Appendix I:

Table 1: Landscape metrics with significance

$\begin{aligned} & \hline \text { SL } \\ & \text { NO } \end{aligned}$	INDICATORS	FORMULA	RANGE	SIGNIFICANCE/ DESCRIPTION
Category : Patch area metrics				
1	Built up (Total Land Area)		>0	Total built-up land (in ha)
2	Built up (Percentage of landscape)	$B P=\frac{A_{\text {builtup }}}{A}(100)$	$0<\mathrm{BP} \leq 100$	It represents the percentage of built-up in the total landscape area.
		$\mathrm{A}_{\text {built-up }}=$ total built-up area $\mathrm{A}=$ total landscape area		
3	Largest Patch Index (Percentage of built up)	$\begin{gathered} L P I=\frac{{ }_{i=1}^{n} \max \left(a_{i}\right)}{A}(100) \\ \mathrm{a}_{\mathrm{i}}=\text { area }\left(\mathrm{m}^{2}\right) \text { of patch } \mathrm{i} \\ \mathrm{~A}=\text { total landscape area } \end{gathered}$	$0 \leq \mathrm{LPI} \leq 100$	LPI $=0$ when largest patch of the patch type becomes increasingly smaller. LPI $=100$ when the entire landscape consists of a single patch of, when largest patch comprise 100% of the landscape.
4	$\begin{gathered} \text { Mean patch } \\ \text { size } \\ \text { MPS } \end{gathered}$	$M P S=\frac{\sum_{i=1}^{n} a_{i}}{n_{i}}\left(\frac{1}{10,000}\right)$	$\begin{gathered} \text { MPS }>0 \text {,withou } \\ \quad \mathrm{t} \text { limit } \end{gathered}$	MPS is widely used to describe landscape structure. Mean patch size index on a raster map calculated, using a 4 neighbouring algorithm.
5	Number of Urban Patches	$N P U=n$ NP equals the number of patches in the landscape.	NPU>0, without limit.	It is a fragmentation Index. Higher the value more the fragmentation
6	Patch density	$\mathrm{f}($ sample area) $=($ Patch Number/Area) $) 1000000$	$\begin{gathered} \text { PD>0,without } \\ \text { limit } \end{gathered}$	Calculates patch density index on a raster map, using a 4 neighbor algorithm.

7	Patch area distribution coefficient of variation (PADCV)	$P A D_{C V}=\frac{S D}{M P S}(100)$ with:SD: standard deviation of patch area size $S D=\sqrt{\frac{\sum_{i=1}^{\text {Npatch }}\left(a_{i}-M P S\right)^{2}}{\text { Npatch }}}$ MPS: mean patch area size ai: area of patch i $\mathrm{N}_{\text {patch: }}$: number of patch	PADCV ≥ 0	PADCV is zero when all patches in the landscape are the same size or there is only one patch (no variability in patch size).
8	PerimeterArea Fractal Dimension PAFRAC	$\begin{aligned} & \frac{\left[N \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\ln P_{i j} \cdot \ln a_{i j}\right)\right]-\left[\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \ln p_{i j}\right)\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \ln a_{i j}\right)\right]}{\left(N \sum_{i=1}^{m} \sum_{j=1}^{n} \ln p_{i j}^{2}\right)-\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \ln p_{i j}\right)} \\ & \mathrm{a}_{\mathrm{ij}}=\operatorname{area}\left(\mathrm{m}^{2}\right) \text { of patch } \mathrm{ij} . \\ & \mathrm{p}_{\mathrm{ij}}=\text { perimeter }(\mathrm{m}) \text { of patch } \mathrm{ij} . \\ & \mathrm{N}=\begin{array}{c} \text { total number of patches in the landscape } \end{array} \end{aligned}$	$1 \leq$ PAFRAC ≤ 2	It approaches 1 for shapes with very simple perimeters such as squares, and approaches 2 for shapes with highly convoluted, perimeters. PAFRAC requires patches to vary in size.

Category : Edge/border metrics				
9	Edge density	$E D_{K}=\frac{\sum_{i=1}^{n} e_{i k}}{A R E A}(10000)$ k: patch type \mathbf{m} : number of patch type \mathbf{n} : number of edge segment of patch type k eik :total length of edge in landscape involving patch type k Area: total landscape area	$\mathrm{ED} \geq 0$, without limit. $\mathrm{ED}=0$ when there is no class edge.	ED measures total edge of urban boundary used to compare landscape of varying sizes.
10	Area weighted mean patch fractal dimension (AWMPFD)	$A W M P F D=\frac{\sum_{i=1}^{i=N} 2 \ln 0.25 p_{i} / \ln S_{i}}{N} \times \frac{s_{i}}{\sum_{i=1}^{i=N} s_{i}}$ Where s_{i} and p_{i} are the area and perimeter of patch i, and N is the total number of patches	$\begin{gathered} 1 \leq \text { AWMPFD } \leq \\ 2 \end{gathered}$	AWMPFD approaches 1 for shapes with very simple perimeters, such as circles or squares, and approaches 2 for shapes with highly convoluted perimeter. AWMPFD describes the fragmentation of urban patches. If Sprawl is high then AWMPFD value is high.
11	Perimeter Area Weighted Mean Ratio. PARA_AM	PARA_AM $=\frac{P i j}{A i j}$ Pij $=$ perimeter of patch ij Aij= area weighted mean of patch ij $A M=\sum_{J=1}^{n}\left[X i j\left[\frac{a i j}{\sum_{j=1}^{n} a i j}\right]\right]$	>0,without limit	PARA AM is a measure of fragmentation; it is a measure of the amount of 'edge' for a landscape or class. PARA AM value increased with increasing patch shape complexity.
12	A. Mean Patch Fractal Dimension (MPFD)	$\begin{array}{\|ll} \hline & \\ \text { B. } & M P F D=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{2 \ln (0.25 p i j)}{\ln \text { aij }}\right)}{N} \\ C . & p i j=\text { perimeter of patch } i j \\ D . & \text { aij= area weighted mean of patch } i j \\ E . & N=\text { total number of patches in the } \end{array}$ B. landscape	1<=MPFD<2	MPFD is another measure of shape complexity, approaches one for shapes with simple perimeters and approaches two when shapes are more complex.

13	Mean Patch Fractal Dimension (MPFD) coefficient of variation (COV)	$\begin{gathered} M P F D=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{2 \ln (0.25 p i j)}{\ln a i j}\right)}{N} \\ C V=\frac{S D}{M N}(100) \end{gathered}$ CV (coefficient of variation) equals the standard deviation divided by the mean, multiplied by 100 to convert to a percentage, for the corresponding patch metrics.	It is represented in percentage.	It gives coefficient of variation of patches.
Category : Shape metrics				
14	NLSI (Normalized Landscape Shape Index)	$N L S I=\frac{\sum_{i=1}^{i=N} \frac{p_{i}}{s_{i}}}{N}$ Where s_{i} and p_{i} are the area and perimeter of patch i , and N is the total number of patches.	$0 \leq$ NLSI <1	NLSI $=0$ when the landscape consists of single square or maximally compact almost square, it increases when the patch types becomes increasingly disaggregated
15	Mean Shape index MSI	$M S I=\frac{\sum_{j=i}^{n}\left(\frac{0.25 p_{i j}}{\sqrt{a_{i j}}}\right)}{n_{i}}$ $p_{i j}$ is the perimeter of patch i of type j . $a_{i j}$ is the area of patch i of type j . n_{i} is the total number of patches.	$\begin{gathered} \text { MSI } \geq 1, \\ \text { without limit } \end{gathered}$	$\begin{array}{lr}\text { Explains } & \text { Shape } \\ \text { Complexity.MSI } & \text { is }\end{array}$ equal to 1 when all patches are circular (for polygons) or square (for raster (grids)) and it increases with increasing patch shape irregularity
16	Area Weighted Mean Shape Index (AWMSI)	$A W M S I=\frac{\sum_{i=1}^{i=N} p_{i} / 4 \sqrt{s_{i}}}{N} \times \frac{s_{i}}{\sum_{i=1}^{i=N} s_{i}}$ Where s_{i} and p_{i} are the area and perimeter of patch i, and N is the total number of patches	AWMSI ≥ 1, without limit	AWMSI $=0$ when all patches in the landscape are circular or square. AWMSI increases without limit as the patch shape becomes irregular.
Category: Compactness/ contagion / dispersion metrics				
17	Clumpiness	$\begin{gathered} \text { CLUMPY }=\left[\begin{array}{l} \frac{G_{i}-P_{i}}{P_{i}} \text { for } G_{i}<P_{i} \& P_{i}<5, \text { else } \\ \frac{G_{i}-P_{i}}{1-P_{i}} \end{array}\right] \\ G_{i=}\left(\frac{g_{i i}}{\left(\sum_{k=1}^{m} g_{i k}\right)-\min e_{i}}\right) \end{gathered}$ $\mathrm{g}_{\mathrm{ii}}=$ number of like adjacencies (joins) between pixels of patch type (class) I based on the doublecount method. $\mathrm{g}_{\mathrm{ik}}=$ number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method. $\min -\mathrm{e}_{\mathrm{i}}=$ minimum perimeter (in number of cell surfaces) of patch type (class)i for a maximally clumped class. $\mathrm{P}_{\mathrm{i}}=$ proportion of the landscape occupied by patch type (class) i.	$1 \leq$ CLUMPY ≤ 1	It equals 0 when the patches are distributed randomly, and approaches 1 when the patch type is maximally aggregated.

18	Area weighted Euclidean mean nearest neighbor distance AW_MNND	$E N N=h_{i j}$ $\mathrm{h}_{\mathrm{ij}} \mathrm{isdistance}(\mathrm{m})$ from patch ij to nearest neighboring patch of the same type(class) based on shortest edge to edge distance.	ENN>0, without limit	ENN approaches zero as the distance to the nearest neighbor decreases.
19	ENND coefficient of variation	$\begin{gathered} E N N=h_{i j} \\ C V=\frac{S D}{M N}(100) \end{gathered}$ CV (coefficient of variation) equals the standard deviation divided by the mean, multiplied by 100 to convert to a percentage, for the corresponding patch metrics.	It is represented in percentage.	In the analysis of urban processes, greater isolation indicates greater dispersion.
20	Aggregation index	$A I=\left[\sum_{i=1}^{m}\left(\frac{g_{i i}}{\max \rightarrow g_{i i}}\right) P_{i}\right](100)$ gii=number of like adjacencies (joins) between pixels of patch type (class) i based on thesingle count method.	$1 \leq \mathrm{AI} \leq 100$	AI equals 1 when the patches are maximally disaggregated and equals 100 when the patches are maximally aggregated
21	Interspersion and Juxtaposition	$I J I=\frac{-\sum_{i=1}^{m} \sum_{k=i+1}^{m}\left[\left(\frac{e_{i k}}{E}\right) \cdot \ln \left(\frac{e_{i k}}{E}\right)\right]}{\ln (0.5[m(m-1)])}$ $\mathrm{e}_{\mathrm{ik}}=$ total length (m) of edge in landscape between patch types (classes) i and k. $\mathrm{E}=$ total length (m) of edge in landscape, excluding background $\mathrm{m}=$ number of patch types (classes) present in the landscape, including the landscape border, if present.	$0 \leq$ IJI ≤ 100	IJI is used to measure patch adjacency. IJI approach 0 when distribution of adjacencies among unique patch types becomes increasingly uneven; is equal to 100 when all patch types are equally adjacent to all other patch types.
Category : Open Space metrics				
22	Ratio of open space (ROS)	$R O S=\frac{s^{\prime}}{s} \times 100 \%$ Where s is the summarization area of all "holes" inside the extracted urban area, s is summarization area of all patches	It is represented as percentage.	The ratio, in a development, of open space to developed land.
23	Patch dominance	$\text { Dominance }=\ln (m)+\sum_{i=1}^{m} p i \ln (p i)$ m: number of different patch type i: patch type; pi: proportion of the landscape occupied by patch type i	----------	Computes dominance's diversity index on a raster map.

