Subject: Fractals & Ecology- References Sender: carex@osuunx.ucc.okstate.edu References on fractals in ecology and related subjects Mike Palmer - November 11 1996 Alados, C. L., J. M. Escos, and J. M. Emlen. 1996. Fractal structure of seq= uential behaviour patterns: an indicator of stress. Animal Behaviour 51:437= -43. Anderle, G. R., and R. Anderle. 1990. Fractal techniques and the surface ro= ughness of talus slopes: a comment. Earth Surf. Proc. Landf. 15:283-5. Anderson, A. N., and A. B. McBratney. 1995. Soil aggregates as mass fractal= s. Australian Journal of Soil Research 33:757-72. Anderle, R., and A. D. Abrahams. 1989. Fractal techniques and the surface r= oughness of talus slopes. Earth Surface Processes and Landforms 14:197-207. Anderle, R., and A. D. Abrahams. 1990. Fractal techniques and the surface r= oughness of talus slopes: a reply. Earth Surface Processes and Landforms 15= :283-5. Armstrong, A. C. 1986. On the fractal dimensions of some transient soil pro= perties. J. Soil Sci. 37:641-52. Aronson, R. B. 1992. Biology of a scale-independent predator-prey interacti= on. Mar. Ecol. Prog. Ser. 89:1-13. Baker, W. L. 1992. Effects of settlement and fire suppression on landscape = structure. Ecology 73:1879-87. Baker, W. L. 1993. Spatially heterogeneous multi-scale response of landscap= es to fire suppression. Oikos 66:66-71. Baker, W. L., S. L. Egbert, and G. F. Frazier. 1991. A spatial model for st= udying the effects of climatic change on the structure of landscapes subjec= t to large disturbances. Ecol. Mod. 56:109-25. Barrang=82, M., and B. Campos. 1991. Models of species abundance: a critiqu= e of and an alternative to the dynamics model. Mar. Ecol. Prog. Ser. 69:293= -8. Bartoli, F., R. Phillip, M. Doirisse, S. Niquet, and M. Dubuit. 1991. Struc= ture and self-similarity in silty and sandy soils: the fractal approach. J.= Soil Sci. 42:167-85. Bartoli, F., G. Burtin, R. Pilippy, and F. Gras. 1993. Influence of fir roo= t zone on soil structure in a 23 m forest transect: the fractal approach. G= eoderma 56:67-85. Bartoli, F., G. Burtin, J. J. Royer, M. Gury, V. Gomendy, R. Philippy, T. L= eviandier, and R. Gafrej. 1995. Spatial variability of topsoil characterist= ics within on silty soil type: effects on clay migration. Geoderma 68:279-3= 00. Bell, G., M. J. Lechowicz, A. Appenzeller, M. Chandler, E. DeBlois, L. Jack= son, B. Mackenzie, R. Preziosi, M. Schallenberg, and N. Tinker. 1993. The s= patial structure of the physical environment. Oecol. 96:114-21. Berger, D. S. 1991. Modification of a simple fractal tree growth scheme: im= plications on growth, variation, and evolution. J. Theor. Biol. 152:513-29. Berntson, G. M. 1994. Root systems and fractals: how reliable are calculati= ons of fractal dimensions? Ann. Bot. 73:281-4. Biondini, M. E., and C. E. Grygiel. 1994. Landscape distribution of organis= ms and the scaling of soil resources. Am. Nat. 143:1026-54. Bradbury, R. H., and R. E. Reichelt. 1983. Fractal dimension of a coral ree= f at ecological scales. Mar. Ecol. Prog. Ser. 10:169-71. Bradbury, R. H., R. E. Reichelt, and D. G. Green. 1984. Fractals in ecology= : methods and interpretation. Mar. Ecol. Prog. Ser. 14:295-6. Brown, C. A., P. D. Charles, W. A. Johnsen, and S. Chesters. 1993. Fractal = analysis of topographic data by the patchwork method. Wear 161:61-7. Burel, F. 1992. Effect of landscape structure and dynamics on species diver= sity in hedgerow networks. Landscape Ecol. 6:161-74. Burlando, B. 1990. The fractal dimension of taxonomic systems. J. Theor. Bi= ol. 146:99-114. Burrough, P. A. 1981. Fractal dimensions of landscapes and other environmen= tal data. Nature 294:240-2. Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil. I. = application of fractal concepts to nested levels of soil variations. J. Soi= l Sci. 34:577-97. Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil. II.= A non-Brownian fractal model and its application in soil survey. J. Soil S= ci. 34:599-620. Burrough, P. A. 1985. Fakes, facsimiles and facts: fractal models of geop= hysical phenomena. Pages 151-169 in S. Nash, ed. Science and Uncertainty. I= BM/Science Reviews Limited. Carlson, C. 1991. Spatial distribution of ore deposits. Geol. 19:111-4. Carr, J. 1990. Surface roughness characterization of rock masses using th= e fractal dimension and the variogram. Volume Technical Report REMR-GT11. U= S Army Waterways Experimental Station, Vicksburg, MS. Carr, J. R., and W. B. Benzer. 1991. On the practice of estimating fractal = dimension. Math. Geol. 23:945-58. Chang, W., J. W. Biggar, and D. R. Nielsen. 1994. Fractal description of we= tting front instability in layered soils. Water Resources Research 30:125-3= 2. Cheng, Q., and F. P. Agterberg. 1995. Multifractal modeling and spatial poi= nt processes. Math. Geol. 27:831-45. Clarke, K. C. 1986. Computation of the fractal dimension of topographic sur= faces using the triangular prism surface area method. Comp. Geosci. 12:713-= 22. Cole, B. J. 1995. fractal time in animal behaviour: the movement activity o= f Drosophila. Anim. Behav. 50:1317-24. Collins, S. L., S. M. Glenn, and D. W. Roberts. 1993. The hierarchical cont= inuum concept. J. Veg. Sci. 4:149-56. Constanza, R., and T. Maxwell. 1994. Resolution and predictability: an appr= oach to the scaling problem. Landscape Ecol. 9:47-57. Constanza, R., L. Wainger, C. Folke, and K.-G. M=84ler. 1993. Modeling comp= lex ecological economic systems. BioSci. 43:545-55. Cressie, N. A. C. 1991. Statistics for spatial data. Wiley Interscience, = New York. Culling, W. E. H. 1986. Highly erratic spatial variability of soil - pH on = Iping Common, West Sussex. Catena 13:81-98. Culling, W. E. H., and M. Datko. 1987. The fractal geometry of the soil-cov= ered landscape. Earth Surface Processes and Landforms 19:369-85. Culver, D. C., and D. W. Fong. 1994. Small scale and large scale biogeograp= hy of subterranean crustacean faunas of the Virginias. Hydrobiol. 287:3-9. Dale, M. R. T., and M. W. Zbigniewicz. 1995. The evalution of multi-species= pattern. J. Veg. Sci. 6:391-8. De Cola, L. 1989. Fractal analysis of a classified Landsat scene. Photo. En= gin. Rem. Sens. 55:601-10. de Jong, S. M. 1993. An application of spatial filtering techniques for lan= d cover mapping using TM-images. Geocarto International 8:43-9. de Jong, S. M., and P. A. Burrough. 1995. A fractal approach to the classif= ication of mediterranean vegetation types in remotely sensed images. Photo.= Engin. Rem. Sens. 61:1041-53. Dewdney, A. K. 1985. Computer recreations: A computer microscope zooms in f= or a look at the most complex object in mathematics. Sci. Am. 1985:16-23. Dicke, M., and P. A. Burrough. 1988. Using fractal dimensions for character= izing tortuosity of animal trails. Physiol. Entomol. 13:393-8. Dubuc, B., J. F. Quiniou, C. Roques-Carnes, C. Tricot, and S. W. Zucker. 19= 89. Evaluating the fractal dimension of profiles. Phys. Rev. A, 39:1500-12. Durrett, R., and S. A. Levin. 1994. Stochastic spatial models: a user's gui= de to ecological applications. Phil. Trans. Roy. Soc. Lond. Ser. B. 343:329= -50. Dutch, S. I. 1993. Linear Richardson plots from non-fractal data sets. Math= . Geol. 25:737-51. Eghball, B., and J. F. Power. 1995. Fractal description of temporal yield v= ariability of 10 crops in the United States. Agron. J. 87:152-6. Eghball, B., G. D. Binford, J. F. Power, D. D. Baltensperger, and F. N. And= erson. 1995. Maize temporal yield variability under long-term manure and fe= rtilizer application: fractal analysis. Soil Sci. Soc. Am. J. 59:1360-4. Elliot, J. K. 1989. An investigation of the change in surface roughness thr= ough time on the foreland of Austre Okstindbreen, North Norway. Comp. Geosc= i. 15:209-17. Emlen, J. M., D. C. Freeman, and J. H. Graham. 1993. Nonlinear growth dynam= ics and the origin of fluctuating assymetry. Genetica 89:77-96. Feder, J. 1988. Fractals. Plenum Press, New York. Fisher, J. B. 1992. How predictive are computer simulations of tree archite= cture? Int. J. Plant Sci. 153:s137-46. Fitter, A. H., and T. R. Stickland. 1992. Fractal characterization of root = system architecture. Funct. Ecol. 6:632-5. Fitter, A. H., and T. R. Strickland. 1992. Fractal characterization of root= system architecture. Funct. Ecol. 6:632-5. Flather, C. H., and J. R. Sauer. 1996. Using landscape ecology to test hypo= theses about large-scale abundance patterns in migratory birds. Ecology 77:= 28-35. Folorunso, O. A., C. E. Puente, D. E. Rolston, and J. E. Pinzon. 1994. Stat= istical and fractal evaluation of spatial characteristics of soil surface s= trength. Soil Science Society of America Journal 58:284-94. Fourcassie, V., V. D. Coughlin, and J. F. A. Traniello. 1992. Fractal analy= sis of search behavior in ants. Naturwissenschaften 79:87-9. Fox, C. G., and D. E. Hayes. 1985. Quantitative methods for analyzing the r= oughness of the seafloor. Rev. Geophys. 23:1-48. Freeman, D. C., J. H. Graham, and J. M. Emlen. 1993. Developmental stabilit= y in plants: symmetries, stress and epigenesis. Genetica 89:97-119. Frontier, S. 1985. Diversity and structure in aquatic ecosystems. Oceanogr.= Mar. Biol. Ann. Rev. 23:253-312. Frontier, S. 1987. Applications of fractal theory to ecology. Pages 335-3= 78 in P. Legendre and L. Legendre, editors. Developments in Numerical Ecolo= gy. Springer-Verlag, Berlin. Gallant, J. C., I. D. Moore, M. F. Hutchinson, and P. Gessler. 1994. Estima= ting fractal dimension of profiles: a comparison of methods. Math. Geol. 26= :455-81. Garc=A1a-Ruiz, J. M., and F. Ot=A0lora. 1992. Fractal trees and Horton's la= ws. Math. Geol. 24:61-71. Gardner, R. H., and R. V. O'Neill. 1991. Pattern, Process, and Predictabi= lity: The Use of Neutral Models for Landscape Analysis. Pages 289-307 in M.= G. Turner and R. H. Gardner, editors. Ecological Studies, 82: Quantitative= methods in landscape ecology. Springer-Verlag, Berlin. Gardner, R. H., B. T. Milne, M. G. Turner, and R. V. O'Neill. 1987. Neutral= models for the analysis of broad-scale landscape pattern. Landscape Ecol. = 1:19-28. Gaston, K. J. 1994. Rarity. Chapman and Hall, London. Gautestad, A. O., and I. Mysterud. 1993. Physical and biological mechanisms= in animal movement processes. J. Appl. Ecol. 30:523-35. Gautestad, A. O., and I. Mysterud. 1994. Fractal analysis of population ran= ges: methodological problems and challenges. Oikos 69:154-7. Gee, J. M., and R. M. Warwick. 1994. Metazoan community structure in relati= on to the fractal dimensions of marine macroalgae. Mar. Ecol. Prog. Ser. 10= 3:141-50. Gilbert, L. E. 1989. Are topographic data sets fractal? Pure and Applied Ge= ophysics 131:241-54. Glenn, S. M., and S. L. Collins. 1990. Patch structure in tallgrass prairie= s: dynamics of satellite species. Oikos 57:229-36. Goodchild, M. F. 1980. Fractals and the accuracy of geographical measures. = Math. Geol. 12:85-98. Goodchild, M. F. 1988. Lakes on fractal surfaces: a null hypothesis for lak= e-rich landscapes. Math. Geol. 20:615-30. Goodchild, M. F., and D. M. Mark. 1987. The fractal nature of geographic ph= enomena. Ann. Assoc. Amer. Geogr. 77:265-78. Graham, J. H., D. C. Freeman, and J. M. Emlen. 1993a. Antisymmetry, directi= onal asymmetry, and dynamic morphogenesis. Genetica 89:121-37. Graham, J. H., D. C. Freeman, and J. M. Emlen. 1993b. Developmental stabi= lity: a sensitive indicator of populations under stress. Pages 136-158 in W= . G. Landis, J. S. Hughes and M. A. Lewis, editors. Environmental Toxicolog= y and Risk Assessment. America n Society of Testing and Materials, Philadelphia. Green, D. M. 1991. Chaos, fractals and nonlinear dynamics in evolution and = phylogeny. Tr. Ecol. Evol. 6:333-7. Gregotsky, M. E., O. Jensen, and J. Arkani-Hamed. 1991. Fractal stochastic = modeling of aeromagnetic data. Geophys. 56:1706-15. Gunnarsson, B. 1992. Fractal dimension of plants and body size distribution= in spiders. Funct. Ecol. 6:636-41. Gustafson, E. J., and G. R. Parker. 1992. Relationships between landcover p= roportion and indices of landscape spatial pattern. Landscape Ecol. 7:101-1= 0. Gutierrez, E. 1989. Temporal properties of some biological systems and thei= r fractal attractors. Bull. Math. Biol. 51:785-800. Hall, P., and A. Wood. 1993. On the performance of box-counting estimators = of fractal dimension. Biometrika 80:246-52. Hallet, B. 1989. Spatial self organization in geomorphology: from periodic = bedforms and patterned grounds to scale-invariant topography. Earth Sci. Ea= rth Science Reviews 29:57-75. Haslett, J. R. 1994. Community structure and the fractal dimensions of moun= tian habitats. J. Theor. Biol. 167:407-11. Hastings, A. 1993. Complex interactions between dispersal and dynamics: les= sons from coupled logistic equations. Ecology 74:1362-72. Hastings, H. M., R. Pekelney, R. Monticciolo, D. V. Kannon, and D. Del Mont= e. 1982. Time scales, persistence and patchiness. BioSyst. 15:281-9. Hatano, R., N. Kawamura, J. Ikeda, and T. Sakuma. 1992. Evaluation of the e= ffect of morphological features of flow paths on solute transport using fra= ctal dimensions of methylene blue staining pattern. Geoderma 53:31-44. Hayward, J., J. D. Orford, and W. B. Whalley. 1989. Three implementations o= f fractal analysis of particle outlines. Comp. Geosci. 15:199-207. Hegde, S. G., R. Lokesha, and K. N. Ganeshaiah. 1991. Seed size distributio= n in plants: an explanation based on fractal geometry. Oikos 62:100-1. Hengeveld, R. 1990. Cambridge studies in ecology: Dynamic biogeography. C= ambridge University Press, Cambridge. Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecos= ystems. Ecol. Mon. 62:447-502. Hough, S. E. 1989. On the use of spectral methods for the determination of = fractal dimension. Geophys. Res. Let. 16:673-6. Hunsaker, C. T., rv O'Neill, B. L. Jackson, S. P. Timmins, D. A. Levine, an= d D. J. Norton. 1994. Sampling to characterize landscape pattern. Landscape= Ecol. 9:207-26. Ijjasz-Vasquez, E. J., R. L. Bras, and I. Rodriguez-Iturbe. 1994. Self-affi= ne scaling of fractal river courses and basin boundaries. Physica A 209:288= -300. Jaggi, S., D. A. Quatrochi, and N. S.-N. Nam. 1993. Implementation and oper= ation of three fractal measurement algorithms for analysis of remote-sensin= g data. Comp. Geosci. 19:745-67. Jeffries, M. 1993. Invertebrate colonization of artificial pondweeds of dif= fering fractal dimension. Oikos 67:142-8. Johnson, A. R., B. T. Milne, and J. A. Wiens. 1992a. Diffusion in fractal l= andscapes: simulations and experimental studies of tenebrionid beetle movem= ents. Ecology 73:1968-83. Johnson, A. R., J. A. Wiens, B. T. Milne, and T. O. Crist. 1992b. Animal mo= vements and population dynamics in heterogeneous landscapes. Landscape Ecol= . 7:63-75. Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren, editors. = 1987. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen= , The Netherlands. J=81rgens, H., H.-O. Peitgen, and D. Saupe. 1990. The Language of Fractals.= Sci. Am. 263:60-7. Kampichler, C. 1995. Biomass distribution of a microarthropod community in = spruce forest soil. Biol. Fert. Soils 19:263-5. Kampichler, C., and M. Hauser. 1993. Roughness of soil pore surface and its= effect on available habitat space of microarthopods. Geoderma 56:223-32. Katz, M. J., and E. B. George. 1987. Fractals and the Analysis of growth pa= tterns. Bull. Math. Biol. 47:273-86. Keitt, T. H., and A. R. Johnson. 1995. Spatial heterogeneity and anomalous = kinetics: emergent patterns in diffusion-limited predator-prey interaction.= J. Theor. Biol. 172:127-39. Kenkel, N. C., and D. J. Walker. 1993. Fractals and ecology. Abstr. Bot. 17= :53-70. Kent, M., and P. Coker. 1992. Vegetation description and analysis: a prac= tical approach. Belhaven Press, London. Kergosien, Y. L. 1990. Adaptive ramification: comparing models for biologic= al, economical, and conceptual organization. Acta Biotheor. 38:243-55. Klinkenberg, B. 1994a. A fractal analysis of shadowed and sunlit areas. Int= . J. Remote Sensing 15:967-77. Klinkenberg, B. 1994b. A review of methods used to determine the fractal di= mension of linear features. Math. Geol. 26:23-46. Klinkenberg, B., and M. Goodchild. 1992. The fractal properties of topograp= hy: a comparison of methods. Earth Processes and Landforms 17:217-34. Knick, S. T., and J. T. Rotenberry. 1994. Landscape characteristics of frag= mented shrubsteppe habitats and breeding passerine birds. Cons. Bio. 9:1059= -71. Kolasa, J., and S. T. A. Pickett, editors. 1991. Ecological Studies, 86: = Ecological Heterogeneity. Springer-Verlag, Berlin. Kolasa, J., and C. D. Rollo. 1991. Introduction: The heterogeneity of het= erogeneity: a glossary. Pages 1-23 in J. Kolasa and S. T. A. Pickett, edito= rs. Ecological Studies, 86: Ecological Heterogeneity. Springer-Verlag, Berl= in. Korvin, G. 1992. Fractal models in earth science. Elsevier, New York. Els= evier, New York. Krummel, J. R., R. H. Gardner, G. Sugihara, R. V. O'Neill, and P. R. Colema= n. 1987. Landscape patterns in a disturbed environment. Oikos 48:321-4. Lacaze, B., S. Rambal, and T. Winkel. 1994. Identifying spatial patterns of= Mediterranean landscapes from geostatistical analysis of remotely-sensed d= ata. Int. J. Remote Sensing 15:2437-50. LaGro, J., Jr. 1991. Assessing patch shape in landscape mosaics. Photo. Eng= in. Rem. Sens. 57:285-93. Lam, N. S.-N. 1990. Description and measurement of landsat TM images using = fractals. Photo. Engin. Rem. Sens. 56:187-95. Lam, N. S., and D. A. Quattrochi. 1992. On the issues of scale, resolution,= and fractal analysis in the mapping sciences. Prof. Geogr. 44:88-98. Lathrop, R. J., and D. L. Peterson. 1992. Identifying self-similarity in mo= untainous landscapes. Landscape Ecol. 6:233-8. Lauwerier, H. 1991. Fractals: Endlessly Repeated Geometrical Figures. Pri= nceton University Press, Princeton, New Jersey, Translated by S. Gill-Hoffs= t=84dt. Lawton, J. H. 1986. Surface availability and insect community structure: = the effects of architecture and fractal dimension of plants. Pages 317-331 = in B. E. Juniper and T. R. E. Southwood, editors. Insects and the plant sur= face. Edward Arnold, London. Leduc, A., Y. T. Prairie, and Y. Bergeron. 1994. Fractal dimension estimate= s of a fragmented landscape: sources of variability. Landscape Ecol. 9:279-= 86. Leopold, L. B., and W. B. Langbein. 1962. The concept of entropy in landsca= pe evolution. Geol. Surv. Prof. Paper 500-A:1-20. Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:= 1943-83. Li, H., and J. F. Reynolds. 1994. A simulation experiment to quantify spati= al heterogeneity in categorical maps. Ecology 75:2446-55. Li, X., and B. E. Logan. 1995. Size distributions and fractal properties of= particles during a simulated phytoplankton bloom in a mesocosm. Deep-Sea R= es. 42:125-38. Lipitz, L. A., and A. L. Goldberger. 1992. Loss of 'complexity' and aging. = J.A.M.A. 267:1806-9. Loehle, C. 1983. The fractal dimension and ecology. Spec. Sci. Tech. 6:131-= 42. Loehle, C., and B.-L. Li. 1996. Statistical properties of ecological and ge= ologic fractals. Ecol. Mod. 85:271-84. Loehle, C., and G. Wein. 1994. Landscape habitat diversity: a multiscale in= formation theory approach. Ecol. Mod. 73:311-29. Long, C. A. 1994. Leonardo da Vinci's Rule and fractal complexity in dichot= omous trees. J. Theor. Biol. 167:107-13. Longley, P. A., and M. Batty. 1989a. Fractal measurement and line generaliz= ation. Comp. Geosci. 15:167-83. Longley, P. A., and M. Batty. 1989b. On the fractal measurement of geograph= ical boundaries. Geogr. Anal. 21:47-67. Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science= 216:185-7. Malinverno, A. 1989. Testing linear models of sea-floor topography. Pure an= d Applied Geophysics 131:139-55. Malinverno, A. 1990. A simple method to estimate the fractal dimension of a= self-affine series. Geophys. Res. Let. 17:1953-6. Mandelbrot, B. B. 1983. The fractal geometry of nature. Freeman, San Fran= cisco. Mandelbrot, B. 1986. Self-affine fractal sets. II. Length and surface dim= ensions. Pages 3-15 in L. Pietronero and E. Tosatti, editors. Fractals in P= hysics. North-Holland, Amsterdam. Manrubia, S. C., and R. V. Sole. 1996. Self organized criticality in rainfo= rest dynamics. Chaos Solitons and Fractals 7:523-41. Mark, D. M. 1984. Fractal dimension of a coral reef at ecological scales: a= discussion. Mar. Ecol. Prog. Ser. 14:293-4. Mark, D., and P. Aronson. 1984. Scale-dependent fractal dimensions of topog= raphic surfaces: an empirical investigation, with applications on geomorpho= logy and computer mapping. Math. Geol. 16:671-83. Maurer, B. A. 1994. Geographic population analysis: tools for the analysi= s of biodiversity. Blackwell Scientific Publications, Oxford. Maurer, B. A., and S. G. Heywood. 1993. Geographic range fragmentation and = abundance in neotropical migratory birds. Cons. Bio. 7:501-9. May, R. M. 1986. The search for patterns in the balance of nature: advances= and retreats. Ecology 67:1115-26. May, R. M. 1988. How many species are there on Earth? Science 241:1441-9. McIntosh, R. P. 1991. Concept and terminology of homogeneity and heteroge= neity in ecology. Pages 24-46 in J. Kolasa and S. T. A. Pickett, editors. E= cological Studies, 86: Ecological Heterogeneity. Springer-Verlag, Berlin. McRobert, L. 1995. On fractal thought: Derrida, Hegel, and Chaos science. H= istory of European Ideas 20:815-21. Milne, B. T. 1988. Measuring the fractal geometry of landscapes. Appl. Math= . Comp. 27:67-79. Milne, B. T. 1991a. Heterogeneity as a multiscale characteristic of lands= capes. Pages 69-84 in J. Kolasa and S. T. A. Pickett, editors. Ecological S= tudies, 86: Ecological Heterogeneity. Springer-Verlag, Berlin. Milne, B. T. 1991b. Lessons from applying fractal models to landscape pat= terns. Pages 199-235 in M. G. Turner and R. H. Gardner, editors. Ecological= Studies, 82: Quantitative methods in landscape ecology. Springer-Verlag, B= erlin. Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landsc= apes. Am. Nat. 139:32-57. Milne, B. T., K. M. Johnston, and R. T. T. Forman. 1989. Scale-dependent pr= oximity of wildlife habitat in a spatially-neutral Bayesian model. Landscap= e Ecol. 2:101-10. Milne, B. T., M. G. Turner, J. A. Wiens, and A. R. Johnson. 1992. Interacti= ons between the fractal geometry of landscapes and allometric herbivory. Th= eor. Popul. Biol. 41:337-53. Milne, B. T., A. R. Johnson, T. H. Keitt, C. A. Hatfield, J. David, and P. = T. Hraber. 1996. Detection of critical densities associated with pi=A4on-ju= niper woodland ecotones. Ecology 77:805-21. Mladenoff, D. J., M. A. White, J. Pastor, and T. R. Crow. 1993. Comparing s= patial pattern in unaltered old-growth and disturbed forest landcapes. Ecol= . Appl. 3:294-306. Molofsky, J., and C. K. Augspurger. 1992. The effect of leaf litter on earl= y seedling establishment in a tropical forest. Ecology 73:68-77. Moloney, K. A., and S. A. Levin. 1996. The effects of disturbance architect= ure on landscape-level population dynamics. Ecology 77:77. Morelli, R. A., R. E. Walde, E. Akstin, and C. W. Schneider. 1991. L-System= representation of speciation in the red algal genus dipterosiphonia (Ceram= iales, Rhodomelaceae). J. Theor. Biol. 149:453-65. Morse, D. R., J. H. Lawton, M. M. Dodson, and M. H. Williamson. 1985. Fract= al dimension of vegetation and the distribution of arthropod body lengths. = Nature 314:731. Nellemann, C., and G. Fry. 1995. Quantitative analysis of terrain ruggednes= s in reindeer winter grounds. Arctic 48:172-6. Noordwijk, M. V., and P. Purnomoshidi. 1995. Root architecture in relation = to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofores= try Systems 30:161-73. North, C. P., and D. I. Halliwell. 1994. Bias in estimating fractal dimensi= on with the rescaled-range (R/S) technique. Math. Geol. 26:531-55. Ogata, Y., and K. Katsura. 1991. Maximum likelihood estimates of the fracta= l dimension for random spatial patterns. Biometrika 78:463-74. Ohdan, H., H. Daimon, and H. Mimoto. 1995. Evaluation of allelopathy in Cro= talaria by using a seed pack growth pouch. Japanese Journal of Crop Science= 64:644-9. Oldeman, R. A. A. 1992. Architectural models, fractals and agroforestry des= ign. Agric. Ecosyst. Environ. 41:179-88. Olsen, E. R. 1993. A modified fractal dimension as a measure of landscape d= iversity. Photo. Engin. Rem. Sens. 59:1517-20. O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner, and B. Jackson. = 1991. Heterogeneity and spatial hierarchies. Pages 85-96 in J. Kolasa and = S. T. A. Pickett, editors. Ecological Studies, 86: Ecological Heterogeneity= . Springer-Verlag, Berlin. Osawa, A. 1995. Inverse relationship of crown fractal dimension to self-thi= nning exponent of tree populations: a hypothesis. Can. J. For. Res. 25:1608= -17. Ouchi, S., and M. Matsushita. 1992. Measurement of self-affinity on surface= s as a trial application of fractal geometry to landform analysis. Geomorph= ology 5:115-30. Pachepsky, Y. A., T. A. Polubesova, M. Hajnos, G. Jozefaciuk, and Z. Sokolo= wska. 1995. Fractal parameters of pore surface area as influenced by simula= ted soil degradation. Soil Sci. Soc. Am. J. 59:68-75. Pag=8As, L., and J. Kervella. 1990. Growth and development of root systems:= geometrical and structural aspects. Acta Biotheor. 38:289-302. Painter, S. 1995. Random fractal models of heterogeneity: The Levy-Stable a= pproach. Math. Geol. 27:813-30. Painter, S., and L. Paterson. 1994. Fractional Levy motion as a model for s= patial variability of sedimentary rocks. Geophys. Res. Let. 21:2597-860. Palmer, M. W. 1988. Fractal Geometry: a tool for describing spatial pattern= s of plant communities. Vegetatio 75:91-102. Palmer, M. W. 1990a. Spatial scale and patterns of species-environment rela= tionships in hardwood forests of the North Carolina piedmont. Coenoses 5:79= -87. Palmer, M. W. 1990b. Spatial scale and patterns of vegetation, flora and sp= ecies richness in hardwood forests of the North Carolina piedmont. Coenoses= 5:89-96. Palmer, M. W. 1992. The coexistence of species in fractal landscapes. Am. N= at. 139:375-97. Palmer, M. W. 1995. How should one count species? Nat. Areas J. 15:124-35. Palmer, M. W., and P. S. White. 1994. Scale dependence and the species-area= relationship. Am. Nat. 144:717-40. Pennycuick, C. J., and N. C. Kline. 1986. Units of measurement for fractal = extent, applied to the coastal distribution of bald eagle nests in the Aleu= tian Islands, Alaska. Oecol. 68:254-8. Pentland, A. P. 1985. Fractal based description of natural scenes. IEEE Tra= ns. Pat. Anal. Mach. Intell. 6:661-74. Perfect, E., and B. D. Day. 1991. Fractal theory applied to soil aggregatio= n. Soil Sci. Soc. Am. J. 55:1552-8. Perfect, E., and B. D. Kay. 1995. Application of fractals in soil and tilla= ge research: a review. Soil and Tillage Research 36:1-20. Perfect, E., N. B. McLaughlin, B. D. Kay, and G. C. Topp. 1996. An improved= fractal equation for soil water retention curve. Water Resources Research = 32:281-7. Perrier, E., C. Muloon, and M. Rieu. 1995. Computer construction of fractal= soil structure: Simulation of their hydraulic and shrinkage properties. Wa= ter Resources Research 31:2927-43. Petigen, H. O., and D. Saupe, editors. 1988. The Science of Fractal Image= s. Springer-Verlag, New York. Pfeifer, P., and M. Obert. 1990. Fractals: Basic concepts and terminology= . Pages 11-43 in D. Avnir, editor. The fractal approach to heterogeneous ch= emistry. Wiley, New York. Phillips, J. D. 1985. Measuring complexity of environmental gradients. Vege= tatio 64:95-102. Pignatti, S. 1996. Some notes on complexity in vegetation. J. Veg. Sci. 7:7= -12. Polidori, L., J. Chorowicz, and R. Guillande. 1991a. Description of terrain= as a fractal surface, and application to digital elevation model quality a= ssessment. Photo. Engin. Rem. Sens. 57:1329-32. Polidori, L., J. Chorowicz, and R. Guillande. 1991b. Description of the pro= perty of self-similarity is called self-affinity for vertical terrain as a = fractal surface, and application to digital elevation profiles or for terra= in surface itself: Model quali ty assessment. Photo. Engin. Rem. Sens. 57:1329-32. Prusinkiewicz, P., and A. Lindenmayer. 1990. The algorithmic beauty of pl= ants. Springer-Verlag, Berlin. Rasiah, V., and V. O. Biederbeck. 1995. Fractal dimension of soil aggregate= s: influence of bulk density, fitting procedure, and oily waste sludge inco= rporation. Soil Sci. 160:250-5. Rawls, W. J., and D. L. Brakensiek. 1995. Utilizing fractal principles for = predicting soil hydraulic properties. J. Soil Water Conserv. 50:463-5. Rawls, W. J., D. L. Brakensiek, and S. D. Logsdon. 1992. Predicting saturat= ed hydraulic conductivity utilizing fractal principles. Soil Science Societ= y of America Journal 57:1193-7. Reed, R. A., M. W. Palmer, R. K. Peet, and P. S. White. 1993. Scale depende= nce of vegetation-environment correlations: a case study of a North Carolin= a piedmont woodland. J. Veg. Sci. 4:329-40. Rees, D., and J.-P. Miller. 1990. Surface roughness estimation using frac= tal variogram analysis. in Proceedings of the International Geoscience and = Remote Sensing Symposium. IGARSS, College Park, Maryland. Reeve, R. 1992. A warning about standard errors when estimating the fractal= dimension. Comp. Geosci. 18:89-91. Rieu, M., and G. Sposito. 1991. Fractal fragmentation, soil porosity, and s= oil water properties. I. Theory. Soil Science Society of America Journal 51= :1231-8. Roach, D. E., and A. D. Fowler. 1993. Dimensionality analysis of patterns: = fractal measurements. Comp. Geosci. 19:849-69. Robert, A. 1991. Fractal Properties of simulatied bed profiles in coarse-gr= ained channels. Math. Geol. 23:367-82. Robert, A., and A. Roy. 1990. On the fractal interpretation of the mainstre= am length-drainage area relationship. Water Resources Res. 26:839-42. Roy, A., and A. Robert. 1990. Fractal techniques and the surface roughness = of Talus slopes: a comment. Earth Surf. Proc. Landf. 15:283-5. Russ, J. C. 1994. Fractal surfaces. Plenum Press, New York. Sander, L. M. 1986. Fractal growth processes. Nature 322:789-93. Sarnelle, O., K. W. Kratz, and S. D. Cooper. 1993. Effects of an invertebra= te grazer on the spatial arrangement of a benthic microhabitat. Oecol. 96:2= 08-18. Saupe, D. 1988. Algorithms for random fractals. Pages 71-113 in H.-O. Pet= igen and D. Saupe, editors. The Science of Fractal Images. Springer-Verlag,= New York. Scheuring, I. 1991. The fractal nature of vegetation and the species-area r= elation. Theor. Popul. Biol. 39:170-7. Scheuring, I. 1993. Multifractality: a new concept in vegetation science. A= bstr. Bot. 17:71-7. Scheuring, I., and R. H. Riedi. 1994. Application of multifractals to the a= nalysis of vegetation patterns. J. Veg. Sci. 5:489-96. Schumaker, N. H. 1996. Using landscape indices to predict habitat connectiv= ity. Ecology 77:1210-25. Shepard, M. K., R. A. Brackett, and R. E. Arvidson. 1995. Self-affine (frac= tal) topography: Surface parameterization and radar scattering. J. Geophys.= Res. 100:11709-18. Shorrocks, B., J. Marsters, I. Ward, and P. H. Evennett. 1991. The fractal = dimension of lichens and the distribution of arthropod body lengths. Funct.= Ecol. 5:457-60. Simberloff, D., P. Berthet, V. Boy, S. H. Cousins, M.-J. Fortin, R. Goldbur= g, L. P. Lefkovitch, B. Ripley, B. Scherrer, and D. Tonkyn. 1987. Novel s= tatistical analyses in terrestrial animal ecology: dirty data and clean que= stions. Pages 559-572 in P. Le gendre and L. Legendre, editors. Developments in Numerical Ecology. Springe= r-Verlag, Berlin. Sole, R. V., and S. C. Manrubia. 1995a. Are rainforests self-organized in a= critical state? J. Theor. Biol. 173:31-40. Sole, R. V., and S. C. Manrubia. 1995b. Self-similarity in rain forests: Ev= idence for a critical state. Phys. Rev. E 51:6250-3. Stoyan, D., and H. Stoyan. 1994. Wiley Series in Probability and Mathemat= ical Statistics: Fractals, random shapes and point fields. John Wiley and S= ons, New York. Sugihara, G., and R. M. May. 1990. Applications of fractals in ecology. Tr.= Ecol. Evol. 5:79-86. Sugihara, G., B. Grenfell, and R. M. May. 1990. Distinguishing error from c= haos in ecological time series. Phil. Trans. Roy. Soc. Lond. Ser. B. 330:23= 5-51. Talibuddin, S., and J. P. Runt. 1994. Reliability test of popular fractal t= echniques applied to small two-dimesnional self-affine data sets. J. Appl. = Phys. 76:5070-8. Tatsumi, J. 1995. Fractal geometry in root systems: quantitative evaluation= of distribution pattern. Japanese Journal of Crop Science 64:50-7. Tatsumi, J., A. Yamauchi, and Y. Kono. 1989. Fractal analysis of plant root= systems. Ann. Bot. 64:499-503. Tracy, M., D. C. Freeman, J. M. Emlen, J. H. Graham, and R. A. Hough. 1995= . Developmental instability as a biomonitor of environmental stress, an il= lustration using aquatic plants and macroalgae. Pages 313-337 in F. M. Butt= erworth, editor. Biomonitors a nd Biomarkers as Indicators of Environmental Change. Plenum Press, New York= . Tsonis, A. A., and P. A. Tsonis. 1987. Fractals: a new look at biological s= hape and patterning. Pers. Biol. Med. 30:355-61. Turchin, P. 1996. Fractal analysis of animal movement: a critique. Ecology = 77:2086-90. Turcotte, D. L. 1995. Chaos, fractals, nonlinear phenomena in earth science= s. Reviews of Geophysics Suppement:341-3. Turner, M. G. 1987. Spatial simulation of landscape edges in Georgia: a com= parison of 3 transition models. Landscape Ecol. 1:29-36. Turner, M. G. 1989. Landscape Ecology: the effect of pattern on process. An= n. Rev. Ecol. Syst. 20:171-97. Turner, M. G. 1990. Spatial and temporal analysis of landscape patterns. La= ndscape Ecol. 4:21-30. Turner, M. G., and R. H. Gardner, editors. 1991. Ecological Studies, 82: = Quantitative Methods in Landscape Ecology. Springer-Verlag, Berlin. Turner, M. G., R. Constanza, and F. H. Sklar. 1989a. Methods to evaluate th= e performance of spatial simulation models. Ecol. Mod. 48:1-18. Turner, M. G., R. H. Gardner, V. H. Dale, and R. V. O'Neill. 1989b. Predict= ing the spread of disturbance across heterogeneous landscapes. Oikos 55:121= -9. Turner, S. J., R. V. O'Neill, W. Conley, M. R. Conley, and H. C. Humphries.= 1991. Pattern and Scale: Statistics for Landscape Ecology. Pages 17-49 i= n M. G. Turner and R. H. Gardner, editors. Ecological Studies, 82: Quantita= tive methods in landscape ecol ogy. Springer-Verlag, Berlin. Tyler, S. W., and S. W. Wheatcraft. 1989. Application of fractal mathematic= s to soil water retention estimation. Soil Sci. Soc. Am. J. 53:987-96. Unwin, D. 1989. Fractals and the geosciences: an introduction. Comp. Geosci= . 15:163-5. van Hees, W. W. S. 1994. A fractal model of vegetation complexity in Alaska= . Landscape Ecol. 9:271-8. Van Raan, A. F. J. 1990. Fractal dimension of co-citations. Nature 347:626. Virkkala, R. 1993. Ranges of northern forest passerines: a fractal analysis= . Oikos 67:218-26. Vlcek, J., and E. Cheung. 1986. Fractal analysis of leaf shapes. Can. J. Fo= r. Res. 16:124-7. Voss, R. F. 1988. Fractals in nature: from characterization to simulation= . Pages 21-70 in H.-O. Peitgen and D. Saupe, editors. The science of fracta= l images. Springer, New York. Warner, W. S., and G. Fry. 1990. Evaluating small-format photogrammetry for= forest and wildlife surveys: Euclidean vs. fractal geometry. For. Ecol. Ma= nage. 31:101-8. Weiss, S. B., and D. D. Murphy. 1988. Fractal geometry and caterpillar disp= ersal: or how many inches can an inchworm inch? Funct. Ecol. 2:116-8. West, B. J. 1995. Fractal statistics in biology. Physica D 86:12-8. West, B. J., and A. J. Goldberger. 1987. Physiology in fractal dimensions. = Am. Sci. 75:354-66. West, B. J., and M. Shlesinger. 1990. The noise in natural phenomena. Am. S= ci. 78:40-5. Whalley, W. B., and J. D. Orford. 1989. The use of fractals and pseudofract= als in the analysis of two-dimensional outlines: review and further explora= tion. Comp. Geosci. 15:185-97. Wiegleb, G., W. Herr, and D. Todeskino. 1989. Ten years of vegetation dynam= ics in two rivulets in Lower Saxony. Vegetatio 82:163-78. Wiens, J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3:385-97. Wiens, J. A., T. O. Crist, and B. T. Milne. 1993a. On quantifying insect mo= vements. Environ. Ent. 22:709-15. Wiens, J. A., N. C. Stenseth, B. Van Horne, and R. A. Ims. 1993b. Ecologica= l mechanisms and landscape ecology. Oikos 66:360-80. Wiens, J. A., T. O. Crist, K. A. With, and B. T. Milne. 1995. Fractal patte= rns of insect movement in microlandscape mosaics. Ecology 76:663-6. Williams, J. M., and T. R. Beebe Jr. 1993. Analysis of fractal surfaces usi= ng scanning probe microscopy and multiple image variography. 2. Results on = fractal and non-fractal surfaces, observation of fractal crossovers, and co= mparison with other fractal te chniques. J. Phys. Chem. 97:6255-60. Williamson, M. 1988. Relationship of species number to area, distance and= other variables. Pages 91-115 in A. A. Myers and P. S. Giller, editors. An= alytical Biogeography. Chapman and Hall, New York. Williamson, M. H., and J. H. Lawton. 1991. Measuring habitat structure wi= th fractal geometry. Pages 69-86 in S. Bells, E. D. McCoy and H. R. Mushins= ky, editors. Habitat Structure. Chapman and Hall, London. Wilson, J. B. 1991. Methods for fitting dominance/diversity curves. J. Veg.= Sci. 2:35-46. With, K. A. 1994. Using fractal analysis to assess how species perceive lan= dscape structure. Landscape Ecol. 9:25-36. Xu, T., I. D. Moore, and J. C. Gallant. 1993. Fractals, fractal dimensions = and landscapes - a review. Geomorphology 8:245-62. Yfantis, E. A., G. T. Flatman, and E. J. Englund. 1988. Simulation of geolo= gical surfaces using fractals. Math. Geol. 20:667-72. Yokoya, N., K. Yamamoto, and N. Funakubo. 1989. Fractal-based analysis and = interpolation of 3d natural surface shapes and their appliation to terrain = modelling. Comp. Vis. Graph. Image Proc. 46:284-302. Zeide, B. 1991. Fractal geometry in forestry applications. For. Ecol. Manag= e. 46:179-88. Zeide, B. 1993. Primary unit of the tree crown. Ecology 74:1598-602. Zeide, B., and C. A. Gresham. 1991. Fractal dimensions of tree crowns in th= ree loblolly pine plantations of coastal South Carolina. Can. J. For. Res. = 21:1208-12. Zeide, B., and P. Pfeifer. 1991. A method for estimation of fractal dimensi= on of tree crowns. For. Sci. 37:1253-65. ________________________________________ Mike Palmer, Ecologist Department of Botany, Oklahoma State University Stillwater, OK 74078 USA carex@osuunx.ucc.okstate.edu Office phone: 405-744-7717 FAX: 405-744-7074 ________________________________________