NAME
t.rast.what.aggr - Sample a space time raster dataset at specific vector point map returning aggregate values and write the output to stdout or to attribute table
KEYWORDS
temporal,
sampling,
raster,
time,
parallel
SYNOPSIS
t.rast.what.aggr
t.rast.what.aggr --help
t.rast.what.aggr [-uac] input=name strds=name [date_column=name] [date=string] [final_date=string] [output=name] [final_date_column=name[,name,...]] [columns=name[,name,...]] [granularity=string] method=string[,string,...] [separator=character] [nprocs=integer] [date_format=string] [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
- -u
- Update attribute table of input vector map
- Instead of creating a new vector map update the attribute table with value(s)
- -a
- Query STRDS with dates after the 'date' or 'column_date' value
- Usually t.rast.what.aggr aggregate values before the selected dates, using a flag it will query values after the selected dates
- -c
- Create new columns, it combine STRDS and method names
- Create new columns for the selected methods, it combine STRDS and method names
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
Parameters:
- input=name [required]
- Name of input vector map
- Or data source for direct OGR access
- strds=name [required]
- Name of the input space time raster dataset
- date_column=name
- Name of the column containing starting dates for aggregates
- date=string
- The starting date for aggregation
- final_date=string
- The end date for aggregation, requires date option
- output=name
- Name for the output file or "-" in case stdout should be used
- Default: -
- final_date_column=name[,name,...]
- Column with ending date for aggregation, requires date_columns option
- columns=name[,name,...]
- Name of attribute column(s)
- granularity=string
- Aggregation granularity, format absolute time "x years, x months, x weeks, x days, x hours, x minutes, x seconds" or an integer value for relative time
- method=string[,string,...] [required]
- Aggregate operation to be performed on the raster maps
- Options: average, median, mode, minimum, maximum, stddev, sum, variance, quart1, quart3, perc90, quantile
- Default: average
- separator=character
- Field separator
- Special characters: pipe, comma, space, tab, newline
- Default: pipe
- nprocs=integer
- Number of processes to run in parallel
- Default: 1
- date_format=string
- Tha date format
- Default: %Y-%m-%d
t.rast.what.aggr samples a space time raster dataset at points
from a vector map and returns aggregated values either printing
them to stdout or updating the attribute table. A single date
for the aggregation can be provided with the option
date or
alteratively, different dates for each point in the vector map
can be passed through the option
date_column.
Either
date or
date_column must be provided.
The aggregation is done by default backwards in time starting from the
date provided and with the
granularity set. Alternatively, the
data can be aggregated forward in time by using the
a flag.
By default, the output is printed to stdout. To write the output into
the attribute table of the vector map,
u flag must be set and
the target column should be created beforehand
(See
v.db.addcolumn).
Alternatively,
c flag creates the columns using the name of the
space time raster dataset (strds) and the method(s) as column name(s).
For
method=mode the module requires
scipy
library to be installed.
Average NDVI for the previous 2 months starting from 2015-05-01
(i.e.: date="2015-05-01") for all points in the vector map.
t.rast.what.aggr input=GR_GSOM_stations strds=ndvi_16_5600m \
date=2015-05-01 granularity="2 months"
1|2015-05-01|4480.0
2|2015-05-01|5852.66666667
3|2015-05-01|5683.33333333
4|2015-05-01|4985.0
Average, minimum and maximum NDVI for the previous 2 months starting
from 2015-05-01 (i.e.: date="2015-05-01") for all points in the
vector map.
t.rast.what.aggr input=GR_GSOM_stations strds=ndvi_16_5600m \
date=2015-05-01 granularity="2 months" method=average,minimum,maximum
1|2015-05-01|4480.0|4371.0|4545.0
2|2015-05-01|5852.66666667|5618.0|6249.0
3|2015-05-01|5683.33333333|5530.0|5955.0
4|2015-05-01|4985.0|4820.0|5169.0
Average NDVI for the previous 2 months, starting from different
dates for each point in the vector map (i.e.: providing date_column).
t.rast.what.aggr input=GR_GSOM_stations strds=ndvi_16_5600m \
granularity="2 months" date_column=fechas
1|2015-01-01|*
2|2015-02-01|5254.0
3|2015-03-01|6023.66666667
4|2015-04-01|4399.66666667
Minimum and maximum NDVI for the previous 2 months, starting
from different dates for each point in the vector map (i.e.: providing
date_column).
t.rast.what.aggr input=GR_GSOM_stations strds=ndvi_16_5600m \
date_column=fechas granularity="2 months" \
method=minimum,maximum
1|2015-01-01|*|*
2|2015-02-01|5254.0|5254.0
3|2015-03-01|5944.0|6119.0
4|2015-04-01|3786.0|4820.0
Minimum and maximum NDVI for the 2 months after (i.e.: set -a flag)
the date provided in
date_column. Note that in this example the
first point gets populated.
t.rast.what.aggr -a input=GR_GSOM_stations date_column=fechas \
granularity="2 months" strds=ndvi_16_5600m method=minimum,maximum
1|2015-01-01|3497.0|4280.0
2|2015-02-01|4801.0|6249.0
3|2015-03-01|5530.0|5955.0
4|2015-04-01|5169.0|6390.0
Minimum and maximum NDVI for the previous 2 months, starting from
different dates for each point in the vector map (i.e.: providing
date_column) and write the output into the vector atrribute's table.
# create columns
v.db.addcolumn map=GR_GSOM_stations column="ndvi_min double precision"
v.db.addcolumn map=GR_GSOM_stations column="ndvi_max double precision"
# write the aggregated values to the attribute table
t.rast.what.aggr -u input=GR_GSOM_stations strds=ndvi_16_5600m \
date_column=fechas granularity="2 months" columns=ndvi_min,ndvi_max \
method=minimum,maximum
# check the result
v.db.select map=GR_GSOM_stations
cat|station|name|long|lat|fechas|ndvi_min|ndvi_max
1|GRE00105244|LAMIA|22.4|38.9|2015-01-01||
2|GRE00105246|TANAGRA|23.53|38.32|2015-02-01|5254|5254
3|GRE00105240|CHIOS|26.13|38.33|2015-03-01|5944|6119
4|GRE00105242|FLORINA|21.4|40.78|2015-04-01|3786|4820
Automatically create the columns and populate them with the aggregated values.
t.rast.what.aggr -u -c input=GR_GSOM_stations date_column=fechas \
granularity="2 months" strds=ndvi_16_5600m method=minimum,maximum
v.db.select map=GR_GSOM_stations
cat|station|name|long|lat|fechas|ndvi_mean|ndvi_max|ndvi_16_5600m_minimum|ndvi_16_5600m_maximum
1|GRE00105244|LAMIA|22.4|38.9|2015-01-01||||
2|GRE00105246|TANAGRA|23.53|38.32|2015-02-01|5254|5254|5254|5254
3|GRE00105240|CHIOS|26.13|38.33|2015-03-01|5944|6119|5944|6119
4|GRE00105242|FLORINA|21.4|40.78|2015-04-01|3786|4820|3786|4820
r.what,
t.rast.what,
t.rast.aggregate
GRASS GIS Wiki: temporal data processing
Luca Delucchi
Documentation by Veronica Andreo
SOURCE CODE
Available at:
t.rast.what.aggr source code
(history)
Latest change: Monday Jan 30 19:52:26 2023 in commit: cac8d9d848299297977d1315b7e90cc3f7698730
Main index |
Temporal index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2023
GRASS Development Team,
GRASS GIS 8.2.2dev Reference Manual