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Community diversity and the population abundance 
of a particular group of species are controlled by  
immediate environment, inter- and intra-species  
interactions, landscape conditions, historical events 
and evolutionary processes. Nestedness is a measure of 
order in an ecological system, referring to the order in 
which the number of species is related to area or other 
factors. In this study we have studied the nestedness 
pattern in stream diatom assemblages in 24 stream 
sites of central Western Ghats, and report 98 taxa 
from the streams of central Western Ghats region. 
The communities show highly significant nested  
pattern. The Mantel test of matrix revealed a strong 
relationship between species assemblages and environ-

mental conditions at the sites. A significant relationship 
between species assemblage and environmental condi-
tion was observed. Principal component analysis (PCA) 
indicated that environmental conditions differed 
markedly across the sampling sites, with the first 
three components explaining 78% of variance. Species 
composition of diatoms is significantly correlated with 
environmental distance across geographical extent. 
The current pattern suggests that micro-environment 
at regional levels influences the species composition of 
epilithic diatoms in streams. The nestedness shown by 
the diatom community was highly significant, even 
though it had a high proportion of idiosyncratic spe-
cies, characterized with high numbers of cosmopolitan 
species, whereas the nested species were dominated by 
endemic species. PCA identifies ionic parameters and 
nutrients as the major features which determine the 
characteristics of the sampling sites. Hence the local 
water quality parameters are the major factors in  
deciding the diatom species assemblages. 
 
Keywords: Diatoms, idiosyncratic species, nestedness, 
stream sites. 
 
IN an era of human impact on natural ecosystems, a major 
challenge for ecologists is to understand the structure and 
dynamics of biological communities in relation to envi-
ronmental variability1. Community diversity and the 
population abundance of a particular group of species are 
controlled by immediate environment, landscape condi-
tions, inter- and intra-species interactions, historical events 
and evolutionary processes2–5. The diversity of commu-
nity is not only important from basic science of ecology, 
but is also fundamental to conservation biology6. Al-
though attempts to understand the spatial patterns have 
been documented in many studies of plant and animal  
diversity, it has not been done for microbial species. This 
is a serious omission given that microorganisms consti-
tute much of the biodiversity on earth7 and have vital 
functional roles in biogeochemical cycles as well as eco-
system functioning8,9. With limited information on 
macro-ecological patterns of micro-organisms, theories 
were built and tested, but lack facts10. However, Martiny 
et al.11 concluded that microbial diversity is partly deci-
ded by the environment and the processes that generate 
and maintain biogeographic patterns in macroorganisms 
could operate in the microbial world. 
 Diatoms (division Bacillariophyta), one of the largest 
groups of microorganisms, are among the most successful 
groups of photosynthetic eukaryotic microorganisms. 
They occur in almost all wet/damp places with a diverse 
range of habitats across the continents. Diatoms grow as 
single cells, or form simple filaments/colonies. They 
form the base of aquatic food webs in marine and fresh-
water habitats. Diatom species are sensitive to the physi-
cal and chemical parameters of water such as pH, 
nutrients, salinity, temperature and water current in which 
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they live. As a result, they are used extensively in envi-
ronmental assessment and monitoring across the globe. 
Like many other microorganisms diatoms are least stud-
ied, particularly from the tropical regions. Recently, there 
have been a few studies from the temperate region analys-
ing the spatial patterns12,13 and assemblage patterns14 of 
diatoms. These studies emphasize the importance of dis-
persal and migration in structuring diatom communities at 
regional to global scales, giving consideration to the  
regional diatom pool and habitat availability. 
 Considering the meagre understanding of species as-
semblage patterns of tropical streams, we attempted to 
study the nestedness pattern in stream diatom assem-
blages of central Western Ghats. There are several methods 
available to measure patterns in the species assemblages; 
with nestedness being a popular method for a wide range 
of taxa. Nestedness is a measure of order in an ecological 
system, referring to the order in which the number of 
species is related to area or other factors. The more a sys-
tem is ‘nested’, the more it is organized. In general, the 
species assemblages are associated with species–area  
relationship, known as the ‘nested subsets’ pattern15. The 
nested subset pattern arises because species differ in their 
distribution across space. Some species use a wider range 
of resources or persist across a wider range of habitats 
than others16–18. Generally, species that use a wide range 
of resources or tolerate a variety of abiotic conditions can 
establish more populations in more places than compara-
ble species with relatively narrow niches19,20. However, 
factors affecting the degree to which species are nested or 
idiosyncratic are poorly understood. 
 Analysing the nestedness pattern using the nestedness 
calculator was proposed by Patterson and Atmar21, which 
further led to an increase in interest in this analysis  
(referred in 339 research papers as on 31 October 2009; 
ISI database search). It works with a combination of a 
thermodynamic measure of order and a Monte Carlo 
simulation22. A detailed account of the nestedness calcu-
lator and its application is available in Puyravaud et al.23. 
Many studies have revealed that variations in species as-
semblages can reflect nested distribution patterns14,15,24–32. 
A majority of these studies conclude that nestedness pat-
tern exists due to selective extinction by which species 
disappear from different habitats in roughly the same  
order33. However, Cook and Quin20 proposed that nested 
pattern develops in an ecosystem due to differential colo-
nization abilities of species. 
 Identifying the nested assemblage patterns of freshwa-
ter diatoms in the streams of central Western Ghats and 
understanding the possible drivers for such patterns are 
the primary objectives of this communication. 
 Twenty-four stream sites comprising only first and 
second streams from central Western Ghats (Figure 1) 
were sampled during October 2007–February 2008 (post-
monsoon season) using a strictly standardized field pro-
tocol34. The stream sites belong to three ecoregions of the 

Western Ghats, viz. Sawanthwadi–Kayna valley, Agha-
nashini–Terikhol valley and Pushpagiri–Sharavathi val-
ley, from the river basins of Netravathi, Seethanadi, 
Swarna, Gurupur, Sharavathi, Aghanashini, Bedthi, Kali, 
Mandavi, Terekhol and Krishna. At each site three–five 
stones were selected randomly across the stream. Diatoms 
were scraped-off these stones as subsamples using a tooth 
brush. Subsequently, the subsamples were pooled into a 
composite sample for each site. Fresh samples were care-
fully checked to guarantee that most diatom frustules 
were alive before acid combustion. Almost all diatom 
cells had cytoplasmic content, and thus hot HCl and 
KMnO4 method34 was used to obtain clean frustules  
devoid of organic material. The cleaned diatoms were 
mounted in Pleurax for further microscopic analysis. A 
total of 400 frustules per sample were identified and 
counted using compound light microscopy (magnification 
1000×). Diatoms were identified primarily to the species 
level, according to methods described earlier35–37. 
 Water quality variables such as pH, water temperature 
(°C), total dissolved solids (mg l–1), salinity (mg l–1) and 
nitrates (mg l–1) were recorded at the sampling sites using 
EXTECH COMBO electrode and Orion ion selective 
electrode. Other parameters like chloride, hardness, mag-
nesium, calcium, sodium, potassium, sulphates and phos-
phates were analysed in the laboratory. All analyses were 
carried out according to standard methods for the exami-
nation of water38. 
 A presence–absence matrix (matrix having sites in 
rows and species in columns, with 1 for presence and 0 
for absence) was constructed for nestedness calculation. 
The degree of nestedness was calculated using the nest-
edness calculator39,40. The metric T of the ‘nestedness  
 

 
 

Figure 1. Map of central Western Ghats showing the sampling sites. 
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calculator’ measures the extent of unexpected presence 
and absence in a maximally packed matrix, where sites 
are arranged in rows in descending order according to 
their species richness, and species are arranged in col-
umns according to the number of sites on which they  
occur. The metric T = 0° for a set of perfectly nested  
assemblages, and T = 100° for completely disordered 
ones. The null hypothesis that T is not lower (i.e. more 
nested) than expected by chance, was tested using Monte 
Carlo permutations41. 
 Mantel test correlations were used to elucidate the role 
of environmental and spatial factors in determining the 
species assemblages. The Mantel test estimates the inten-
sity of the relationship between two variables and calcu-
lates a statistic that is similar to Pearson’s correlation 
coefficient (r). The value of the Mantel statistic can vary 
from −1 to +1, and is typically calculated between two 
matrices, each containing the distance (or similarity) ele-
ments calculated for each pair of values of a variable. 
Partial Mantel test is used to examine the influence of  
environmental factors on diatom assemblages while hold-
ing geographical distance constant42 and vice versa with 
1000 permutations using the statistical package R43. Prin-
cipal component analysis (PCA) was performed using R 
to elucidate the important physical and chemical water 
quality variables. The relationships between matrices of 
distance in species assemblages (using Bray–Curtis quan-
titative distance measure), environmental distance (matrix 
of Euclidean distances of ranked values of individual  
parameters) and geographic distance of the localities  
(aerial distances in kilometres calculated using Mapinfo 
7.5 between sampling localities) were used in Mantel and 
partial Mantel test44. 
 The present study reports 98 taxa from the streams of 
central Western Ghats region. The communities show 
highly significant nested pattern (T = 16.41°C P = 4.43e-
31, matrix fill = 14%) and mean T = 50.61 (± 2.88)°C  
derived from 1000 randomized matrices (Figure 2). The 
matrix consists of more nested species (66%). Highly 
nested species in this dataset include Gomphonema gan-
dhii Karthick and Kociolek, Navicula rostellata Kützing, 
Surirella sp., Nitzschia reversa W. Smith, Nitzschia 
sigma (Kützing) W. Smith, Navicula viridula (Kützing) 
Kützing, Eunotia bilunaris (Ehrenberg) Souza in Souza 
and Moreira-Filho, Caloneis silicula (Ehrenberg) Cleve 
and Pinnularia acrosphaeria (Brébisson) W. Smith. 
 
 

 
 

Figure 2. Species distribution matrix in 24 streams in central Western 
Ghats. The line indicates the maximally cold matrix. 

Highly idiosyncratic species in this dataset are Gompho-
nema sp., Achnanthidium minutissimum (Kützing) 
Czarnecki, Nitzschia palea (Kützing) W. Smith, 
Brachysira neoexilis Lange-Bertalot, Planothidium fre-
quentissimum Lange-Bertalot and Planothidium sp. Com-
pared to the nested species, idiosyncratic species have 
wide ecological tolerance and are cosmopolitan in distri-
bution; in particular species like N. palea are known to be 
present even in highly eutrophic water. Species such as A. 
minutissimum are known to occur only in oligotrophic 
water. Highly nested species in this dataset are probably 
endemic taxa (G. gandhii and Surirella sp.), apart from 
some cosmopolitan species. 
 The Mantel test of matrix revealed a strong relation-
ship (P = 0.001) between species assemblages and envi-
ronmental conditions at sites, which are physical and 
chemical properties of the water. There was no signifi-
cant relationship between the species assemblage or the 
environmental condition and geographical distance. 
Moreover, the relationship between species assemblage 
and environmental condition was highly significant 
(P = 0.002) keeping geographical distance as constant in 
partial Mantel test. However, the species assemblage was 
not significantly correlated with geographical distance, 
keeping environmental condition as constant (Figure 3). 
In other words, closer localities did not have similar dia-
tom species assemblages compared to the more distant 
ones (Table 1). 
 According to PCA analysis, the first, second and third 
principal axis captured 57.8%, 11.2% and 9.05% variance  
respectively (Table 2). PCA indicated that environmental 
conditions differed markedly across the sampling sites, 
with the first three components explaining 78% of vari-
ance. PC1 represents the increase in ionic characters like 
electrical conductivity, alkalinity, chlorides, calcium,  
sodium and potassium, whereas PC2 reflected an increase 
in magnesium, phosphates and nitrates and a decrease in 
dissolved oxygen. 
 The degree of nestedness was significant in these data-
sets (T = 16.41°C, P = 4.43e–31, matrix fill = 14%), with 
nearly 40% of species being idiosyncratic. Compared to 
temperate diatoms showing much higher nestedness14 
(T = 28.4°C), the tropical diatom assemblages in the pre-
sent study were colder, which is attributed to the similar 
environmental condition of the sampled sites that deter-
mines the species assemblages. 
 The idiosyncrasy is greater in aquatic organisms com-
pared to terrestrial organisms, which may be due to high 
dispersal ability of aquatic organisms25. This would proba-
bly increase matrix temperature as indicated in stream 
fish community32 and lake molluscs41. Hence, the rela-
tively high degree of idiosyncrasy observed in the present 
study, is not an exception in the aquatic ecosystem, par-
ticularly in eukaryotic assemblages. It is also possible 
that smaller the organism, higher is the temperature, 
which is due to greater dispersal ability and adaptive 
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Figure 3. Relation of species assemblage dissimilarity with the environmental and geographical distances. 
 
 

Table 1. Results of Mantel and partial Mantel tests for relationship between species assemblage  
dissimilarity, and environmental and geographical distance in diatoms sampled at 24 stream sites in  
  central Western Ghats 

Relation r P 
 

Species composition and geographical distance 0.05 0.28 
Species composition and environmental distance 0.61 0.001 
Geographical distance and environmental distance –0.05 0.53 
Species composition and geographical distance with environmental 0.11 0.08 
 distance effect controlled 
Species composition and environmental distance with geographical 0.62 0.002 
 distance effect controlled  

P-values were obtained by 1000 Monte Carlo permutations. 
 
 
radiation or simply due to more number of species com-
pared to the higher organisms. The variation in matrix 
temperature can also be due to ecological differences  
between island-like systems and streams45,46. 
 Furthermore, a promising and more appropriate justifi-
cation for such difference in matrix temperature is related 
to the habitat quality and differences among sites15,47. 
Hylander et al.48 have revealed that nested habitat quality 
has a strong influence on species pattern: high quality 
sites also contain more tolerant and ubiquitous species, 
which also occur in low quality sites. Likewise, a study 
on fungi49 has shown that habitat quality was the major 
factor determining nestedness in substrate-specific fungi. 
Many of our sites have been influenced by the local water 
quality, which is a major determining factor of diatom  
assemblages. It is also important to note Allan’s50 avowal 
on stream ecosystem heterogeneity, that streams within a 
drainage system are highly connected and dynamic sys-
tems, where changes in environmental conditions occur on 
a temporal basis. 

 Species composition of diatoms in tropical streams of 
central Western Ghats is significantly correlated with  
environmental distance across geographical extent. This 
is seemingly in agreement with the findings of some pre-
vious studies in stream biota51,52, in which environmental 
distance was identified as the key habitat feature in the 
structuring of stream biota assemblages. However, the  
relationship of diatoms with environmental and geographi-
cal variables in boreal stream seems to be different as the 
assemblages were related to environmental and geo-
graphical distance14. The disagreement is probably due to 
differences in the scale of investigations, as evident from 
the regional scope of the present study, which included a 
small portion in a biogeographic zone of 160,000 km2. 
The current pattern suggests that at the regional level of 
the Western Ghats, local niche-based control influences 
the species composition of epilithic diatoms in streams 
than the effect of dispersal controls. One possible reason 
for variation in the diatom assemblages across sites in the 
same biogeographic zone is local environmental factors 
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Table 2. Stream water chemistry-based principal components reflecting major water quality gradients, significant  
 variables in 24 stream sites in central Western Ghats 

Principal component PC1 PC2 PC3 
 

Variance (%) 57.8 11.2 9.05 
Significant positive correlation Electrical conductivity (0.33), Magnesium (0.38), pH (0.44), 
   alkalinity (0.34),  phosphates (0.63),  water temperature (0.55) 
   chlorides (0.33),  nitrates (0.51) 
  calcium (0.34), 
   sodium (0.33), 
   potassium (0.33) 

Significant negative correlation  Dissolved oxygen Sulphates (–0.37) 
   (–0.37)  

 

 
such as water quality, which in turn are altered by a wide 
range of human activities from land-cover change to 
stream diversions. The Western Ghats region, like other 
parts of the tropics, is undergoing rapid transformation. 
Deforestation rate is high and forests are being trans-
formed into agriculture and monoculture plantations.  
Hydroelectric projects, mining and extraction of forest 
products are also altering the landscape53. Stream biota 
are the first to be affected by the landscape-level changes 
due to contaminated run-off, which has been reported ear-
lier through fishes54 and aquatic invertebrates55. The  
altered quality of water could favour the wide occurrence 
of idiosyncratic species. Studies carried out since late 
1960s on stream water quality and land-cover linkage 
have shown that catchment land use is a major stress on 
stream ecosystems, especially in agricultural regions. For 
example, agricultural land use in the catchment can sig-
nificantly modify both water chemistry56 and physical 
habitat conditions57 that eventually decrease biological 
integrity in these streams58. Diatom community structure 
is believed to be strongly controlled by local environ-
mental factors, especially water nutrient concentration 
and ionic composition in both tropical and temperate 
streams59–62. Heino and Muotka41, and McAbendroth et 
al.63 observed habitat suitability as one of the principal 
determinants of nestedness pattern. 
 Among the environmental variables analysed in this 
study, PCA identifies electrical conductivity, alkalinity, 
chlorides, calcium, sodium, potassium, magnesium, 
phosphates, nitrates and dissolved oxygen as the major 
parameters which decide the principal components. All 
these parameters are altered by human activities such as 
agriculture and organic run-off from the human settle-
ments. 
 The nestedness shown by the diatom community in this 
study was highly significant, though it had a high propor-
tion of idiosyncratic species, which was also noticed in 
earlier findings in diatoms. Idiosyncratic species were 
characterized with a high number of cosmopolitan spe-
cies, whereas the nested species were dominated by  
endemic species. Mantel and partial Mantel tests showed 

an increase in community dissimilarity with increase in 
environmental dissimilarity and no relationship with geo-
graphical distance, which emphasizes the role of local 
environmental factors in determining the diatom species 
patterns. PCA identified ionic parameters and nutrients as 
the major features which determine the characteristics of 
the sampling sites. Hence the local water quality parame-
ters are the major factors in deciding the diatom species 
assemblages. We conclude that landscape scale activities 
alter the stream local characters, which in turn decide the 
diatom community structure. It is also important to carry 
out such studies across the biogeographic zone for a lar-
ger area. This may give further insights into evolutionary 
patterns in the community structure of diatoms. 
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