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, Abstract :
Introduction _
Objectives Evaluation of Land Use Land Cover (LULC) changes play a vital
Study Area role in understanding the landscape dynamics that have been
Data influencing climate, biodiversity, hydrology, and ecology of a
Method region. The information of temporal LULC aids decision-makers
Accuracy Assessment in framing sustainable land use policies for nature conservation.
Forest Fragmentation . .
Results and Discussion Anthropogenic pressure, especially unplanned developmental
Conclusion activities, has contributed towards fragmenting contiguous forests,

thus affecting their structure and loss of habitat for endemic taxa.

LULC changes in the Bellary district, Karnataka have been assessed
through temporal remote sensing data. Classification of remote sensing data for estimating the spatial
extent of land uses has been done through supervised machine learning algorithms namely random
forest (RF), support vector machine (SVM), and parametric maximum likelihood classifier (MLC). The
performance of these algorithms was evaluated through accuracy assessments. Results reveal that RF
has the highest overall accuracy (88.94%) and Kappa value (0.76) compared to overall Kappa of MLC.
(85.51%, 0.74) and SVM (85.47%, 0.63). Based on this, RF was considered for temporal data analyses,
which highlighted the decline of forest cover from 2.61% (1973) to 0.74% (2022). The built-up has
increased from 0.27% (1973) to 2.43% (2022), and agriculture from 68.21% (1973) to 84.95% (2022).
Fragmentation of contiguous forests is evident from the decline in the interior or intact forests from
6.73% (1973) 10 2.41% (2022) and the increase in the non-forest areas such as built-up, agriculture,
etc., amounting now to 89.81%. Results highlight the need for immediate policy interventions for the
conservation and protection of the remnant forest patches
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Introduction

A landscape is a mosaic of heterogenous
ecosystem elements with dynamic interactions
(Forman 1995). It is a physical system composed
of biotic (flora, fauna, ete.) and abiotic (climate,
soil, water) elements that are governed by
natural processes and anthropogenic activities.
Landscape dynamics are reflected through the
changes in land use and land cover and operate
on a temporal scale in the physical and biological
properties of a landscape (Ramachandra, Setturu,
Karthik, et al. 2022). A landscape structure gets
altered by the forces driven by humans as well

as the forces of nature. Human needs and the
capacity of the biosphere to provide goods and
services in the long term are big challenges,
which necessitates prudent management of

the ecosystem to maintain the trade-off (Foley,
DeFries, Asner, et al. 2005).

Land Use Land Cover (LULC) refers to
the categorization or classification of natural
features and human activities on the landscape
in a specific time frame (Mariye, Jianhua, and
Maryo 2022). Land cover refers to the physical
cover of the surface, and provides information
on the extent of vegetation and non-vegetation
(bare soil, hard surfaces including rocks and
buildings, water bodies). Land use is an outcome
of anthropogenic activities and provides
information on the spatial extent of diverse
land uses such as agriculture, wildlife habitat,
recreation. Land use changes are amplified by
the burgeoning human population, coupled
with enhanced consumption, energy demand,
agriculture intensification, and overuse of natural
resources (Kobayashi, Higa, Higashiyama,
et al. 2020). Knowledge of land use and land
cover is essential to formulate appropriate land
use policies that are aimed at mitigating land
degradation and deforestation (Solomun, Barger,
Cerda, et al. 2018).

Land use changes are influenced by a wide
range of drivers, which are either proximate
(direct) or underlying (indirect). The direct
driving factors also have indirect impact (Geist
.- and Lambin 2002). Anthropogenic activities lead
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to changes in land use fragments ecosystems
because of loss of natural habitat, degradation
of forest connectivity between landscapes, and
decline in biodiversity. The LULC dynamics lead
to an increase in the surface temperature of the
earth {Tan, Yu, Li, et al. 2020). The increase
in concentrated human activities and paved
areas, and the decline of vegetation and water
bodies lead to increased heat emission from land
surface, which raises atmospheric temperature
and land surface temperature (LST) as well
(Bharath, Rajan, and Ramachandra 2013).
Fragmentation of forest ecosystem is the
proeess in which large contiguous forests are
divided into small and isolated forest patches
either by natural phenomena or because;

-of anthropogenic activities such as road

construction, logging, conversion to agricfulture,
or wildfire. These cause drastic changes in forest
patch sizes, shape, connectivity, and internal
heterogeneity (Ramachandra and Bharath
2016; Wade, Riitters, Wickham, et al. 2003).
Degradation of forest ecosystems is a direct threat
to biodiversity and endangers the sustainability
of ecological goods and services from forestland
(Young and Boyle 2000). Land uses tend to
expand over time, and forests that share a high
proportion of their borders with anthropogenic
uses are at higher risk of further degradation
than forests that share a high proportion of their
borders with non-forest, natural land cover {(e.g.,
wetland). LULC changes leading to deforestation
have altered landscape structure (Ramachandra,
Setturi, and Aithal 2020). Deforestation is
a key contributor to species extinction and
climate change (Ramachandra, Setturu, and
Gupta 2018), yet the extent of tropieal forests
and their rate of destruction and degradation
through fragmentation remain poorly known
(Harper, Steininger, Tucker, et al. 2007). Land-
use maps offer the potential for assessing forest
fragmentation and its impacts on greenhouse gas
emissions, biodiversity, economics, and water
quality (Riitters, Wickham, O'Neill, i. 2000).
Assessment of Land Use Land Cover Changes
(LULCC) using temporal remote sensing data
aid in understanding landscape dynamics, which
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is crucial for social and economic development
{Lambin, Turner, Geist, ef al. 2001). LULCC
information provides vital insight for planning,
management, and monitoring of natural
resources at local, regional, and national levels, It
provides insights into land utilization, which aids
in formulating policies and programmes towards
sustainable management of natural resources.
Spatial data acquired through space-borne
sensors since the 1970s at regular intervals
(remote sensing data) constitute big data, which
are useful for analysing landscape dynamics.
Satellite remote sensing provides accurate,
reliable, and timely geospatial information for
describing changes in the landscape through
the assessment of LULC (Foody 2003).
Advancements in machine learning algorithms
have aided in assessing spatio-temporal patterns
by taking advantage of the availability of
voluminous multiresolution data. Geoinformatics
(Geographic Information System and remote
sensing data) help in the quantitative evaluation
of land cover dynamics. Monitoring spatial and
temporal patterns of land use is very important in
maintaining the ecosystem integrity and meeting
the objective of sustainable development through
conservation programmes (Anderson 1976).
Data science needs to be aligned with machine
learning techniques such that remote sensing’
data can be classified efficiently to derive land
use information. Support vector machine (SVM),
random forest {RF) method, Linear Discriminant
Analysis (LDA), and K-nearest neighhorhood
(KNN) are some of the machine learning use
algorithms that can assess patterns in the spatial
data (Chen, Dewi, Huang, et al. 2020). Ensemble
algorithms have fewer limitations, such as
over-fitting, high collinearity, high sensitivity
to outliers, high dimensionality, and large
noise as compared to classification algorithms,
including ISODATA and K-Means (Piao, Jeong,
Park, e al. 2021). The non-parametric approach
of ensemble algorithms such as RE, SVM,
K-nearest neighbour, artificial neural network,
and classification and regression tree based on
nonlinear data improve classification accuracy
by reducing collinearity and noise processing of

| time-series data without overfitting (Piao, Jeong,

Park, et al. 2021).

One of the most widely used machine learning
algorithing is RF. It is used with categorieal -
and continuous variables to perform both
classification and regression tasks (Abdi et al.
2019). RF algorithm creates decision frees on
data samples randomly (Bagging) and then gets
the prediction from each of them and finally
selects the best solution through voting. RF
had two main parameters to be optimized: the
nurnber of trees (ntree) and the number of
features in each split (sntry). Several studies have
stated that satisfactory results could be achieved
with default parameters (Thanh Noi and Kappas
2017). The problem of overfitting is overcome
by RF by averaging or combining the results of
the number of decision trees and as the number
of input features increases so does the accuracy
significantly (Breiman 2001; Zhang, Su, Xu, et
al. 2021). RF is not sensitive to the lower number
of training sample sizes and is resistant to the
presence of noise compared to other machine
learning classifiers (Na, Zhang, Li, et al. 2010).

It is positively correlated with spectral indices
[normalized difference water index (NDWT),
normalized difference vegetation index (NDVT),
and normalized difference built-up index (NDEI)]

_(Talukdar, Singha, Mahato, et al. 2020).

The SVM is a non-parametric classifier
(Huang, Xie, Tay, et al. 2009; Vapnik and
Chervonenkis 1979; Chervonenkis 2013). It is
a set of related learning algorithms used for
classification and regression (Moguerza and
Mufioz 2006). It is a linear binary classifier
and finds an optimal hyperplane that separates
the input training samples. SVM locates a
hyperplane or set of hyperplanes in a high or
infinite dimensional space, which can be used for
classification, regression, and other tasks. The
dimension of the hyperplane depends upon the
number of features. It is mostly used in linear
and nonlinear separatién problems and uses a
subset of training points in the decision function
called support vectors. SVM is a kernel-based
classifier that projects low-dimensional input
space and transforms it into higher-dimensional
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space. There are several kernels, such as linear,
polynomial, radial basis, and sigmoid kernels
(Kecman 2005), and a category is assigned based
on the most frequently assigned class.

SVM with the radial kerne! used to classify
Corine’s data, Sentinel-2, and Landsat 8 data
outperformed with better accuracy compared to
RF applied in diverse areas of Catalonia, Poland,
and Romania (Dabija, Kluczek, Zagajewski,
et al. 2021).

Among the most popular traditional classifiers,
widely used is the MLC (Huang et al. 2002). Iiis
a parametric approach and uses a fixed number
of parameters regardless of the amount of
training data. Compared to this, artificial neural
networks (ANN), decision trees, RF, and SVM
have greater flexibility and offer a better fit to the
data (Kavzoglu and Colkesen 2009).

The Google Earth Engine (GEE), a cloud- -
based spatial data computing platform with data
archive, has revolutionized remote sensing-based
applications with fast and easy computation
(Phan, Kuch, and Lehnert 2020; Mutanga and
Kumar 2019). It consists of a multi-petabyte
analysis-ready data catalogue co-located with
a high-performance, intrinsically parallel
computation service. It is accessed and controlled
through an Internet-accessible application
programming interface (API) and an associated
web-based interactive development environment
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(IDE) that enables rapid prototyping and
visualization of results (Gorelick 2017).

Objectives

The objectives of the current study are to (i) -
understand landscape dynamics in Bellary
district, Karnataka, India, (ii) assess the condition
of the forest ecosystem through computaﬁon of
fragmentation metrics, and (iii) performance
evaluation of the selected parametric (MLC) and
non-parametric (RF and SVM) classifiers.

Study Area

Bellary district is a major district in Karnataka
with a spatial extent of 9896 k. It is located

in the northeastern part of Karnataka at -
between 14° 30’ and 15° 50’ N, and 75°40’ and
77° 11" E (Figure 1). The district is bounded by
Raichur district in the north, Anantapur and
Kurnool districts of Andhra Pradesh in the east,
Chitradurga and Davanagrere in the south, and
Dharwad distriet in the west. River Tungabhadra
flows eastwards and forms the natural boundary
dividing the district on the west from Dharwar
and on the north from Raichur. The population
of the district as per the 2011 census was about
2,452,595 (density of 300 per km?) with a rural
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Bellary district comprises eight taluks:
Kudligi, Hadagali, HB Halli, Hospet, Sandur,
Siruguuppa, Harapanahalli, and Bellary. As per
Statistical Report 202021 (https://cdn.s3waas.
gov.in/), there will be 11 taluks when Bellary is
reorganized.

The district consists of plains and undulatmg
terrain consisting of northern maidan region
with a monotonous, treeless, and expansive
plateau landscape. The central part is occupied
Dby the hills and plain to the east and west. The
Sandur hills run north-west of the district and
divides the district into two equal parts. The
average elevation of the district is 493.71 m above
sea level. It has a rocky terrain with monolithic
granite hills, and gneisses hills of a height of
about 500 m to 1 km.

The major type of soil in the district is red
soii, which is found at the fringes of the hills.
The soil of the district’s stream bed is sandy
ioam soil mixed with black and grey soil. The
thickness of the soil varies from 0.2 to 1 mm and
red soil is of high permeability and neutral pH
value. The black soil is found in the prolonged
submerged area and canals areas having low

permeability. The climate of the Bellary district is
quite moderate or semi-arid. It receives rainfall
from the southwest monsoon between June and
September and from the northeast monsoon from
October to December, The district receives an
average rainfall of 502-600 mm with the hlghest
in Sandur taluk at 783 mm.

The total Gross District Demestic Product
{GDDP) of the district estimated during 2012-13
is Rs 10,618 crore. The per capita annual income
of the district was Rs 74,554 (2012-13).

Data

Table 1 lists the data used for the analyses of
landscape dynamics. The multi-spectral remote
sensing data of Landsat 1 MSS, Landsat 5 TM,
Landsat 8 OLL, and Landsat g OLI-2 with a
minimum cloud cover of less than 10 % were used
for spatial analyses. The data was preprocessed
and rectified radiometrically and atmospherically.
Accuracy assessment was done using training
data compiled from the field and supplemented
with the data from virtual data portals [Karnataka
Geographic Information Science (K-GIS) Portal

and Bhuvan Geo Portal].
Table 1 Data used for landscape dynamics
Data Band combination Spatial Radiometric  Date
resolution resolution
Landsat Multi Spectral Scanner {MSS} B4, 85,86 60m 6-hit 1973
US Geolagical Survey Scene 1 5 January
https:/fearthexplarer.usgs.gov/ Scene 2 10 Febrary
Scene3 6 February
Scene 4 6 February
Landsat Thematic Mapper (TM) B1,B2,83,B4,B5,87 8-hit 2000
US Geological Survey 30m Scene 1 26 December
https://earthexplorer.usgs.gov/ Scene 2 26 December
Stene 3 21 December
Landsat Enhanced Thematic Mapper 9-bit 2007
(ETM+) Scene 1 28 April
US Geological Survey Scepe 2 28 Apsil
hitps://earthexplorer.usgs.gov/ . Scéne3 5 Apiil
2014

Contd..
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Table 1 (ontd...

Data Band combination Spatial Radiometric  Date

resolution resolution
Landsat Gperational Land Imager {OLl B2, B3, B4, B5, BS, BY 16-hit Scene 1 7 April
and OLI-2} Scene2 . 22 March
IS Gealogical Survey Scene 3 5 April :
hittps://earthexplorer.usgs.gav/ ; 2022 !

Scene 1 24 February
Scene 2 12 March ‘
Scene 3 1 February
_ Thematic Maps LULC Reference Maps LULC Reference Maps

' Karnataka Geographic Information :
! Scence Portal
htps:/fkgis ksrsac.in/

Thematic Maps (1:50000)
Bhuvan Geo Portal
. https:/fhhuvan.nrscgovin/

Method with the help of supervised classifiers based on
) non-parametric and parametric algorithms. See
Assessment of landscape dynamics involved Figure 2.

compuiation of (i) land cover and (i) land uses

PRIMARY DATA COLLECTION SECONDARY DATA COLLECTION
1972 to 2022 . e [seirtae or BELLARY DISTRICT
: » 1

Landsat MSS

Google Earth
LULC map of NRDMS g

| Landsat ETM+
Landsat OLI

| LULC map of Bhuvan =0

FCC Generation LULC map of K- GIs r—
L

4 4

Training Data Collection

70% training data 30% training data

Comparison of classification algorithms QJ

| Maximum Likelihood || Random Forest | | Support Vector Machine |

e |3

A4
LANDUSE ANALYSIS from 1973 to 2022

Agriculture || Built-up Forests Scrub land Water Mining Open land

FOREST FRAGMENTATION ANALYSIS

B = proportion of number of forest pixels
f total number of non—water pixels in the window
P . proportion of number of forest pixel pairs
rr total number of adjacent pairs of at least one forest pixel
Figure 2 Method-
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Land cover classification

The land cover helped in delineating areas under
vegetation and non-vegetation in the district,
which is calculated by Normalized Difference
Vegetation Index (NDVI) as per Equation (1)
and the index value ranges from -1 to 1 in which
values ranging from o to 0.3 depict the scrub land
and agricultural fallow land and values above
0.3 indicate the area under vegetation or healthy
vegetation land cover.

NIR-RED

NDVI= NIR+RED ®

lL.and use classification

The spatio-temporal changes in land use were
analysed using multi-temporal remote sensing
data from 1973 to 2022. False Color Composite
(FCC) aided in identifying heterogeneous
features in the landscape. Training polygons were
digitized by covering all heterogeneous features,
which are uniformly distributed throughout the
landscape, and the spatial extent of these training
polygons covered 15% of the study region. The
attribute information of these training polygons
was obtained from field by using a pre-calibrated
handheld global positioning system (GPS) and
virtual high spatial resolution Google Earth

data. About 70% of training data is used for
classification and the remaining 30% is used for
accuracy assessment. Classification of remote
sensing data is done through a supervised
learning algorithm (RF, SVM, MLC).

Random Forest: RF is an ensemble tree-
based learning algorithm (Breiman 2001). RF
classifier creates decision trees on data samples

and then gets the prediction from each of them
and finally selects the best solution through
voting. RF overcomes the problem of overfitting
by averaging or combining the results of several
decision trees (Rodriguez-Galiano, Ghimire,
Rogan, et al. 2012; Nguyen, Doan, and Radeloff
2018). : o

The decision tree uses the Gini index, which
measures the inequality between each class in
each node as shown in Equation (2). The lower
the value of the Gini Index (nearer to 0), the
purer the node or homogeneous, which is good
for accurate classification.

Gini = 1-2( _1)P (2):

Bagging (an acronym for Bootstrap
AGGregatING) is a regular ensemble classn"ler
technique in which independently several
predictions are made and then grouped using the
weighted average (Breiman 1996). In bagging,
the algorithm is built on bootstrap by replicating
samples with replacement, and then each
replica is used for classification. The classes are
then assigned by taking the average (or voting

- principle) of the output of all iterations (Maclin

and Opitz 1997).
Support Vector Machine: VM is a kernel-
based classifier that projects low-dimensional -

~input space and transforms it into higher-

dimensional space (Vapnik 1999). The training
is linearly separated, where it projects x from
the original space to projected space ®(x). The
training problem appears in the form of a dot
product of two vectors [@(x,), (I)(xj)].

Training Sample

Root
Node

Root
Node

Root
Node

Decision
Node

Node

Node

Decision
Node

Decision
Node

Node

‘ Leaf Node ‘ ‘ Leaf Node ‘ ‘ Leaf Node ‘ ‘ Leaf Node ‘ ‘ Leaf Node

Leaande“Leaande“LeafNode‘

‘leafNode“leafNode‘

LeaiNode“leaande

Figure 3 Random forest
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The widely used approach is a one-against-one
rule that trains each pairwise class combination
and the class label is assigned based on the most
frequently assigned class (Debnath, Takahide,
and Takahashi 2004; Cherkassky and Ma 2004;
Al-Mejibli, Alwan, and Abd Dhafar 2020). The
computational cost in higher dimensional space
is less because of the kernel transformation k as
per Equation (3).

(B(x, },8(x; )= k(x,x) (3

Input Space

Feature Space

Figure 4 Data dlassification using kernel

Maximum Likelihood Classifier: MLC assigns a pixel
to a class according to its probability of belonging to a
particular class. Its mean and covariance are modelled
as forming a normal distribution in multispectral
feature space (Le Cam 1990). MLC is based on Bayes’
classification (Sisodia, Tiwari, and Kumar 2014). The
conditional probabilities are given as , i = 1,2,3...¥,
where represents the classes, i represents the number
of clagses, and represents the measurement vector.

The Baye’s theorem is given in Equation (4).
(P(EICYP(C)

P(C,| E)= —m (4)

where P(C) represents the probability from
class C, and P(E) is the probability of finding a
pixel with measurement vector E.

PE- Y, | PEICPE) )

Ramachandra, Negi, and Setturu

Multivariate Gaussian distribution for N
dimensional space is given in Equation (6).

1

P(EIC) = (2m)2 Y expl--L1 (1) (E4)W (6)

where p1. and ¥, are the mean vector and variance-
covariance matrix of class i. '

Accuracy Assessment

Accuracy assessment of classification is done
using training data through a confusion matrix or
error matric, which compares, on a class-by-class
basis, results of classification with the reference
data or ground truth. It is assessed through
computation of producer accuracy (Equation

=), user accuracy (Equation 8), overall accuracy
{Equation ), and Kappa Statistic or Cohen'’s
Kappa (Equation 10).

i

Producer accuracy = x100% {7}

sum
where C;is the element at position i row and j*
column and C__is column sum.

i

User accuracy = x100% {(8)
Rsum
where R__ is row sumL.
Overall accuracy = X5 o 160% ©)
0 .

where n and ( are the total number of classes and
pixels, respectively.

ia.of comeet lrom

Kappa statistics ==wa {10)

Temporal changes in land uses are estimated as
per Equation (11) by considering 1973 as the base
year.

__ o Landuse aren of current year-Land use areaof base
Change rate = P — =} % 100 (12)
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Forest Fragmentation

The condition of forest ecosystems is evaluated
through fragmentation metrics considering
proportion of forest cover (equation 12)

and oceurrence of forest in adjacent pixels
(equation 13) using 3x3 kernel. Various levels of
fragmentation are computed as per Table 2.

Table 2 Forest fragmentation

Results and Discussion

The temporal land cover of Bellary district from
1973 to 2022 is assessed through computation of
NDVT using remote sensing data and is listed in
Table 3. It can be seen that the vegetation cover
had increased from 45.56% (in 1973) to 60.28%
(in 2022} due to expansion of agricultural
(croplands and horticulture) activities. Areas
under non-vegetation decreased (Figure 5) from
54-24% (1973) to 39.75% (2022).

Fragmentation Description Computation

dasses

Patch Forested pixels surrounded by non-forested pixel P <04

Transitional Pixels between edge and non-forest pixel 04<P <06

Edge Forest pixels that act as the boundary between interior forest pixels and P>06andP~P <0
non-forested pixels

Perforated Forest pixels that act as the boundary between and interior forest pixelsand P> 0.6and PP, >0
perforatians pixels

fnterior Forest pixels surrounded by non-forested pixels and the pixels are far from the P=1
boundary of forest pixels and non-forest pixels

- Proportion of number of forest pixels
P = (12)

Total rumber of non-water pixels in the window

Praportion of number of forest pixel pairs

P= (13)

5 Total number of adjacent pairs of at least ane forest pixel

Table 3 Land cover analysis of Bellary district from 1973 to 2022

Land cover Non-vegetation Vegetation

km? % km? %
1973 ) 5382.27 54.24 4515.11 45.56
2000 4390.96 4434 5505.03 55.61
2007 5015.21 501 4880.78 4933
2014 4359.74 4409 5523.22 53.83
2022 ) 3930.2 3975 5965.79 ' 60.28

Journal of Resources, Energy, and Development 19 (1&2): 1-18
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Land use analysis

Land uses presented in Figure 6 show a decline
of dry deciduous forest from 258.23 km?* (2.61%
in 1973) to 73.14 km? {0.74% in 2022), with

an increase in the built-up area from 26.33

km? (0.27% in 1973) to 240.47 km? (2.43%

in 2022). The water body showed fluctuation
due to seasonal variation, especially near the

_ Tungabhadra dam; The scrub land had decreased
from 1923.82 km? (19.44% in 1973) to 762.24
km? (7.70% in 2022). Agricultural {cropland and
horticulture) activities are very dominant in the
district and expansion has led to the decline of
scrub land. Mining has increased from 0.89 km?
(0.01%) in 2000 to 19.39 km* (0.20%) in 2022.
The district has only a thick forest cover in the
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Sandur taluk and the extraction of iron ore here
by the industries had degraded the dry deciduous '
forest in the Sandur forest range. The open and
rocky surfaces have decreased from 760.14 km?
(7.68%) in 1973 to 221.34 km? (2.24%) in 2022.

The agricultural land has increased from
6750.66 km? (68.21% in 1973) to 8407.86
km? (84.95% in 2022) with a decline of scrub
lands (1260.28 km?). Built-up has increased by
214.16 km?, and agriculture by 1657.20 km?. Dry
deciducus has reduced by 185.10 km?, specifically
in Sandur Forest range because of increase
in mining to 19.39 km? since 2000. Figure 7
illustrates land uses in Bellary district from 1973
o 2022. '

76°30E 77°0E

15950

2000 8
gy )
2014 U

15722

14953

0 10 20km
—_—

1973

Non-vegetation vegetation

Figure 5 Land cover of Bellary district from 1973 10 2022

-Journal of Resources, Energy, and Development 19 (1&2): 1-18




Insights from Big Spatial Data through Machine Learning Techniques for
Prudent Management of Natural Resources

il

1657.20
1500
Agriculture
1000
= m Built-up
2
8-_ 500 214.14 W Water
19.39
i= Forests
© 0 . -
E -5.26 H Scrub land
-185.10
-500 Open land
-538.80 ;s
B Mining
-1000
-1161.58
-1500
land use
Figure 6 Land use change analysis for each class from 1973 to 2022
Table 4 Land use analysis of Bellary district from 1973 to 2022
Land use 1973 2000 2007 2014 2022
Agriculfure km? 6750.66 762069 8125.12 8152.75 8407.86
% 68.21 77.00 82.09 8237 84.95
Built-up km? 26.33 81.73 108.42 165.22 -240.47
% 0.27 0.83 1.10 1.67 243
Water km? 178.30 154.52 173.90 177.61 173.04
% 1.80 1.56 176 1.79 1.75
Forests km? 258.23 87.84 85.54 82.04 7314
% 2.61 0.89 0.86 0.83 0.74
Scrub land km? 1923.82 132976 084.37 987.04 762.24
% 1944 13.44 9.95 9.97 110
Open land km? 760.14 622.08 416.97 32493 22134
% 768 6.29 421 3.28 2.24
Mining km? 0.00 0.89 317 790 19.3¢
% 0.00 0.01 0.03 0.08 0.20
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Figure 7 Land use analysis from 1973 to 2022

Performance evaiuation

Classification of temporal remote sensing data for
Bellary district was done through supervised non-
parametric classifiers RF and SVM using Google
Farth Engine cloud platform, and a parametric
supervised classifier based on maximum
likelihood algorithm using GRASS (htip://wgbis.
ces.iisc.ac.in/ grass).

Performance of these classifiers was evaluated
through accuracy assessments. The overall
accuracy and Kappa of three supervised learning
techniques showed that RF (88.94%, 0.76)
performed comparatively better compared to
MLC (86.51%, 0.74) and SVM (85.47%, 0.63).
Classifier-wise results are listed in Table 5.
Category-wise, user's and producer’s accuracy

produced by MIC is maximum for water (94.72%,
05.83%) followed by agriculture (89.88%,
95.34%), while open land/rocky surface and
mining have lower values: (73.99%, 53.87%) and
(87.95%, 27.17%).

RF produced the highest user’s and producer’s
accuracy for agriculture class (94.52%, 03.60%),
followed by water (88.27%, 91.49%), while open
land or rocky surface (55.95%, 75.63%) and
mining (78.61%, 66.62%) have lower accuracies.
SVM performed maximum user’s and producer’s
accuracy for water (96.76%, 97.96%), followed by
agriculture {97.03%, 89.28%), while scrub land
(56.40%, 55.71%) and open land or rocky surface
(38.35%, 62.88%) produced lower accuracy,
respectively.

' Journal of Resources, Energy, and Development 19 (182): 1-18



:
§

Insights from Big Spatial Data through Machine Learning Techniques for

Prudent Managemenit of Natural Resources 13
Table 5 Performance evaluation of classifiers through accuracy of land use dassification
Maximum Likelihood Random: Forest SYM
Accuracy Assessment Producer’s Praducer’s Producer’s
User's accuracy User's accuracy User’s accuracy
acquracy accuracy accuracy
Agriculture 89.88 95.34 94.52 93.49 97.03 89.28
Built-up 77.01 61.64 .84.07 64.51 829 68.57
Water 94.72 95.83 ‘ 88.27 9149 96.76 97.96
Forests 81.28 67.01 86.29 66.64 0 99.39
Sarub land 79.34 83.82 79.14 77.25 56.40 55.71
Open land 73.99 53.87 55.95 7963 3835 62.58
Mining 87.95 27.17 78.61 . 66.62 77.31 64.23
Kappa 0.74 0.76 ] 0.63
Overall accuracy 86.51% 88.94% 85.47%

Among the chosen three supervised classifiers,
RF performed relatively better compared to
MILC and SVM, which corroborates with the
earlier studies (Adam, Mutanga, Odindi, et al,
2014), ML, Decision Trees (DT) (Breiman ef al.
1984, Friedl and Brodley 1997), SVM (Vapnik
1995, Vapnik 1998, Rodriguez-Galiano, Ghimire,
Rogan, ef al. 2012; Amini, Saber, Rabiei-
Dastjerdi, et al. 2022, Talukdar, Singha, Mahato,
et al. 2020, Waske and Braun 2009, Pelletier,
Valero, Inglada, et al. 2016, Redriguez-Galiano
and Chica-Rivas 2014,Wagle, Acharya, Kolluru, et
al. 2020, Piao, Jeong, Park, et al. 2021).

Forest fragmentation analysis

Fragmentation of forest ecosystems from 1973 to
2022 listed in Table 6 and Figure 8 shows that
the area under interior forest has decreased from
665.92 km? (6.73% in 1973) t0 238.15 km? (2.41%
in 2022). The patch forest has increased from
17.74 km? (0.18 in 1973} to 143.30 km* (1.45%

in 2022). The transitional, edge, and perforated
forests have decreased from 497.24 km? (5.02%),
403.84 km? (4.08%), and 597.32 km? (6.04%) in
1973 t0 149.98 km?® (1.52%), 53.86 km* (0.54%),
and 250.09 km? (2.53%) in 2022.

Table 6 Forest fragmentation analysis of Bellary district from 1973 to 2022

Forest fragmentation 1973 2000 2007 2014 2022
Non-farast km? 7537.14 8325.39 8653.69 8650.82 8889.07.
% 76.15 84.12 87.43 87.40 89.81
Patch km? 17.74 292.09 188.90 193.40 143.30
% 0.18 295 1.91 1.95 145
Transitional km? 497.24 291.78 197.27 198.08 149.98
% 5.02 295 1.99 2.00 1.52
Edge ki 403.84 93.15 7337 7160 53.86
% 4.08 0.94 0.74 4.72 0.54
Perforated km? 597.32 36441 309.43 309.00 250.06
% 6.04 3.98 313 . 3.12 253
Interior km? 665.92 346.17 300,94 297.00 238.15
% 6.73 3.50 3.04 3.00 241
Water km? 178.30 154.52 173.90 177.61 173.04
% 1.80 1.56 1.76 1.79 1.7%
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Conclusion

The analyses of LULC dynamics over a temporal
scale provided insights to the landscape
composition and configuration in the Bellary
district in Karnataka. Temporal land use analyses
reveal that built-up has increased from 26.33

km? (1973) to 240.47 km? (2022) with a decline
in forest cover by 185.10 km? from 1973 to 2022.
Agricultural land, the dominant occupation in
the district, has increased significantly from
6750.66 km? (1973) to 8407.86 km?(2022).

Anthropogenic activities involving conversion of

forest to agriculture and industrial developments
are the major driving forces of degradation.
Forest fragmentation analyses highlight the
reduction of interior forests from 6.73% {1973) to
2.41% (2022}, with the formation of non-forest
patches and increase in patch forests. Land

use analyses reveal an increase in urban and
agriculture category and degradation on forests
during the past three decades. Comparative
assessment of performance of parametric and
non-parametric supervised classifiers namely
RF, SVM, and MLCs reveal highest classification
accuracy with RF, It required two user-defined
parameters and does not overfit. The advanced
techniques based on non-parametric approach
of classification of land use has greater flexibility
and better fit to the data because of no limitation
of selecting the number of parameters to train
the data.
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