5 10.71 11.79 1.40 6.01 23.4

intestinalis EITY 10.13 12.37 1.63 6.31 25.8

SHCF EITYCY 15.09 7.41 0.82 3.78 21.7

Ulva lactuca SHF ULCY 19.2 13.17 6.03 0.37 3.07 12.1

ULTY 12.72 6.48 0.52 3.31 15.6

SHCF ULTYCY 13.10 6.10 0.63 3.11 20.4

CY: Cashew yeast; TY: Toddy yeast

Table 8
Fermentation of macroalgal feedstock by the process of Simultaneous Saccharification and Fermentation (SSF) and Simultaneous Saccharification and Co-
fermentation.
Macroalgal feedstock Process  Combination = Biomass (g) Cellulose Final sugar Fermented sugar Ethanol yield Theoretical Efficiency
DW (€3] (@) (€3] (€3] yield (%)
Enteromorpha SSF EICY 20 1.8 0.34 1.46 0.25 0.74 33.3
intestinalis EITY 0.56 1.24 0.49 0.63 77.4
SSCF EITYCY 0.52 1.28 0.27 0.65 41.8
Ulva lactuca SSF ULCY 1.7 0.54 1.16 0.33 0.59 54.9
ULTY 0.54 1.16 0.39 0.59 65.5
SSCF ULTYCY 0.66 1.04 0.60 0.53 113.0

CY: Cashew yeast; TY: Toddy yeast

combination of EITY produced higher ethanol yield of 0.49g/g
achieving 77.4% efficiency. Simultaneous saccharification and
co-fermentation (SSCF) of E. intestinalis produced 0.27 g/g of ethanol
with 41.8% efficiency whereas U.lactuca produced efficiency of 113%
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indicating fermentation of sugars other than glucan. Candida shehatea,
Scheffersomyces stipitis (Pichia stipitis), and Pacchysolen tannophilus are
the most promising yeast species for conversion of Xylose [112], which
can be used in combination with S.cerevisiae in SSCF process to obtain
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higher ethanol yield [104]. subjected cellulosic residue of Kappaphycus
alvarezii along with galactose synthetic medium to SSCF using single
strain S.cerevisiae CBS1782 and recorded 64.3 g/L of ethanol indicating
utilization of galactose sugar along with glucose. Co-fermentation of
corn stover using S.cerevisiae and commercial strain TMB3400 yielded
40g/L or ethanol with 59% theoretical efficiency [74]. S.cerevisiae and
S. stipitis were used for SSCF of Rice straw and produced 15.2g/L of
ethanol [170].

Seaweeds contain low amounts of polysaccharides composed of
glucose. Production of ethanol, therefore, needs to be from carbohy-
drates including sulphated polysaccharides, sugar acids and sugar al-
cohols. However, inability of microorganisms in fermenting all sugars
present in seaweeds into ethanol is a major drawback. Therefore,
isolation of yeast strains to ferment both pentose (C5) and hexose (C6)
sugars are vital for achieving higher ethanol yield.

However, recent studies are focusing on non-controversial cellulosic
residue following extraction of hydrocolloid from seaweed biomass
[60]. But the lower cellulose content of residue prevents it from being a
viable feedstock option considering the emergent demand for bio-
ethanol. This necessitates the selection of seaweed species with higher
cellulose content together with higher growth rate for sustainable bio-
ethanol production [89,171]. Red algae has more agar and carrageenan
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potential feedstock due to higher carbohydrate and cellulose contents.
Higher growth rates have been recorded for green seaweeds ranging
from 19.15 to 24.25% when compared to red macroalgae (3-8%) [89,
177,178]. Green seaweeds have production potential that is 2-20 times
that of conventional terrestrial energy crops [179]. Red and brown
seaweed’s lower cellulose content of residue and lower growth rate
prevents it from being a viable feedstock to meet the growing demand
for bioethanol. Comparison of ethanol yield from other potential mac-
roalgal feedstock are represented in Table 9.

3.3.2. Multivariate analysis of process condition for bioethanol production

Downstream process of bioethanol production from macroalgal
biomass is dependent on various factors such as dilute acid pretreatment
conditions (acid concentration, temperature, incubation time), enzyme
hydrolysis conditions (pH, temperature and incubation time), reducing
sugar and fermentation conditions (temperature and incubation time).
In order to understand influence of each of these factors in ethanol
production, multivariate regression analysis (Table 10) was performed
and the probable relationship is given by equation (2). Overall this
model explains 97.3% variation in the data.

Y= —275—4.09(X;) + 0.12(X,) — 0.13(X3) + 10.61(X,) — 0.31(Xs)

and brown algae has more algin and lower cellulose compared to green — 0.04(Xs) + 0.32(X7) — 1.23(Xs) — 0.12(Xo) (2)
seaweeds, that have cellulose making up to 70% of their dry weight (as
Cladophorales and Ulvales) [176]. Where.
It is evident from the experimental results, that green algae are apt as
Table 9
Comparison of reducing sugar, ethanol yield and percent theoretical yield from various macroalgal biomass.
Seaweed species Reducing sugar g/1 Ethanol yield g/g %Theoretical yield References
Green Seaweeds Chaetomorpha media 27.79 0.057 10.15 *
Ulva fasciata 21.82 0.43 83.66 [89]
Ulva lactuca 1.12 0.39 77.03 [94]
Ulva lactuca 35.43 0.23 45.62 *
Ulva pertusa 43 0.43 84.36 [70]
Ulva pertusa 26 0.48 93.51 [971
Enteromorpha intestinalis 48.96 0.25 49.37 *
Enteromorpha intestinalis 45.56 0.21 41.74 [120]
Red Seaweeds Gelidium elegans 49 0.38 73.63 [70]
Gelidium amansii 43.5 0.47 92.40 [108]
42.2 0.38 74.51 [126]
7.93 0.42 82.34 [172]
7.93 0.48 93.46
Gracilaria verrucosa 34.63 0.43 84.31 [60]
19.70 0.43 84.31 [110]
Gracilaria corticata 57.90 0.01 0.98 *
Gracilaria salicornia 13.8 0.079 15.49 [173]
Gracilaria sp. 11.46 0.42 82.35 [132]
Grateloupia lithophila 44.45 0.09 17.85 *
Gelidium pusillum 36.96 0.04 8.49
Eucheuma cottonii (Kappaphycus alvarezii) 11 0.45 89.13 [88]
81 0.45 88.24 [104]
20.4 0.21 41.18 [164]
51.9 0.42 82.36 [117]
Palmaria palmata 21.84 0.173 33.92 [133]
Brown Seaweeds Alaria crassifolia 67.20 0.38 74.40 [70]
Laminaria hyperborea 30 0.43 84.31 [114]
Padina tetrastromatica 17.9 0.01 2.53 *
Sargassum sagamianum 25.9 0.386 75.69 [116]
Sargassum sagamianum 2.55 0.89 174.55 [174]
Sargassum sagamianum 19.8 0.35 69.32 [125]
Sargassum ilcifolium 27.04 0.05 9.60 *
Sargassum fluvellum 9.6 [54]
Saccharina japonica 6.72 0.343 67.25 [163]
Saccharina japonica 34 0.41 80.74 [103]
Saccharina japonica 45.6 0.17 33.11 [52]
Saccharina japonica 75 0.34 67.45 [116]
Saccharina latissima 35 0.45 88.24 [36]
Undaria pinnatifida 429 0.22 43.05 [120]
Undaria pinnatifida 20 0.144 28.24 [107]
Seagrass Zosteria marina 92 0.059 11.5 [175]

*Current work.
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Table 10
Coefficients and SE values of multivariate regression analysis.

Process Process condition Coefficients Standard Error

Dilute acid pretreatment Concentration —4.09 1.14
Temperature 0.12 0.29
Incubation Time —0.13 0.67

Enzyme hydrolysis pH 10.61* 2.44*
Temperature —0.31 0.16
Incubation Time —0.04 0.02
Reducing sugar 0.32* 0.04*

Fermentation process Temperature -1.23 2.09
Incubation Time —0.12* 0.02*

*p < 0.05.

Y: Ethanol g/L, X;: Acid concentration (mM), X5: Acid hydrolysis
Temperature (°C), X3: Acid hydrolysis incubation time (min), X4:
buffer pH, Xs: Enzyme hydrolysis temperature (°C), Xq: Enzyme
hydrolysis incubation time (h), X7: Reducing sugar in (g/L), Xs:
Fermentation temperature (°C), Xo: Fermentation time (h)

This analysis highlights that process conditions such as; acid pre-
treatment temperature, buffer pH and reducing sugar concentration
affects the ethanol yield (Eq. (2)). The increase in hydrolysis tempera-
ture during acid catalyzed reaction would also enhance the sugar pro-
duction and decomposition [180,181]. Pretreatment temperature plays
a vital role in sugar release as higher temperatures often leads to the
formation of inhibitor, which is detrimental to the fermentative micro-
organisms leading to reduced ethanol yields [69,181]. Enzymes consists
of ionic groups on their active sites which varies along with the pH
resulting in changes in the activity of the enzyme, its structure, reaction
rate and the product formation [182]. Therefore, pH of the reaction
medium or buffer needs to be optimum for higher enzyme activity [183,
184]. Fermentation process is slower in low sugar medium, whereas the
process increases in the medium containing 15-20 g/L of sugar and re-
mains stable up to 200 g/L. Medium with 200 g/L to 300 g/L of sugar
concentration lowers the growth of yeast microorganisms [185-187].
However, higher concentration of fermentable sugars yield higher
ethanol, whereas non-fermentable sugars (pentose) can affect the
fermentation yield due to lack of transport system in yeasts.

4. Scope and opportunities for macroalgal cultivation

Macroalgal cultivation can be attempted in India by taking the
advantage of 2.172 million km? exclusive economic zone (including
Andaman and Nicobar islands) as well as abandoned aquaculture ponds.
Aghanashini estuary (Lat 14.391°-14.585° N; Long 74.304°-74.516° E)

>z

Aghanashini Estuary
Abandoned Gazani

Cultivated gazani (crab culture)
Land

3 Natural gazani
Saltpan

%

{

&
<

= Cultivated Gazani (prawn culture)

Renewable and Sustainable Energy Reviews 117 (2020) 109479

situated in Kumta taluk, Karnataka consists of such aquaculture ponds
called gazni, which serves as potential site (Fig. 7) for macroalgal
cultivation [134]. U.lactuca and E.intestinalis abundantly grows in this
estuary during all the season and E.intestinalis naturally occurring in
gazni ponds are mostly discarded as waste. Ulva and Enteromorpha genus
possess a blade-like or filamentous morphology, which can tolerate wide
range of environmental conditions such as temperature upto 40 °C [51]
and tolerate salinities in the range of 10-60 ppt [188] and resulting in
higher [135].

The spatial extent of gazani lands in Aghanashini estuary (Fig. 7) is
about 2000 ha (much of it not being used for rice cultivation now) and
area of 1000 ha could be considered for algal cultivation during the late
monsoon months and subsequently, these lands may be used for shrimp
culturing or utilized for other forms of fisheries. The algal production
happens indeed without any external input of nutrients, and therefore
the gaznis hold very good potential for ethanol production, prior to the
commencement of fishery operations, and before salinity rises substan-
tially with the cessation of the rainy season. The algal harvests can be
effectively made from any gazni at biweekly intervals, two weeks’ time
considered fairly good for harvestable regrowth. It means effectively
1000 ha area are available for algal harvests every week. The lean season
for fishery (of prawns and fish mainly) alone needs to be utilized for this
purpose, so that prospects for ethanol production, by no means, could
come in the way of food production. These 1000 ha of aquaculture areas
could be effectively available for algal harvests during the off-season,
which might benefit about 2500 small farmers, who were once rice
cultivators, who had permitted their erstwhile fields to be converted into
shrimp farms, which are not in suitable condition for reintroduction of
rice without making substantial structural changes. These gazni lands
also exhibit positive correlation with water temperature, air and salinity
which influences the growth of diatoms such as Pleurosigma balticum,
Melosira sp., Nitzschia sigma and Nitzchia spp. that are potential candi-
dates for biodiesel production [189].

Cultivation of Ulva and Enteromorpha is estimated to produce annual
biomass of 45 t/ha [179] and 100 t/ha [51] respectively, which is 2-20
times the production potential of first and second generation feedstock
and 3 times the production of brown algae in temperate waters [179].
Commercial cultivation of these seaweeds largely focuses on high-value
food (aonori) and aquaculture feed production. Ammonium are abun-
dantly present in aquaculture effluent, which is readily assimilated by
Enteromorpha and Ulva in the range of 50-90 pmol N/g DW h, which
makes it feasible to cultivate these algae in aquaculture effluents qual-
ifying as species for bioremediation process [190,191]. However, spo-
radic sporulation of Ulva leads to loss of biomass due to which attempts
of cultivating at large scale has failed, also environmental factors
responsible for these sporulation have not yet been completely explored

>z
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8 Green algae
8 Green , Brown and Red algac

Fig. 7. Potential sites for macroalgal cultivation in Aghanashini Estuary.
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[190]. This can be overcome by technique [135], involving artificial
seeding under controlled conditions. This allows control over higher
seeding density and consequently biomass production. Seeding density
of 621,000 swarmers/m and nursery period of five days were quantified
as key factors affecting the growth and biomass yield of Ulva sp. This
study also highlights the shorter nursery period and culture cycles
required for green seaweeds when compared to red and brown
seaweeds.

Large-scale cultivation of macroalgae in open ocean eliminates the
need for external inputs such as CO; cylinders, monitoring of tempera-
ture or pH alteration. However in controlled conditions, all these pa-
rameters play a crucial role in sustaining biomass productivity. Algae
acquire carbon in the form of CO5 or bicarbonates, at pH 8, seawater has
alkalinity of 2.3 meq which allows only 0.5 mM of CO, or 6 mg/1 of C to
be absorbed from the seawater. In order to increase the level of CO5
absorption pH needs to be increased to nearly 9 which is not feasible as it
slows down the photosynthesis [192].In a study [193], brown seaweeds
(Sargassum sp.) were cultivated at different pH and temperature and was
observed that higher biomass productivity obtained at ambient pH of
7-8.2, indicating that low pH values affected the growth of the algae.

The seaweed industry in India is still at infancy, functioning more
like a cottage industry. Seaweeds are collected from the natural stock
mainly for the production of agar without any regulations [194]. Mac-
roalgal biomass in addition to being potential feedstock for bioethanol
production, also serves as a good food supplement. Enteromorpha was
tested as nutritional supplement in preparation of Indian snacks, which
resulted in higher iron and calcium content along with increase in
proteins, vitamins and dietary fibres [195]. Macroalgal protein, dietary
fibres and phytochemicals are utilized in order to enhance the nutri-
tional quality of the food products. Complete utilization of macroalgal
biomass into producing biofuel and value added products has potential
to ensure India’s energy and food security [134]. The study presents the
scope to utilize macroalgal biomass in producing value added products
in addition to bioethanol production, bringing resilience to the Industry
and improving their economics and usefulness. Prospects of bioethanol
with the value added products would support the livelihood of rural
population, while aiding as the potential feedstock for biorefinery [36,
196].

5. Conclusion

The growing need to cater the energy demand coupled with the urge
to mitigate GHG footprint in the energy sector has necessitated inven-
torying of renewable and sustainable energy alternatives. Green sea-
weeds have the potential to serve as a renewable and sustainable
feedstock for bioethanol production. Dilute acid, HoSO4 is an appro-
priate pretreatment method for extraction of sugars from algal biomass.
Algal biomass pretreated using dilute acid yields higher sugar during
enzyme hydrolysis by exposing cellulose fibres for enzyme degradation.
Neutralization using NapCOs3 exhibited lower sugar removal for U.lac-
tuca (39.8%) and E.intestinalis (14.7%). Green seaweeds U.lactuca and E.
intestinalis are viable feedstock for bioethanol production due to higher
carbohydrate content of 62.15% and 40.1% respectively. Saccharifica-
tion and Fermentation (SSF) process yielded higher conversion effi-
ciency compared to SHF (Separate hydrolysis and fermentation) process
and SSF achieved higher efficiency for U.lactuca indicating fermentation
of more than one sugar present in the medium. Toddy yeast strain
exhibited higher efficacy in fermentation of E.intestinalis hydrolysate in
both SHF and SSF process achieving 25.8% and 77.4% efficiency
respectively. Macroalgal biomass has potential to produce various value
added products of commercial significance in addition to the production
of biofuels. The study highlights the scope for bioethanol from macro-
algae and also the availability of potential sites for cultivation. The
comprehensive knowledge of macro algal resources distribution, sea-
sonality and biochemical composition through field survey and choice of
appropriate enzyme and yeast would aid in realizing the path of the
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sustainable, economical and commercially viable biofuel.
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