Subject: Fractals & Ecology- References
Sender: carex@osuunx.ucc.okstate.edu

References on fractals in ecology and related subjects
Mike Palmer - November 11 1996


Alados, C. L., J. M. Escos, and J. M. Emlen. 1996. Fractal structure of seq=
uential behaviour patterns: an indicator of stress. Animal Behaviour 51:437=
-43.

Anderle, G. R., and R. Anderle. 1990. Fractal techniques and the surface ro=
ughness of talus slopes: a comment. Earth Surf. Proc. Landf. 15:283-5.

Anderson, A. N., and A. B. McBratney. 1995. Soil aggregates as mass fractal=
s. Australian Journal of Soil Research 33:757-72.

Anderle, R., and A. D. Abrahams. 1989. Fractal techniques and the surface r=
oughness of talus slopes. Earth Surface Processes and Landforms 14:197-207.

Anderle, R., and A. D. Abrahams. 1990. Fractal techniques and the surface r=
oughness of talus slopes: a reply. Earth Surface Processes and Landforms 15=
:283-5.

Armstrong, A. C. 1986. On the fractal dimensions of some transient soil pro=
perties. J. Soil Sci. 37:641-52.

Aronson, R. B. 1992. Biology of a scale-independent predator-prey interacti=
on. Mar. Ecol. Prog. Ser. 89:1-13.

Baker, W. L. 1992. Effects of settlement and fire suppression on landscape =
structure. Ecology 73:1879-87.

Baker, W. L. 1993. Spatially heterogeneous multi-scale response of landscap=
es to fire suppression. Oikos 66:66-71.

Baker, W. L., S. L. Egbert, and G. F. Frazier. 1991. A spatial model for st=
udying the effects of climatic change on the structure of landscapes subjec=
t to large disturbances. Ecol. Mod. 56:109-25.

Barrang=82, M., and B. Campos. 1991. Models of species abundance: a critiqu=
e of and an alternative to the dynamics model. Mar. Ecol. Prog. Ser. 69:293=
-8.

Bartoli, F., R. Phillip, M. Doirisse, S. Niquet, and M. Dubuit. 1991. Struc=
ture and self-similarity in silty and sandy soils: the fractal approach. J.=
 Soil Sci. 42:167-85.

Bartoli, F., G. Burtin, R. Pilippy, and F. Gras. 1993. Influence of fir roo=
t zone on soil structure in a 23 m forest transect: the fractal approach. G=
eoderma 56:67-85.

Bartoli, F., G. Burtin, J. J. Royer, M. Gury, V. Gomendy, R. Philippy, T. L=
eviandier, and R. Gafrej. 1995. Spatial variability of topsoil characterist=
ics within on silty soil type: effects on clay migration. Geoderma 68:279-3=
00.

Bell, G., M. J. Lechowicz, A. Appenzeller, M. Chandler, E. DeBlois, L. Jack=
son, B. Mackenzie, R. Preziosi, M. Schallenberg, and N. Tinker. 1993. The s=
patial structure of the physical environment. Oecol. 96:114-21.

Berger, D. S. 1991. Modification of a simple fractal tree growth scheme: im=
plications on growth, variation, and evolution. J. Theor. Biol. 152:513-29.

Berntson, G. M. 1994. Root systems and fractals: how reliable are calculati=
ons of fractal dimensions? Ann. Bot. 73:281-4.

Biondini, M. E., and C. E. Grygiel. 1994. Landscape distribution of organis=
ms and the scaling of soil resources. Am. Nat. 143:1026-54.

Bradbury, R. H., and R. E. Reichelt. 1983. Fractal dimension of a coral ree=
f at ecological scales. Mar. Ecol. Prog. Ser. 10:169-71.

Bradbury, R. H., R. E. Reichelt, and D. G. Green. 1984. Fractals in ecology=
: methods and interpretation. Mar. Ecol. Prog. Ser. 14:295-6.

Brown, C. A., P. D. Charles, W. A. Johnsen, and S. Chesters. 1993. Fractal =
analysis of topographic data by the patchwork method. Wear 161:61-7.

Burel, F. 1992. Effect of landscape structure and dynamics on species diver=
sity in hedgerow networks. Landscape Ecol. 6:161-74.

Burlando, B. 1990. The fractal dimension of taxonomic systems. J. Theor. Bi=
ol. 146:99-114.

Burrough, P. A. 1981. Fractal dimensions of landscapes and other environmen=
tal data. Nature 294:240-2.

Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil. I. =
application of fractal concepts to nested levels of soil variations. J. Soi=
l Sci. 34:577-97.

Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil. II.=
 A non-Brownian fractal model and its application in soil survey. J. Soil S=
ci. 34:599-620.

Burrough, P. A.  1985.  Fakes, facsimiles and facts: fractal models of geop=
hysical phenomena. Pages 151-169 in S. Nash, ed. Science and Uncertainty. I=
BM/Science Reviews Limited.

Carlson, C. 1991. Spatial distribution of ore deposits. Geol. 19:111-4.

Carr, J.  1990.  Surface roughness characterization of rock masses using th=
e fractal dimension and the variogram. Volume Technical Report REMR-GT11. U=
S Army Waterways Experimental Station, Vicksburg, MS.

Carr, J. R., and W. B. Benzer. 1991. On the practice of estimating fractal =
dimension. Math. Geol. 23:945-58.

Chang, W., J. W. Biggar, and D. R. Nielsen. 1994. Fractal description of we=
tting front instability in layered soils. Water Resources Research 30:125-3=
2.

Cheng, Q., and F. P. Agterberg. 1995. Multifractal modeling and spatial poi=
nt processes. Math. Geol. 27:831-45.

Clarke, K. C. 1986. Computation of the fractal dimension of topographic sur=
faces using the triangular prism surface area method. Comp. Geosci. 12:713-=
22.

Cole, B. J. 1995. fractal time in animal behaviour: the movement activity o=
f Drosophila. Anim. Behav. 50:1317-24.

Collins, S. L., S. M. Glenn, and D. W. Roberts. 1993. The hierarchical cont=
inuum concept. J. Veg. Sci. 4:149-56.

Constanza, R., and T. Maxwell. 1994. Resolution and predictability: an appr=
oach to the scaling problem. Landscape Ecol. 9:47-57.

Constanza, R., L. Wainger, C. Folke, and K.-G. M=84ler. 1993. Modeling comp=
lex ecological economic systems. BioSci. 43:545-55.

Cressie, N. A. C.  1991.  Statistics for spatial data. Wiley Interscience, =
New York.

Culling, W. E. H. 1986. Highly erratic spatial variability of soil - pH on =
Iping Common, West Sussex. Catena 13:81-98.

Culling, W. E. H., and M. Datko. 1987. The fractal geometry of the soil-cov=
ered landscape. Earth Surface Processes and Landforms 19:369-85.

Culver, D. C., and D. W. Fong. 1994. Small scale and large scale biogeograp=
hy of subterranean crustacean faunas of the Virginias. Hydrobiol. 287:3-9.

Dale, M. R. T., and M. W. Zbigniewicz. 1995. The evalution of multi-species=
 pattern. J. Veg. Sci. 6:391-8.

De Cola, L. 1989. Fractal analysis of a classified Landsat scene. Photo. En=
gin. Rem. Sens. 55:601-10.

de Jong, S. M. 1993. An application of spatial filtering techniques for lan=
d cover mapping using TM-images. Geocarto International 8:43-9.

de Jong, S. M., and P. A. Burrough. 1995. A fractal approach to the classif=
ication of mediterranean vegetation types in remotely sensed images. Photo.=
 Engin. Rem. Sens. 61:1041-53.

Dewdney, A. K. 1985. Computer recreations: A computer microscope zooms in f=
or a look at the most complex object in mathematics. Sci. Am. 1985:16-23.

Dicke, M., and P. A. Burrough. 1988. Using fractal dimensions for character=
izing tortuosity of animal trails. Physiol. Entomol. 13:393-8.

Dubuc, B., J. F. Quiniou, C. Roques-Carnes, C. Tricot, and S. W. Zucker. 19=
89. Evaluating the fractal dimension of profiles. Phys. Rev. A, 39:1500-12.

Durrett, R., and S. A. Levin. 1994. Stochastic spatial models: a user's gui=
de to ecological applications. Phil. Trans. Roy. Soc. Lond. Ser. B. 343:329=
-50.

Dutch, S. I. 1993. Linear Richardson plots from non-fractal data sets. Math=
. Geol. 25:737-51.

Eghball, B., and J. F. Power. 1995. Fractal description of temporal yield v=
ariability of 10 crops in the United States. Agron. J. 87:152-6.

Eghball, B., G. D. Binford, J. F. Power, D. D. Baltensperger, and F. N. And=
erson. 1995. Maize temporal yield variability under long-term manure and fe=
rtilizer application: fractal analysis. Soil Sci. Soc. Am. J. 59:1360-4.

Elliot, J. K. 1989. An investigation of the change in surface roughness thr=
ough time on the foreland of Austre Okstindbreen, North Norway. Comp. Geosc=
i. 15:209-17.

Emlen, J. M., D. C. Freeman, and J. H. Graham. 1993. Nonlinear growth dynam=
ics and the origin of fluctuating assymetry. Genetica 89:77-96.

Feder, J.  1988.  Fractals. Plenum Press, New York.

Fisher, J. B. 1992. How predictive are computer simulations of tree archite=
cture? Int. J. Plant Sci. 153:s137-46.

Fitter, A. H., and T. R. Stickland. 1992. Fractal characterization of root =
system architecture. Funct. Ecol. 6:632-5.

Fitter, A. H., and T. R. Strickland. 1992. Fractal characterization of root=
 system architecture. Funct. Ecol. 6:632-5.

Flather, C. H., and J. R. Sauer. 1996. Using landscape ecology to test hypo=
theses about large-scale abundance patterns in migratory birds. Ecology 77:=
28-35.

Folorunso, O. A., C. E. Puente, D. E. Rolston, and J. E. Pinzon. 1994. Stat=
istical and fractal evaluation of spatial characteristics of soil surface s=
trength. Soil Science Society of America Journal 58:284-94.

Fourcassie, V., V. D. Coughlin, and J. F. A. Traniello. 1992. Fractal analy=
sis of search behavior in ants. Naturwissenschaften 79:87-9.

Fox, C. G., and D. E. Hayes. 1985. Quantitative methods for analyzing the r=
oughness of the seafloor. Rev. Geophys. 23:1-48.

Freeman, D. C., J. H. Graham, and J. M. Emlen. 1993. Developmental stabilit=
y in plants: symmetries, stress and epigenesis. Genetica 89:97-119.

Frontier, S. 1985. Diversity and structure in aquatic ecosystems. Oceanogr.=
 Mar. Biol. Ann. Rev. 23:253-312.

Frontier, S.  1987.  Applications of fractal theory to ecology. Pages 335-3=
78 in P. Legendre and L. Legendre, editors. Developments in Numerical Ecolo=
gy. Springer-Verlag, Berlin.

Gallant, J. C., I. D. Moore, M. F. Hutchinson, and P. Gessler. 1994. Estima=
ting fractal dimension of profiles: a comparison of methods. Math. Geol. 26=
:455-81.

Garc=A1a-Ruiz, J. M., and F. Ot=A0lora. 1992. Fractal trees and Horton's la=
ws. Math. Geol. 24:61-71.

Gardner, R. H., and R. V. O'Neill.  1991.  Pattern, Process, and Predictabi=
lity: The Use of Neutral Models for Landscape Analysis. Pages 289-307 in M.=
 G. Turner and R. H. Gardner, editors. Ecological Studies, 82: Quantitative=
 methods in landscape ecology.
 Springer-Verlag, Berlin.

Gardner, R. H., B. T. Milne, M. G. Turner, and R. V. O'Neill. 1987. Neutral=
 models for the analysis of broad-scale landscape pattern. Landscape Ecol. =
1:19-28.

Gaston, K. J.  1994.  Rarity. Chapman and Hall, London.

Gautestad, A. O., and I. Mysterud. 1993. Physical and biological mechanisms=
 in animal movement processes. J. Appl. Ecol. 30:523-35.

Gautestad, A. O., and I. Mysterud. 1994. Fractal analysis of population ran=
ges: methodological problems and challenges. Oikos 69:154-7.

Gee, J. M., and R. M. Warwick. 1994. Metazoan community structure in relati=
on to the fractal dimensions of marine macroalgae. Mar. Ecol. Prog. Ser. 10=
3:141-50.

Gilbert, L. E. 1989. Are topographic data sets fractal? Pure and Applied Ge=
ophysics 131:241-54.

Glenn, S. M., and S. L. Collins. 1990. Patch structure in tallgrass prairie=
s: dynamics of satellite species. Oikos 57:229-36.

Goodchild, M. F. 1980. Fractals and the accuracy of geographical measures. =
Math. Geol. 12:85-98.

Goodchild, M. F. 1988. Lakes on fractal surfaces: a null hypothesis for lak=
e-rich landscapes. Math. Geol. 20:615-30.

Goodchild, M. F., and D. M. Mark. 1987. The fractal nature of geographic ph=
enomena. Ann. Assoc. Amer. Geogr. 77:265-78.

Graham, J. H., D. C. Freeman, and J. M. Emlen. 1993a. Antisymmetry, directi=
onal asymmetry, and dynamic morphogenesis. Genetica 89:121-37.

Graham, J. H., D. C. Freeman, and J. M. Emlen.  1993b.  Developmental stabi=
lity: a sensitive indicator of populations under stress. Pages 136-158 in W=
. G. Landis, J. S. Hughes and M. A. Lewis, editors. Environmental Toxicolog=
y and Risk Assessment. America
n Society of Testing and Materials, Philadelphia.

Green, D. M. 1991. Chaos, fractals and nonlinear dynamics in evolution and =
phylogeny. Tr. Ecol. Evol. 6:333-7.

Gregotsky, M. E., O. Jensen, and J. Arkani-Hamed. 1991. Fractal stochastic =
modeling of aeromagnetic data. Geophys. 56:1706-15.

Gunnarsson, B. 1992. Fractal dimension of plants and body size distribution=
 in spiders. Funct. Ecol. 6:636-41.

Gustafson, E. J., and G. R. Parker. 1992. Relationships between landcover p=
roportion and indices of landscape spatial pattern. Landscape Ecol. 7:101-1=
0.

Gutierrez, E. 1989. Temporal properties of some biological systems and thei=
r fractal attractors. Bull. Math. Biol. 51:785-800.

Hall, P., and A. Wood. 1993. On the performance of box-counting estimators =
of fractal dimension. Biometrika 80:246-52.

Hallet, B. 1989. Spatial self organization in geomorphology: from periodic =
bedforms and patterned grounds to scale-invariant topography. Earth Sci. Ea=
rth Science Reviews 29:57-75.

Haslett, J. R. 1994. Community structure and the fractal dimensions of moun=
tian habitats. J. Theor. Biol. 167:407-11.

Hastings, A. 1993. Complex interactions between dispersal and dynamics: les=
sons from coupled logistic equations. Ecology 74:1362-72.

Hastings, H. M., R. Pekelney, R. Monticciolo, D. V. Kannon, and D. Del Mont=
e. 1982. Time scales, persistence and patchiness. BioSyst. 15:281-9.

Hatano, R., N. Kawamura, J. Ikeda, and T. Sakuma. 1992. Evaluation of the e=
ffect of morphological features of flow paths on solute transport using fra=
ctal dimensions of methylene blue staining pattern. Geoderma 53:31-44.

Hayward, J., J. D. Orford, and W. B. Whalley. 1989. Three implementations o=
f fractal analysis of particle outlines. Comp. Geosci. 15:199-207.

Hegde, S. G., R. Lokesha, and K. N. Ganeshaiah. 1991. Seed size distributio=
n in plants: an explanation based on fractal geometry. Oikos 62:100-1.

Hengeveld, R.  1990.  Cambridge studies in ecology: Dynamic biogeography. C=
ambridge University Press, Cambridge.

Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecos=
ystems. Ecol. Mon. 62:447-502.

Hough, S. E. 1989. On the use of spectral methods for the determination of =
fractal dimension. Geophys. Res. Let. 16:673-6.

Hunsaker, C. T., rv O'Neill, B. L. Jackson, S. P. Timmins, D. A. Levine, an=
d D. J. Norton. 1994. Sampling to characterize landscape pattern. Landscape=
 Ecol. 9:207-26.

Ijjasz-Vasquez, E. J., R. L. Bras, and I. Rodriguez-Iturbe. 1994. Self-affi=
ne scaling of fractal river courses and basin boundaries. Physica A 209:288=
-300.

Jaggi, S., D. A. Quatrochi, and N. S.-N. Nam. 1993. Implementation and oper=
ation of three fractal measurement algorithms for analysis of remote-sensin=
g data. Comp. Geosci. 19:745-67.

Jeffries, M. 1993. Invertebrate colonization of artificial pondweeds of dif=
fering fractal dimension. Oikos 67:142-8.

Johnson, A. R., B. T. Milne, and J. A. Wiens. 1992a. Diffusion in fractal l=
andscapes: simulations and experimental studies of tenebrionid beetle movem=
ents. Ecology 73:1968-83.

Johnson, A. R., J. A. Wiens, B. T. Milne, and T. O. Crist. 1992b. Animal mo=
vements and population dynamics in heterogeneous landscapes. Landscape Ecol=
. 7:63-75.

Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren, editors. =
 1987.  Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen=
, The Netherlands.

J=81rgens, H., H.-O. Peitgen, and D. Saupe. 1990. The Language of Fractals.=
 Sci. Am. 263:60-7.

Kampichler, C. 1995. Biomass distribution of a microarthropod community in =
spruce forest soil. Biol. Fert. Soils 19:263-5.

Kampichler, C., and M. Hauser. 1993. Roughness of soil pore surface and its=
 effect on available habitat space of microarthopods. Geoderma 56:223-32.

Katz, M. J., and E. B. George. 1987. Fractals and the Analysis of growth pa=
tterns. Bull. Math. Biol. 47:273-86.

Keitt, T. H., and A. R. Johnson. 1995. Spatial heterogeneity and anomalous =
kinetics: emergent patterns in diffusion-limited predator-prey interaction.=
 J. Theor. Biol. 172:127-39.

Kenkel, N. C., and D. J. Walker. 1993. Fractals and ecology. Abstr. Bot. 17=
:53-70.

Kent, M., and P. Coker.  1992.  Vegetation description and analysis: a prac=
tical approach. Belhaven Press, London.

Kergosien, Y. L. 1990. Adaptive ramification: comparing models for biologic=
al, economical, and conceptual organization. Acta Biotheor. 38:243-55.

Klinkenberg, B. 1994a. A fractal analysis of shadowed and sunlit areas. Int=
. J. Remote Sensing 15:967-77.

Klinkenberg, B. 1994b. A review of methods used to determine the fractal di=
mension of linear features. Math. Geol. 26:23-46.

Klinkenberg, B., and M. Goodchild. 1992. The fractal properties of topograp=
hy: a comparison of methods. Earth Processes and Landforms 17:217-34.

Knick, S. T., and J. T. Rotenberry. 1994. Landscape characteristics of frag=
mented shrubsteppe habitats and breeding passerine birds. Cons. Bio. 9:1059=
-71.

Kolasa, J., and S. T. A. Pickett, editors.  1991.  Ecological Studies, 86: =
Ecological Heterogeneity. Springer-Verlag, Berlin.

Kolasa, J., and C. D. Rollo.  1991.  Introduction: The heterogeneity of het=
erogeneity: a glossary. Pages 1-23 in J. Kolasa and S. T. A. Pickett, edito=
rs. Ecological Studies, 86: Ecological Heterogeneity. Springer-Verlag, Berl=
in.

Korvin, G.  1992.  Fractal models in earth science. Elsevier, New York. Els=
evier, New York.

Krummel, J. R., R. H. Gardner, G. Sugihara, R. V. O'Neill, and P. R. Colema=
n. 1987. Landscape patterns in a disturbed environment. Oikos 48:321-4.

Lacaze, B., S. Rambal, and T. Winkel. 1994. Identifying spatial patterns of=
 Mediterranean landscapes from geostatistical analysis of remotely-sensed d=
ata. Int. J. Remote Sensing 15:2437-50.

LaGro, J., Jr. 1991. Assessing patch shape in landscape mosaics. Photo. Eng=
in. Rem. Sens. 57:285-93.

Lam, N. S.-N. 1990. Description and measurement of landsat TM images using =
fractals. Photo. Engin. Rem. Sens. 56:187-95.

Lam, N. S., and D. A. Quattrochi. 1992. On the issues of scale, resolution,=
 and fractal analysis in the mapping sciences. Prof. Geogr. 44:88-98.

Lathrop, R. J., and D. L. Peterson. 1992. Identifying self-similarity in mo=
untainous landscapes. Landscape Ecol. 6:233-8.

Lauwerier, H.  1991.  Fractals: Endlessly Repeated Geometrical Figures. Pri=
nceton University Press, Princeton, New Jersey, Translated by S. Gill-Hoffs=
t=84dt.

Lawton, J. H.  1986.  Surface availability and insect community structure: =
the effects of architecture and fractal dimension of plants. Pages 317-331 =
in B. E. Juniper and T. R. E. Southwood, editors. Insects and the plant sur=
face. Edward Arnold, London.

Leduc, A., Y. T. Prairie, and Y. Bergeron. 1994. Fractal dimension estimate=
s of a fragmented landscape: sources of variability. Landscape Ecol. 9:279-=
86.

Leopold, L. B., and W. B. Langbein. 1962. The concept of entropy in landsca=
pe evolution. Geol. Surv. Prof. Paper 500-A:1-20.

Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:=
1943-83.

Li, H., and J. F. Reynolds. 1994. A simulation experiment to quantify spati=
al heterogeneity in categorical maps. Ecology 75:2446-55.

Li, X., and B. E. Logan. 1995. Size distributions and fractal properties of=
 particles during a simulated phytoplankton bloom in a mesocosm. Deep-Sea R=
es. 42:125-38.

Lipitz, L. A., and A. L. Goldberger. 1992. Loss of 'complexity' and aging. =
J.A.M.A. 267:1806-9.

Loehle, C. 1983. The fractal dimension and ecology. Spec. Sci. Tech. 6:131-=
42.

Loehle, C., and B.-L. Li. 1996. Statistical properties of ecological and ge=
ologic fractals. Ecol. Mod. 85:271-84.

Loehle, C., and G. Wein. 1994. Landscape habitat diversity: a multiscale in=
formation theory approach. Ecol. Mod. 73:311-29.

Long, C. A. 1994. Leonardo da Vinci's Rule and fractal complexity in dichot=
omous trees. J. Theor. Biol. 167:107-13.

Longley, P. A., and M. Batty. 1989a. Fractal measurement and line generaliz=
ation. Comp. Geosci. 15:167-83.

Longley, P. A., and M. Batty. 1989b. On the fractal measurement of geograph=
ical boundaries. Geogr. Anal. 21:47-67.

Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science=
 216:185-7.

Malinverno, A. 1989. Testing linear models of sea-floor topography. Pure an=
d Applied Geophysics 131:139-55.

Malinverno, A. 1990. A simple method to estimate the fractal dimension of a=
 self-affine series. Geophys. Res. Let. 17:1953-6.

Mandelbrot, B. B.  1983.  The fractal geometry of nature. Freeman, San Fran=
cisco.

Mandelbrot, B.  1986.  Self-affine fractal sets. II. Length and surface dim=
ensions. Pages 3-15 in L. Pietronero and E. Tosatti, editors. Fractals in P=
hysics. North-Holland, Amsterdam.

Manrubia, S. C., and R. V. Sole. 1996. Self organized criticality in rainfo=
rest dynamics. Chaos Solitons and Fractals 7:523-41.

Mark, D. M. 1984. Fractal dimension of a coral reef at ecological scales: a=
 discussion. Mar. Ecol. Prog. Ser. 14:293-4.

Mark, D., and P. Aronson. 1984. Scale-dependent fractal dimensions of topog=
raphic surfaces: an empirical investigation, with applications on geomorpho=
logy and computer mapping. Math. Geol. 16:671-83.

Maurer, B. A.  1994.  Geographic population analysis: tools for the analysi=
s of biodiversity. Blackwell Scientific Publications, Oxford.

Maurer, B. A., and S. G. Heywood. 1993. Geographic range fragmentation and =
abundance in neotropical migratory birds. Cons. Bio. 7:501-9.

May, R. M. 1986. The search for patterns in the balance of nature: advances=
 and retreats. Ecology 67:1115-26.

May, R. M. 1988. How many species are there on Earth? Science 241:1441-9.

McIntosh, R. P.  1991.  Concept and terminology of homogeneity and heteroge=
neity in ecology. Pages 24-46 in J. Kolasa and S. T. A. Pickett, editors. E=
cological Studies, 86: Ecological Heterogeneity. Springer-Verlag, Berlin.

McRobert, L. 1995. On fractal thought: Derrida, Hegel, and Chaos science. H=
istory of European Ideas 20:815-21.

Milne, B. T. 1988. Measuring the fractal geometry of landscapes. Appl. Math=
. Comp. 27:67-79.

Milne, B. T.  1991a.  Heterogeneity as a multiscale characteristic of lands=
capes. Pages 69-84 in J. Kolasa and S. T. A. Pickett, editors. Ecological S=
tudies, 86: Ecological Heterogeneity. Springer-Verlag, Berlin.

Milne, B. T.  1991b.  Lessons from applying fractal models to landscape pat=
terns. Pages 199-235 in M. G. Turner and R. H. Gardner, editors. Ecological=
 Studies, 82: Quantitative methods in landscape ecology. Springer-Verlag, B=
erlin.

Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landsc=
apes. Am. Nat. 139:32-57.

Milne, B. T., K. M. Johnston, and R. T. T. Forman. 1989. Scale-dependent pr=
oximity of wildlife habitat in a spatially-neutral Bayesian model. Landscap=
e Ecol. 2:101-10.

Milne, B. T., M. G. Turner, J. A. Wiens, and A. R. Johnson. 1992. Interacti=
ons between the fractal geometry of landscapes and allometric herbivory. Th=
eor. Popul. Biol. 41:337-53.

Milne, B. T., A. R. Johnson, T. H. Keitt, C. A. Hatfield, J. David, and P. =
T. Hraber. 1996. Detection of critical densities associated with pi=A4on-ju=
niper woodland ecotones. Ecology 77:805-21.

Mladenoff, D. J., M. A. White, J. Pastor, and T. R. Crow. 1993. Comparing s=
patial pattern in unaltered old-growth and disturbed forest landcapes. Ecol=
. Appl. 3:294-306.

Molofsky, J., and C. K. Augspurger. 1992. The effect of leaf litter on earl=
y seedling establishment in a tropical forest. Ecology 73:68-77.

Moloney, K. A., and S. A. Levin. 1996. The effects of disturbance architect=
ure on landscape-level population dynamics. Ecology 77:77.

Morelli, R. A., R. E. Walde, E. Akstin, and C. W. Schneider. 1991. L-System=
 representation of speciation in the red algal genus dipterosiphonia (Ceram=
iales, Rhodomelaceae). J. Theor. Biol. 149:453-65.

Morse, D. R., J. H. Lawton, M. M. Dodson, and M. H. Williamson. 1985. Fract=
al dimension of vegetation and the distribution of arthropod body lengths. =
Nature 314:731.

Nellemann, C., and G. Fry. 1995. Quantitative analysis of terrain ruggednes=
s in reindeer winter grounds. Arctic 48:172-6.

Noordwijk, M. V., and P. Purnomoshidi. 1995. Root architecture in relation =
to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofores=
try Systems 30:161-73.

North, C. P., and D. I. Halliwell. 1994. Bias in estimating fractal dimensi=
on with the rescaled-range (R/S) technique. Math. Geol. 26:531-55.

Ogata, Y., and K. Katsura. 1991. Maximum likelihood estimates of the fracta=
l dimension for random spatial patterns. Biometrika 78:463-74.

Ohdan, H., H. Daimon, and H. Mimoto. 1995. Evaluation of allelopathy in Cro=
talaria by using a seed pack growth pouch. Japanese Journal of Crop Science=
 64:644-9.

Oldeman, R. A. A. 1992. Architectural models, fractals and agroforestry des=
ign. Agric. Ecosyst. Environ. 41:179-88.

Olsen, E. R. 1993. A modified fractal dimension as a measure of landscape d=
iversity. Photo. Engin. Rem. Sens. 59:1517-20.

O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner, and B. Jackson.  =
1991.  Heterogeneity and spatial hierarchies. Pages 85-96 in J. Kolasa and =
S. T. A. Pickett, editors. Ecological Studies, 86: Ecological Heterogeneity=
. Springer-Verlag, Berlin.

Osawa, A. 1995. Inverse relationship of crown fractal dimension to self-thi=
nning exponent of tree populations: a hypothesis. Can. J. For. Res. 25:1608=
-17.

Ouchi, S., and M. Matsushita. 1992. Measurement of self-affinity on surface=
s as a trial application of fractal geometry to landform analysis. Geomorph=
ology 5:115-30.

Pachepsky, Y. A., T. A. Polubesova, M. Hajnos, G. Jozefaciuk, and Z. Sokolo=
wska. 1995. Fractal parameters of pore surface area as influenced by simula=
ted soil degradation. Soil Sci. Soc. Am. J. 59:68-75.

Pag=8As, L., and J. Kervella. 1990. Growth and development of root systems:=
 geometrical and structural aspects. Acta Biotheor. 38:289-302.

Painter, S. 1995. Random fractal models of heterogeneity: The Levy-Stable a=
pproach. Math. Geol. 27:813-30.

Painter, S., and L. Paterson. 1994. Fractional Levy motion as a model for s=
patial variability of sedimentary rocks. Geophys. Res. Let. 21:2597-860.

Palmer, M. W. 1988. Fractal Geometry: a tool for describing spatial pattern=
s of plant communities. Vegetatio 75:91-102.

Palmer, M. W. 1990a. Spatial scale and patterns of species-environment rela=
tionships in hardwood forests of the North Carolina piedmont. Coenoses 5:79=
-87.

Palmer, M. W. 1990b. Spatial scale and patterns of vegetation, flora and sp=
ecies richness in hardwood forests of the North Carolina piedmont. Coenoses=
 5:89-96.

Palmer, M. W. 1992. The coexistence of species in fractal landscapes. Am. N=
at. 139:375-97.

Palmer, M. W. 1995. How should one count species? Nat. Areas J. 15:124-35.

Palmer, M. W., and P. S. White. 1994. Scale dependence and the species-area=
 relationship. Am. Nat. 144:717-40.

Pennycuick, C. J., and N. C. Kline. 1986. Units of measurement for fractal =
extent, applied to the coastal distribution of bald eagle nests in the Aleu=
tian Islands, Alaska. Oecol. 68:254-8.

Pentland, A. P. 1985. Fractal based description of natural scenes. IEEE Tra=
ns. Pat. Anal. Mach. Intell. 6:661-74.

Perfect, E., and B. D. Day. 1991. Fractal theory applied to soil aggregatio=
n. Soil Sci. Soc. Am. J. 55:1552-8.

Perfect, E., and B. D. Kay. 1995. Application of fractals in soil and tilla=
ge research: a review. Soil and Tillage Research 36:1-20.

Perfect, E., N. B. McLaughlin, B. D. Kay, and G. C. Topp. 1996. An improved=
 fractal equation for soil water retention curve. Water Resources Research =
32:281-7.

Perrier, E., C. Muloon, and M. Rieu. 1995. Computer construction of fractal=
 soil structure: Simulation of their hydraulic and shrinkage properties. Wa=
ter Resources Research 31:2927-43.

Petigen, H. O., and D. Saupe, editors.  1988.  The Science of Fractal Image=
s. Springer-Verlag, New York.

Pfeifer, P., and M. Obert.  1990.  Fractals: Basic concepts and terminology=
. Pages 11-43 in D. Avnir, editor. The fractal approach to heterogeneous ch=
emistry. Wiley, New York.

Phillips, J. D. 1985. Measuring complexity of environmental gradients. Vege=
tatio 64:95-102.

Pignatti, S. 1996. Some notes on complexity in vegetation. J. Veg. Sci. 7:7=
-12.

Polidori, L., J. Chorowicz, and R. Guillande. 1991a. Description of terrain=
 as a fractal surface, and application to digital elevation model quality a=
ssessment. Photo. Engin. Rem. Sens. 57:1329-32.

Polidori, L., J. Chorowicz, and R. Guillande. 1991b. Description of the pro=
perty of self-similarity is called self-affinity for vertical terrain as a =
fractal surface, and application to digital elevation profiles or for terra=
in surface itself: Model quali
ty assessment. Photo. Engin. Rem. Sens. 57:1329-32.

Prusinkiewicz, P., and A. Lindenmayer.  1990.  The algorithmic beauty of pl=
ants. Springer-Verlag, Berlin.

Rasiah, V., and V. O. Biederbeck. 1995. Fractal dimension of soil aggregate=
s: influence of bulk density, fitting procedure, and oily waste sludge inco=
rporation. Soil Sci. 160:250-5.

Rawls, W. J., and D. L. Brakensiek. 1995. Utilizing fractal principles for =
predicting soil hydraulic properties. J. Soil Water Conserv. 50:463-5.

Rawls, W. J., D. L. Brakensiek, and S. D. Logsdon. 1992. Predicting saturat=
ed hydraulic conductivity utilizing fractal principles. Soil Science Societ=
y of America Journal 57:1193-7.

Reed, R. A., M. W. Palmer, R. K. Peet, and P. S. White. 1993. Scale depende=
nce of vegetation-environment correlations: a case study of a North Carolin=
a piedmont woodland. J. Veg. Sci. 4:329-40.

Rees, D., and J.-P. Miller.  1990.  Surface roughness estimation using frac=
tal variogram analysis. in Proceedings of the International Geoscience and =
Remote Sensing Symposium. IGARSS, College Park, Maryland.

Reeve, R. 1992. A warning about standard errors when estimating the fractal=
 dimension. Comp. Geosci. 18:89-91.

Rieu, M., and G. Sposito. 1991. Fractal fragmentation, soil porosity, and s=
oil water properties. I. Theory. Soil Science Society of America Journal 51=
:1231-8.

Roach, D. E., and A. D. Fowler. 1993. Dimensionality analysis of patterns: =
fractal measurements. Comp. Geosci. 19:849-69.

Robert, A. 1991. Fractal Properties of simulatied bed profiles in coarse-gr=
ained channels. Math. Geol. 23:367-82.

Robert, A., and A. Roy. 1990. On the fractal interpretation of the mainstre=
am length-drainage area relationship. Water Resources Res. 26:839-42.

Roy, A., and A. Robert. 1990. Fractal techniques and the surface roughness =
of Talus slopes: a comment. Earth Surf. Proc. Landf. 15:283-5.

Russ, J. C.  1994.  Fractal surfaces. Plenum Press, New York.

Sander, L. M. 1986. Fractal growth processes. Nature 322:789-93.

Sarnelle, O., K. W. Kratz, and S. D. Cooper. 1993. Effects of an invertebra=
te grazer on the spatial arrangement of a benthic microhabitat. Oecol. 96:2=
08-18.

Saupe, D.  1988.  Algorithms for random fractals. Pages 71-113 in H.-O. Pet=
igen and D. Saupe, editors. The Science of Fractal Images. Springer-Verlag,=
 New York.

Scheuring, I. 1991. The fractal nature of vegetation and the species-area r=
elation. Theor. Popul. Biol. 39:170-7.

Scheuring, I. 1993. Multifractality: a new concept in vegetation science. A=
bstr. Bot. 17:71-7.

Scheuring, I., and R. H. Riedi. 1994. Application of multifractals to the a=
nalysis of vegetation patterns. J. Veg. Sci. 5:489-96.

Schumaker, N. H. 1996. Using landscape indices to predict habitat connectiv=
ity. Ecology 77:1210-25.

Shepard, M. K., R. A. Brackett, and R. E. Arvidson. 1995. Self-affine (frac=
tal) topography: Surface parameterization and radar scattering. J. Geophys.=
 Res. 100:11709-18.

Shorrocks, B., J. Marsters, I. Ward, and P. H. Evennett. 1991. The fractal =
dimension of lichens and the distribution of arthropod body lengths. Funct.=
 Ecol. 5:457-60.

Simberloff, D., P. Berthet, V. Boy, S. H. Cousins, M.-J. Fortin, R. Goldbur=
g, L. P. Lefkovitch, B. Ripley, B. Scherrer, and D. Tonkyn.  1987.  Novel s=
tatistical analyses in terrestrial animal ecology: dirty data and clean que=
stions. Pages 559-572 in P. Le
gendre and L. Legendre, editors. Developments in Numerical Ecology. Springe=
r-Verlag, Berlin.

Sole, R. V., and S. C. Manrubia. 1995a. Are rainforests self-organized in a=
 critical state? J. Theor. Biol. 173:31-40.

Sole, R. V., and S. C. Manrubia. 1995b. Self-similarity in rain forests: Ev=
idence for a critical state. Phys. Rev. E 51:6250-3.

Stoyan, D., and H. Stoyan.  1994.  Wiley Series in Probability and Mathemat=
ical Statistics: Fractals, random shapes and point fields. John Wiley and S=
ons, New  York.

Sugihara, G., and R. M. May. 1990. Applications of fractals in ecology. Tr.=
 Ecol. Evol. 5:79-86.

Sugihara, G., B. Grenfell, and R. M. May. 1990. Distinguishing error from c=
haos in ecological time series. Phil. Trans. Roy. Soc. Lond. Ser. B. 330:23=
5-51.

Talibuddin, S., and J. P. Runt. 1994. Reliability test of popular fractal t=
echniques applied to small two-dimesnional self-affine data sets. J. Appl. =
Phys. 76:5070-8.

Tatsumi, J. 1995. Fractal geometry in root systems: quantitative evaluation=
 of distribution pattern. Japanese Journal of Crop Science 64:50-7.

Tatsumi, J., A. Yamauchi, and Y. Kono. 1989. Fractal analysis of plant root=
 systems. Ann. Bot. 64:499-503.

Tracy, M., D. C. Freeman, J. M. Emlen, J. H. Graham, and R. A. Hough.  1995=
.  Developmental instability as a biomonitor of environmental stress, an il=
lustration using aquatic plants and macroalgae. Pages 313-337 in F. M. Butt=
erworth, editor. Biomonitors a
nd Biomarkers as Indicators of Environmental Change. Plenum Press, New York=
.

Tsonis, A. A., and P. A. Tsonis. 1987. Fractals: a new look at biological s=
hape and patterning. Pers. Biol. Med. 30:355-61.

Turchin, P. 1996. Fractal analysis of animal movement: a critique. Ecology =
77:2086-90.

Turcotte, D. L. 1995. Chaos, fractals, nonlinear phenomena in earth science=
s. Reviews of Geophysics Suppement:341-3.

Turner, M. G. 1987. Spatial simulation of landscape edges in Georgia: a com=
parison of 3 transition models. Landscape Ecol. 1:29-36.

Turner, M. G. 1989. Landscape Ecology: the effect of pattern on process. An=
n. Rev. Ecol. Syst. 20:171-97.

Turner, M. G. 1990. Spatial and temporal analysis of landscape patterns. La=
ndscape Ecol. 4:21-30.

Turner, M. G., and R. H. Gardner, editors.  1991.  Ecological Studies, 82: =
Quantitative Methods in Landscape Ecology. Springer-Verlag, Berlin.

Turner, M. G., R. Constanza, and F. H. Sklar. 1989a. Methods to evaluate th=
e performance of spatial simulation models. Ecol. Mod. 48:1-18.

Turner, M. G., R. H. Gardner, V. H. Dale, and R. V. O'Neill. 1989b. Predict=
ing the spread of disturbance across heterogeneous landscapes. Oikos 55:121=
-9.

Turner, S. J., R. V. O'Neill, W. Conley, M. R. Conley, and H. C. Humphries.=
  1991.  Pattern and Scale: Statistics for Landscape Ecology. Pages 17-49 i=
n M. G. Turner and R. H. Gardner, editors. Ecological Studies, 82: Quantita=
tive methods in landscape ecol
ogy. Springer-Verlag, Berlin.

Tyler, S. W., and S. W. Wheatcraft. 1989. Application of fractal mathematic=
s to soil water retention estimation. Soil Sci. Soc. Am. J. 53:987-96.

Unwin, D. 1989. Fractals and the geosciences: an introduction. Comp. Geosci=
. 15:163-5.

van Hees, W. W. S. 1994. A fractal model of vegetation complexity in Alaska=
. Landscape Ecol. 9:271-8.

Van Raan, A. F. J. 1990. Fractal dimension of co-citations. Nature 347:626.

Virkkala, R. 1993. Ranges of northern forest passerines: a fractal analysis=
. Oikos 67:218-26.

Vlcek, J., and E. Cheung. 1986. Fractal analysis of leaf shapes. Can. J. Fo=
r. Res. 16:124-7.

Voss, R. F.  1988.  Fractals in nature: from characterization to simulation=
. Pages 21-70 in H.-O. Peitgen and D. Saupe, editors. The science of fracta=
l images. Springer, New York.

Warner, W. S., and G. Fry. 1990. Evaluating small-format photogrammetry for=
 forest and wildlife surveys: Euclidean vs. fractal geometry. For. Ecol. Ma=
nage. 31:101-8.

Weiss, S. B., and D. D. Murphy. 1988. Fractal geometry and caterpillar disp=
ersal: or how many inches can an inchworm inch? Funct. Ecol. 2:116-8.

West, B. J. 1995. Fractal statistics in biology. Physica D 86:12-8.

West, B. J., and A. J. Goldberger. 1987. Physiology in fractal dimensions. =
Am. Sci. 75:354-66.

West, B. J., and M. Shlesinger. 1990. The noise in natural phenomena. Am. S=
ci. 78:40-5.

Whalley, W. B., and J. D. Orford. 1989. The use of fractals and pseudofract=
als in the analysis of two-dimensional outlines: review and further explora=
tion. Comp. Geosci. 15:185-97.

Wiegleb, G., W. Herr, and D. Todeskino. 1989. Ten years of vegetation dynam=
ics in two rivulets in Lower Saxony. Vegetatio 82:163-78.

Wiens, J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3:385-97.

Wiens, J. A., T. O. Crist, and B. T. Milne. 1993a. On quantifying insect mo=
vements. Environ. Ent. 22:709-15.

Wiens, J. A., N. C. Stenseth, B. Van Horne, and R. A. Ims. 1993b. Ecologica=
l mechanisms and landscape ecology. Oikos 66:360-80.

Wiens, J. A., T. O. Crist, K. A. With, and B. T. Milne. 1995. Fractal patte=
rns of insect movement in microlandscape mosaics. Ecology 76:663-6.

Williams, J. M., and T. R. Beebe Jr. 1993. Analysis of fractal surfaces usi=
ng scanning probe microscopy and multiple image variography. 2. Results on =
fractal and non-fractal surfaces, observation of fractal crossovers, and co=
mparison with other fractal te
chniques. J. Phys. Chem. 97:6255-60.

Williamson, M.  1988.  Relationship of species number to area, distance and=
 other variables. Pages 91-115 in A. A. Myers and P. S. Giller, editors. An=
alytical Biogeography. Chapman and Hall, New York.

Williamson, M. H., and J. H. Lawton.  1991.  Measuring habitat structure wi=
th fractal geometry. Pages 69-86 in S. Bells, E. D. McCoy and H. R. Mushins=
ky, editors. Habitat Structure. Chapman and Hall, London.

Wilson, J. B. 1991. Methods for fitting dominance/diversity curves. J. Veg.=
 Sci. 2:35-46.

With, K. A. 1994. Using fractal analysis to assess how species perceive lan=
dscape structure. Landscape Ecol. 9:25-36.

Xu, T., I. D. Moore, and J. C. Gallant. 1993. Fractals, fractal dimensions =
and landscapes - a review. Geomorphology 8:245-62.

Yfantis, E. A., G. T. Flatman, and E. J. Englund. 1988. Simulation of geolo=
gical surfaces using fractals. Math. Geol. 20:667-72.

Yokoya, N., K. Yamamoto, and N. Funakubo. 1989. Fractal-based analysis and =
interpolation of 3d natural surface shapes and their appliation to terrain =
modelling. Comp. Vis. Graph. Image Proc. 46:284-302.

Zeide, B. 1991. Fractal geometry in forestry applications. For. Ecol. Manag=
e. 46:179-88.

Zeide, B. 1993. Primary unit of the tree crown. Ecology 74:1598-602.

Zeide, B., and C. A. Gresham. 1991. Fractal dimensions of tree crowns in th=
ree loblolly pine plantations of coastal South Carolina. Can. J. For. Res. =
21:1208-12.

Zeide, B., and P. Pfeifer. 1991. A method for estimation of fractal dimensi=
on of tree crowns. For. Sci. 37:1253-65.

________________________________________
Mike Palmer, Ecologist
Department of Botany, Oklahoma State University
Stillwater, OK 74078 USA        carex@osuunx.ucc.okstate.edu
Office phone: 405-744-7717
FAX: 405-744-7074
________________________________________