
EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

Technical Report 111 

Evaluation of Algorithms for Land Cover 
Analysis using Hyperspectral Data 

 
 
 

Uttam Kumar1 (uttam@ces.iisc.ernet.in) Ramachandra T. V.1 (cestvr@ces.iisc.ernet.in) 

 

Norman Kerle2  

(kerle@itc.nl) 
Clement Atzberger2

(atzberger@itc.nl) 
Milap Punia3 

(milap@iirs.gov.in) 
 

 
 
 

1 Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of 
Science, Bangalore – 560012. 

2 International Institute of Geoinformation Science and Earth Observation, The Netherlands. 
3 Indian Institute of Remote Sensing, Dehradun- 248001. 
 
 
 
 
 

  
 

Address for Correspondence: 
Dr. T.V. Ramachandra 
Energy & Wetlands Research Group 
Centre for Ecological Sciences 
Indian Institute of Science 
Bangalore 560 012,  
India 

 
E Mail: cestvr@ces.iisc.ernet.in 
           energy@ces.iisc.ernet.in 
Tel:       91-080-2293 3099/ 2360985 
Fax:      91-080-23601428 (CES-TVR) 
Web:     http://ces.iisc.ernet.in/energy  
              http://ces.iisc.ernet.in/grass  

1 



EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

Abstract 
 
Land cover is important for many planning and management activities and is considered an essential 
element for modelling and understanding the earth as a system. Land cover analysis relates to 
identifying the type of feature present on the surface of the earth. It deals with the identification of land 
cover features on the ground, whether vegetation, geologic, urban infrastructure, water, bare soil or 
others. Variations in land cover and its other physical characteristics influence weather and climate of 
our earth. Therefore the study of land cover plays an important role at the local/regional as well as 
global level for monitoring the dynamics associated with the earth. Land cover analysis has been done 
most effectively through satellite images of various spatial, spectral and temporal resolutions. Due to 
the spectral resolution limitations of conventional multispectral imageries, sensors that could collect 
numerous bands in precisely defined spectral regions were developed, leading to Hyperspectral Remote 
Sensing.  
 
Hyperspectral images have ample spectral information to identify and distinguish spectrally unique 
materials that allow more accurate and detailed information extraction. These imageries are classified 
into different land cover categories using various algorithms. The genesis and the underlying principle 
behind each of these algorithms are different and essentially produce land cover maps with varied 
accuracies. This report evaluates the utility of various classification algorithms for land cover mapping 
using MODIS data having high spectral resolution and coarse spatial resolution.  
 
NDVI (Normalised Difference Vegetation Index) was used to segregate the green (vegetation) and the 
non-green (non-vegetation) in the study area. Principal Component Analysis (PCA) and Minimum 
Noise Fraction (MNF) were used to reduce the data dimensionality and noise from the data. The hard 
classification algorithms used in this research include K-Means Clustering, Maximum Likelihood 
classification (MLC), Spectral Angle Mapper (SAM), Neural Network (NN) based classification, and 
Decision Tree Approach (DTA) to classify the image into 6 land cover classes (Agriculture, Built up 
(Urban / Rural), Evergreen / Semi-Evergreen forest, Plantations / orchards, Waste lands / Barren rock / 
Stony waste / Sheet rock and Waterbodies / Lakes / Ponds / Tanks / Wetland).  
 
The utility of a soft classification technique, Spectral unmixing using a Linear Mixture Model (LMM), 
was evaluated to calculate the proportions of the different land cover categories in a pixel. The 
endmembers, pure pixels or pixels with only one class within them, were identified using the Pixel 
Purity Index (PPI) and Scatter plot. These endmembers were used in spectral unmixing to yield 
abundance maps; a map indicating the proportion of each category within each pixel (fraction images).  
 
The accuracy of the MODIS classified maps were assessed by generating error matrix at the 
administrative boundary level (for Chikballapur Taluk) for which ground truth was collected from field. 
A comparative study of the percentage area for each land cover class for various classification 
algorithms was also done across all the taluks with the high spatial resolution LISS-3 MSS classified 
map as reference. At the pixel level, pixel to pixel analysis was done with respect to LISS-3 classified 
map. These results were also validated on the field. Results of this study show that NN on MNF 
components with an overall accuracy of 86.11%, and MLC on MODIS bands 1 to 7 with accuracy of 
75.99% gave the best output among the various techniques. MLC on MODIS PC gave the lowest 
accuracy of 30.44%. The results are quite motivating for the application of land cover mapping using 
coarse spatial resolution data at a regional scale. 
 
Keywords: Land cover, Remote sensing, GIS, Hyperspectral data, MODIS, Multispectral data, 
algorithms, hard classification and soft classification 
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1. Introduction 

Land cover describes the physical state of the earth’s surface and immediate surface in terms of the 
natural environment (such as vegetation, soils, earth’s surfaces and ground water) and the man-made 
structures (e.g. buildings). These land cover features have been classified using the remotely sensed 
satellite imagery of different spatial, spectral and temporal resolutions. Land cover analysis using high 
spectral resolution has several advantages, since it aids in numerous mapping applications such as soil 
types, species discrimination, mineral mapping etc. “Hyperspectral data” having numerous contiguous 
bands has high spectral resolution. Hyperspectral data processing possesses both challenges and 
opportunities for land cover mapping. Land cover mapping can be performed using various algorithms 
by processing the remotely sensed data into different themes or classes. The present research aims at 
comparing the results obtained from various classification algorithms using hyperspectral data for land 
cover mapping.  

1.1. Land cover and Land use 

Land cover refers to what is actually present on the ground and may also contain an ecological 
description. It provides the ground cover information for baseline thematic maps. In contrast, land use 
refers to the various applications and the context of its use. Land use itself is the human employment of 
a land-cover type. It involves both the manner in which the biophysical attributes of the land are 
manipulated and the intent underlying that manipulation, the purpose for which the land is used. 
Identifying, delineating and mapping land cover on temporal scale provides an opportunity to monitor 
the changes, which is important for natural resource management and planning activities. 
   
Land cover changes induced by human and natural processes play a major role in global as well as at 
regional scale patterns of the climate, hydrology and biogeochemistry of the earth system. Although the 
oceans are the major driving force for the earth’s physical climatology, the land surface has 
considerable control on the planet’s biogeochemical cycles, which in turn significantly influence the 
regional climate system through the radiative properties of green house gases and reactive species [1]. 
Terrestrial ecosystems exert considerable control on the planet’s biogeochemical cycles, which in turn 
significantly influence the climate system [2]. Further, variations in topography, vegetation cover and 
other physical characteristics of the land surface influence surface-atmosphere fluxes of sensible heat, 
latent heat, and momentum, which in turn influence weather and climate [3].  
 
Land cover mapping employing moderate to coarse resolution datasets often in tandem with ancillary 
databases have been reported from different parts of the world at regional scale. The National Mapping 
program, a component of the U.S. Geological Survey (USGS), mapped land cover of the United States 
based on aerial photography acquired by NASA (National Aeronautics and Space Administration) and 
the USGS during 1970’s and 1980’s. The data were manually interpreted and land cover polygons were 
compiled onto 1:250, 000 base USGS maps. The Anderson hierarchical scheme used with this data had 
nine categories and several detailed level 2 classes [4].      
 
Compilation of a 1:1 million scale atlas of Land cover Map as a first hand map for 1991 covering the 
entire territory of China was done based on field surveys, satellite images and aerial photos; classes 
were regrouped into 20 major land-use/land cover classes in the digital map [5]. Another database of 
China, the “Temperate East Asia Land-Cover Database (TEAL)” used 1992 NOAA (National Oceanic 
& Atmospheric Administration)-AVHRR (Advanced Very High Resolution Radiometer) 1-km remote 
sensing information and existing land cover maps developed using traditional and geographical 
techniques that involved extensive manual survey, data keeping, database preparation and developing 
maps using cartographical techniques. The database was developed to understand the land cover change 
in East China [4]. 
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The National Land Cover Database (NLC) of South Africa provides a standardised land cover database 
for South Africa, Swaziland and Lesotho. The land cover database was derived (using manual photo-
interpretation technique) from a series of 1:250,000 scale geo-rectified on seasonally standardised, 
single date LANDSAT THEMATIC Mapper TM satellite imagery captured principally during the 
period 1994-95 [4]. 
 
The Global Vegetation Monitoring unit of the JRC, ISPRA, Italy has produced a new global land cover 
classification for the year 2000, in collaboration with over 30 research teams from around the world. 
The project was carried out to provide accurate baseline land cover information, a harmonized land 
cover database over the whole globe and presented at the International Convention on Climate Change, 
the Convention to Combat Desertification, the Kyoto Protocol etc. GLC, 2000 dataset is a main input 
dataset to define the boundaries between ecosystems such as forest, grassland, and cultivated systems. 
In this project, more than 30 research teams were involved, contributing to 19 regional windows. Each 
defined region was mapped by local experts, which guaranteed an accurate classification, based on local 
knowledge. The mosaicing of 21 regional products, and the translation to a standardised global legend, 
made it possible to create a consistent global land cover classification based on regional expert 
knowledge. In contrast to former global mapping initiatives, the GLC, 2000 project is a bottom up 
approach to global mapping [4]. 
 
Recent exercise of National Land Cover Database for the United States known as “Multiresolution 
Land Characterisation 2001 (MRLC 2001)” has attempted to create an updated pool of Landsat 5 and 7 
data to generate land cover database (National Land Cover Database 2001). The efforts covered aspects 
of providing consistent land cover database as well as to provide a portable data framework useful in 
several applications. The database included satellite images, elevation model and terrain products, per 
pixel estimates of percent imperviousness, percent tree canopy and 29 land cover classes [4]. 
 
Another recent attempt on global LULC (Land Use Land Cover) for vegetation mapping was the use of 
MODIS data as one of the most critical global data sets. The classification included 17 categories of 
land cover following the International Geosphere-Biosphere Program (IGBP) scheme. The set of cover 
types includes eleven categories of natural vegetation covers broken down by life form; three classes of 
developed and mosaic lands, and three classes of non-vegetated lands [4].    
 
The Global Land Cover Facility (GLCF) provides land cover from the local to global scales to 
understand global environmental systems. GLCF research focuses on determining land cover and land 
cover change around the globe. In particular, the GLCF develops and distributes remotely sensed 
satellite data and products that explain land cover from the local to global scales. The data provided by 
GLCF can prove useful in global, regional and even local analyses of the earth's surface. These 1km 
global land cover product can be particularly useful when combined with higher resolution data types 
such as Landsat TM, ETM+ and MSS [6]. 
 
Global land cover classification using coarse resolution data was carried out from 1991 through August 
1997 supported by NASA's Terrestrial Ecology Program on Land Cover Land Use Change (TEP-
LCLUC) for mapping global land cover from satellite data, with the aim of improving the accuracy of 
land cover data sets and to parameterize global change models. These efforts have produced a global 
land cover data set at one-degree spatial resolution [7], [8] based on a maximum likelihood 
classification of annual NDVI temporal profiles. 
 
The CORINE land cover map is the European Union standard dataset for land cover applications; it is 
available for national as well as for international applications for European and accession countries. The 
CORINE Land cover map includes 44 land cover/land use classes divided into 5 main categories 
(agricultural areas, artificial surfaces, forests & semi natural areas, wetlands and waterbodies). Besides 
the classes on paved areas, agricultural areas, forest areas and water/wet lands, other categories include 
land cover 10 classes important in terms of nature and landscape protection. The inventory is based 
primarily on satellite scenes of Landsat (4, 5 and 7) TM data of different vegetation periods with 
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additional information in the form of topographic maps and orthogonal photos. To fulfill European and 
national requirements in an appropriate way, the member countries are in the process of defining a level 
4 CORINE classification with detailed descriptions for some of the 44 land cover classes. The European 
wide raster data sets at 250 x 250 m and 1x1 km² resolutions were derived from the national vector data 
base at a scale of 1:100,000. Areas with a minimum size of 25 ha and rivers and transport routes of a 
minimum width of 100 m were detected and mapped into the geographical information system. The 
first inventory started in the 1990 and the first update was carried out within a common 20 and was 
finished in 2003. The method instructs countries to detect land use changes from a minimum of 5 ha 
areas and line elements from a 100 m width [9].  
 
In India, land use and land cover (LULC), an important study from national perspective on annual basis 
using data from the latest Indian Remote Sensing Satellite – Resourcesat has been initiated by ISRO 
(Indian Space Research Organisation) and NRSA (National Remote Sensing Agency), Department of 
Space in coordination with several RRSSCs (Regional Remote Sensing Service Centres). Spatial 
accounting and monitoring of land use and land cover systems (like agriculture, surface waterbodies, 
waste lands, forests, etc.) was carried out on a national level on 1:250,000 scale using multi-temporal 
IRS (Indian Remote Sensing Satellites) AWiFS (Advanced Wide Field Sensor) datasets to provide on 
annual basis, net sown area for different cropping seasons and integrated LULC map. The AWifs data 
covered Kharif (August – October), Rabi (January – March) and Zaid (April – May) seasons to address 
spatial and temporal variability in cropping pattern and other land cover classes. Decision tree classifier 
method was adopted to account the variability of temporal datasets and bring out reliable classification 
outputs. Legacy datasets on forest cover, type, wastelands and limited ground truth were used as inputs 
for classification and accuracy assessment [4].   
 
This highlights, the numerous efforts made till date with various multisensor data having different 
spatial, spectral and temporal resolutions for land cover mapping using different algorithms around the 
globe. However, these studies do not reflect the technique that yields the best land cover map and it still 
remains a subject for research. A study on comparative evaluation of classification algorithms using 
hyperspectral data would entail a useful accurate result for future land cover mapping applications. 
 

1.2. Hyperspectral Remote Sensing  

Due to the spectral resolution limitations of conventional multispectral remote sensing, in the 1980’s, 
the Jet Propulsion Laboratory (JPL) with NASA took up an initative to develop instruments that could 
create images of earth’s surface at unprecedented levels of spectral details. Whereas previous 
multispectral sensors collected data in a few rather broadly defined spectral regions, these new 
instruments could collect 200 or more very precisely defined spectral regions. These instruments 
created the field of “Hyperspectral Remote Sensing”. 
 
EOS (Earth Observing System) is the centerpiece of NASA’s Earth Science mission. The EOS AM-1 
satellite, later renamed Terra, is the flagship of the fleet and was launched in December 1999. It carries 
five remote sensing instruments, including the MODIS and the Advanced Spaceborne Thermal 
Emission and Reflectance Radiometer (ASTER) [15]. Moderate Resolution Imaging Spectroradiometer 
(MODIS) is a major instrument on the Earth observing System EOS-AM1 and EOS-PM1 (termed 
AQUA) missions [16]. The “heritage” of the MODIS comes from several space-borne instruments. 
These include the Advanced Very High Resolution Radiometer (AVHRR), the High Resolution 
Infrared Sounder (HIRS) unit on the National Oceanic and Atmospheric Administration’s (NOAA) 
Polar Orbiting Operational Environmental Satellites (POES), the Nimbus-7 Coastal Zone Colour 
Scanner (CZCS), and the Landsat Thematic Mapper (TM). MODIS is able to continue and extend the 
databases acquired over many years by the AVHRR, in particular, and the CZCS/Sea Star-Sea WiFS 
series. 
 
The “Hyper” in hyperspectral means “too many” and refers to the large number of measured 
wavelength bands. Hyperspectral images are spectrally over determined, which means that they provide 
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ample spectral information to identify and distinguish spectrally unique materials. Hyperspectral 
imagery provides the potential for more accurate and detailed information extraction than is possible 
with any other type of conventional remotely sensed data. Hyperspectral data set can be visualized as a 
three dimensional cube, with two dimensions represented by the spatial coordinates, while third 
dimension is represented by the spectral bands.  
 
Hyperspectral remote sensing is also known as the “Imaging Spectroscopy” as it works on the principle 
of Spectroscopy. Spectroscopy is the technique of producing spectra, analyzing their constituent 
wavelength, and using them for chemical or physical analysis or the determination of energy levels and 
molecular structure. A spectrum is formed by the emission or by absorption of electromagnetic 
radiation accompanying change between the energy levels of atoms and molecules. The frequency of 
reflection or radiation depends upon the type of energy levels involved and hence the type of surface 
and material being observed.  
 
Hyperspectral imagery has been used to detect and map a wide variety of materials having characteristic 
reflectance spectra. For example, hyperspectral images have been used by geologists for mineral 
mapping [10], and to detect soil properties including moisture, organic content, and salinity [11]. 
Vegetation scientists have successfully used hyperspectral imagery to identify vegetation species [12], 
[13] and [14].  
 
Remote sensing has been used as a basis for mapping global land cover using data from multispectral 
remote sensing sensors, for example, the Advanced Very High Resolution Radiometer (AVHRR). Land 
cover identification establishes the baseline data from which resource monitoring and management can 
be performed. Nowadays the demand of accurate land cover maps is increasing in order to address the 
global issues such as global warming, land degradation and water scarcity [2]. These kinds of databases 
are primary important for national accounting of natural resources and planning at regular intervals. 
Land use and Land cover mapping using satellite remote sensing data can provide a reliable database to 
assess the status of natural resources.  
 
The advances in geo-informatics coupled with the availability of higher spatial, spectral and temporal 
resolution data has helped to investigate and model the environmental systems for maintaining the 
ecological sustainability. In this context, an important application of accurate global land-cover 
information is the inference of parameters that influence biophysical processes and energy exchanges 
between the atmosphere and the land surface as required by regional and global-scale climate and 
ecosystem process models [17]. Until recently, land cover data sets used within different models (e.g., 
global climate and biogeochemistry) were derived from pre-existing maps and atlas. While these data 
sources provided the best available source of information regarding the distribution of land cover at the 
time, several limitations are inherent in their use. For example, land cover is intrinsically dynamic. 
Therefore, the source data upon which these maps were compiled is now out of date in most areas. Also 
conventional land cover data sets, such as those mentioned above, often provide maps of potential 
vegetation inferred from climatic variables such as temperature and precipitation. In many regions, 
especially where humans have dramatically modified the landscape, the true vegetation type or land 
cover can deviate significantly from the potential vegetation.  
 
MODIS, on-board the Terra platform, includes seven spectral bands that are explicitly designed for 
“land cover applications”. The enhanced spectral, radiometric, and geometric quality of MODIS data 
provides a greatly improved basis for mapping global land cover relative to earlier remote sensing data. 
MODIS data are also freely available via ftp through the EOS Data Gateway 
http://glcf.umiacs.umd.edu/data. This enables  land cover mapping at the national/regional level 
economically.  
 
There are many techniques for mapping land cover using the remotely sensed data viz. hard and soft 
classification algorithms. For example, the first global land cover map compiled from remote sensing 
was produced [18] using maximum likelihood classification of monthly composite AVHRR normalized 
difference vegetation index (NDVI) data at 1 degree spatial resolution. In particular, when using 
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computer-assisted classification methods, it is frequently not possible to map consistently at a single 
level of classification hierarchy. This is typically due to the occasionally ambiguous relationship 
between land cover and spectral response and the implications of land use on land cover [19]. The use 
of different algorithms for land cover classification also depends on the data and the application in 
hand.  
 
The principle and the purpose behind each of these techniques may be different and each of these 
algorithms may result in different output maps. Hence, the focus of this research is to evaluate a range 
of existing classification algorithms (hard and soft) for land cover mapping in Kolar district, Karnataka, 
India using MODIS data with respect to high resolution LISS-3 (Linear Imaging Self Scanner) MSS 
classified image and detailed ground truth data. Consequently and conceptually, this research 
framework aims at developing an algorithm that classifies the MODIS data into different predetermined 
land cover classes more accurately with better results.  
 
Prior to the availability of newer, high quality data sets from instruments onboard the Terra (and other) 
space craft, data sets derived from the AVHRR (Advanced Very High Resolution Radiometer) provided 
the best available remote sensing based maps of global land cover. However, because the information 
content of AVHRR data is limited, numerous uncertainties are present in these maps for land cover 
mapping applications [20].  
 
 
MODIS data with better spectral resolution have a spatial resolution of 250 m, 500 m and 1 km. Several 
hard and soft classification techniques exist for land cover classification. The hard classification 
techniques for example, Maximum Likelihood classification (MLC), Spectral Angle Mapper (SAM), 
Neural Network (NN) based classification, Normalized Difference Vegetation Index (NDVI) and 
Clustering technique classify the image on a pixel-basis into different categories. These algorithms 
automatically categories all pixels in an image into land cover classes or themes. The spectral pattern 
present within the data for each pixel is used to perform the classification and, indeed, the spectral 
pattern present within the data for each pixel is used as the numerical basis for categorization [19].   
 
Nevertheless, MODIS pixels, having coarse spatial resolution, contain more than one class or 
endmember in a single pixel, called mixed pixel, covering more than one land cover type, as is present 
in reality due to the heterogeneous presence of features on the earth’s surface. Therefore unmixing of 
these mixed pixels is required for estimation of individual class representation in the pixel. Spectral 
unmixing is generally described as a quantitative analysis procedure used to recognize constituent 
ground cover materials (or endmembers) and obtain their mixing proportions (or abundances) from a 
mixed pixel. That is, the sub-pixel information of endmembers and their abundances can be obtained 
through the spectral unmixing process. Therefore, land cover mapping can be carried out at a sub-pixel 
level. 
 
The spectral unmixing problem has caused concerns and has been investigated extensively for the past 
two decades. A general analysis approach for spectral unmixing is first to build a mathematical model 
of the spectral mixture. Then, based on the mathematical model, certain techniques are applied to 
implement spectral unmixing. In general, mathematical models for spectral unmixing are divided into 
two broad categories: linear mixture model (LMM) and nonlinear mixture models (NLMM). The LMM 
assumes that each ground cover material only produces a single radiance, and the mixed spectrum is a 
linear combination of ground cover radiance spectra. The NLMM takes into account the multiple 
radiances of the ground cover materials, and thus the mixture is no longer linear. The NLMM typically 
has a relatively more accurate simulation of physical phenomena, but the model is usually complicated 
and application dependent. Typically there is not a simple and generic NLMM that can be utilized in 
various spectral unmixing applications. This disadvantage of the NLMM greatly limits its extensive 
application.  
 
In contrast, the LMM is simpler and more generic, and it has been proven successful in various remote 
sensing applications, such as geological applications [21], forest studies [22], [23], [24], and vegetation 
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studies [25]. For example, [21] utilized the LMM to determine the mineral types and abundances. Using 
the LMM, [22] estimated the proportions of forest cover in regions with small forest patches and 
convoluted clearance patterns; [23] determined the forest species and canopy closure for forest 
ecological studies and forest management. It is because of the advantage of simplicity and generality 
that the LMM has become a dominant mathematical model for the spectral unmixing analysis. Another 
major reason why the LMM has been broadly accepted for the spectral unmixing analysis is that the 
linear mixture assumption allows many mature mathematical skills and algorithms, such as least squares 
estimation (LSE) [26], [27], to be easily applied to the spectral unmixing problem. One requirement for 
implementing the abundance estimation using the LSE method is that the number of spectral bands 
must be greater than the number of endmembers. This is called the “condition of identifiability” [28]. 
To a certain extent, the “condition of identifiability” limits the use of multispectral data for the linear 
spectral unmixing problem. Multispectral data typically have only a few spectral bands. Thus, when the 
number of endmembers increases, the “condition of identifiability” no longer holds and the LSE 
method fails. One solution to this problem is to utilise hyperspectral data, which typically have high 
number of spectral bands (MODIS - 36 Bands). The problem of “condition of identifiability” seems to 
be easily solved by utilizing hyperspectral data. 
 

1.3. Research Objectives  

India is bestowed with valuable natural resources consisting of forests, mineral deposits, wetlands, 
rivers, surface waterbodies and vast areas of agriculture serving the needs of around a billion population 
and varied ecological functions. Studies so far conducted in India are limited in scope, as they only 
cater for the base line data towards regional planning and evaluations. The national spatial database 
enabling the monitoring of temporal dynamics of agricultural ecosystems, forest conversions, and 
surface waterbodies etc are lacking and the latest maps do not account for the gaps in updated 
information [4].  
 
In India, the information on LC in the form of thematic maps, records and statistical figures is 
inadequate and does not provide up to date information on the changing land use patterns and 
processes. Although, over the years, there has been substantial efforts made by various Central/State 
Government Departments, Institutions/ Organisation etc. to account for the national repository, yet they 
have been sporadic and efforts are often duplicated. In most of the cases, as the time gap between 
reporting, collection and availability of data is large, the data often become out-dated [4]. Realizing the 
need for an up to date nationwide land cover pattern, the present research on evaluation of the 
algorithms for land cover analysis can be beneficial and useful for defining a proper methodology.  
 
 
The main objective of this work is to evaluate different hard and soft classification algorithms using 
mono-temporal MODIS sensor data for better land cover (Agriculture, Built up (Urban / Rural), 
Evergreen / Semi-Evergreen forest, Plantations / orchards, Waste lands / Barren rock/ Stony waste / 
Sheet rock and Waterbodies / Lakes / Ponds / Tanks / Wetland) mapping.  MODIS and the IRS LISS 3 
data are properly registered and resampled that are cloud-screened and atmospherically corrected and 
two data sets have the same projection and coordinate system. An attempt was made to address the 
following: 
 

1. What are the utility / usefulness of the existing hard classification techniques for land cover 
mapping at regional scale using MODIS data?  

 
2. What is the effect of different pre-processing techniques on the accuracy of different hard 

classification algorithms? 
 

3. How to extract the end members directly from the data without using existing spectral libraries? 
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4. What is the utility of spectral unmixing model to obtain the abundance maps of the different 
interpretable classes?  

 
5. What is the effect of different spatial scales on classification accuracy? 

 
6. Which hard/soft classification approach yields the best land cover mapping results? 

 
The evaluation of different algorithms for better land cover mapping envisages the need of the natural 
resources database depository. This study is based on all the 36 bands of MODIS data, and the land 
cover categories being considered are agriculture, built up, forest, plantation, barren/rocky/stony/waste 
land and waterbodies which are the dominating classes in the study area.  

1.4. Outline of the Report  

The report is organised in seven chapters. First chapter introduces the basic concepts of hyperspectral 
remote sensing, while the second chapter describes the steps of preprocessing the hyperspectral image 
data. The third chapter discusses the commonly used Normalised Difference Vegetation Index (NDVI) 
and deals with the hard classification algorithms for land cover mapping in detail: K-means Clustering, 
Maximum Likelihood Classification (MLC), Spectral Angle Mapper (SAM), Neural Network (NN) and 
the Decision Tree Approach (DTA). The fourth chapter highlights the soft classification technique. It 
includes the Linear Mixture Model (LMM), endmember selection and estimation of proportion of the 
endmembers. The fifth chapter describes the results after implementing the different classification 
algorithms. This chapter also describes the comparison of results obtained within and between the 
different classification algorithms (hard and soft). Evaluation of the results obtained from different 
classification algorithms are performed at two spatial scales; the administrative boundary (Taluk) and 
the pixel level, and is discussed in the sixth chapter. Use of training sites in validation along with the 
sources of error and uncertainty are also discussed here.  

1.5. Data  

1.5.1. Instrument Background 

 
MODIS was originally conceived as a system composed of two instruments called MODIS-N (nadir) 
and MODIS-T (tilt), which were slated for flight on the EOS-AM platforms. These two instruments 
were described in various levels of detail in studies as far back as 1985 [29]. MODIS-T was designed 
basically as an advanced ocean colour sensor with the ability to tilt, to avoid sun glint. The MODIS-T 
instrument was eventually removed from further development as the budget for EOS became more 
constrained. In order to minimize the impact of the loss of MODIS-T and meet or approach other 
scientific objectives that were not being met at that time, such as observations of the diurnal variation in 
the earth’s cloudiness, MODIS-N was also placed on the EOS-PM1 platforms. This enabled morning 
and afternoon observations to be obtained. The two MODIS instruments could, in combination, obtain 
more ocean colour coverage than one (e.g., one MODIS on the EOS-AM1 mission) could (i.e., reduce 
data loss due to sun glint), but not as much as MODIS-N and MODIS-T on one platform. As the result 
of the loss of MODIS-T, MODIS-N was simply called MODIS. However, between 1989 and 1998, the 
original concept for MODIS-N experienced several changes, including the number and placement of 
bands for the instrument. The 40-band instrument envisioned in 1989 is reduced to a 36-band 
instrument.  
 
Within the 36 bands on MODIS, there are three major band segments. The first seven bands are used to 
observe land cover features plus cloud and aerosol properties [30], [31] (bands numbered 1-7 in Table: 
1.1 [19]). The spectral placements of these bands are derived so as to be very similar to the bands on the 
Landsat TM, albeit the spatial resolutions are 250 or 500 m, depending on the MODIS band involved. 
There are nine ocean colour bands (bands 8-16) that are derived from the studies leading to the Nimbus 
CZCS and the SeaWiFS instrument. Another set of bands (bands 20-25 and 27-36) is modelled after the 

15 



EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

bands of the HIRS, with emphasis on those HIRS bands that sense properties of the troposphere and the 
surface. In the original concept for the MODIS-N, there were three bands near 700 nm to measure 
polarization that were dropped along with three bands near 760 nm to observe optical properties of 
clouds in the oxygen-A band absorption region. These were replaced by one broad and two narrow 
bands near 900 nm (bands 17-19 in Table: 1.1) that were derived from analyses of data from the 
airborne AVIRIS instrument. These bands enable water-vapour observations in the lower troposphere 
as well as some cloud properties. There was a need to make further reductions in the predicted overall 
cost of the MODIS so two separate 250 m spatial resolution bands at 575 and 880 nm were combined 
with two 500 m bands at roughly the same centre wavelengths. This resulted in a compromise (bands 1 
and 2), whereby the 250 m spatial resolution was retained but with 50 and 35 nm bandwidths that were 
somewhat broader than the bandwidths associated with the original 500 m bands. Finally, more 
analyses of the AVIRIS data indicated high value in gathering cirrus cloud observations by adding a 
band at 1.38 µm. To keep the number of MODIS bands limited to no more than 36, it was decided to 
replace a 3.959 µm atmospheric sounding band (band 26) with the 1.38 µm capability. The MODIS 
instrument sees the entire surface of the Earth every 1-2 days. MODIS has a good temporal repeativity 
twice a day (using both Terra MODIS and Aqua MODIS) [32], [33]. Data is acquired in contiguous 
scans of swath width (2330 km) across track and 10 km along track to provide 2-day repeat 
observations of the Earth with a repeat orbit pattern every 16 days. 
 
Each earth scene collected by the MODIS is sampled 1354 times over a range of principal scan angles 
of -55 to +55 degree. All samples are co-registered in the sensor data system as frames and telemetered 
together to the ground. At nadir, a frame is 10,000 m in extent in the track direction and 1000 m extent 
in the scan direction (orthogonal to spacecraft orbital direction). It has 12-bit radiometric sensitivity. In 
addition, MODIS data are characterized by improved geometric rectification and radiometric 
calibration. Band-to-band registration for all 36 MODIS channels is specified to be 0.1 pixel or better. 
The 20 reflected solar bands are absolutely calibrated radiometrically with an accuracy of 5 percent or 
better. The calibrated accuracy of the 16 thermal bands is specified to be 1 percent or better. These 
stringent calibration standards are a consequence of the EOS/ESE requirement for a long term 
continuous series of observations aimed at documenting subtle changes in global climate [19].   
 
As mentioned earlier, for this research work MODIS data, downloaded from the Earth Observing 
System Data Gateway [34] has been used for the land cover mapping. These data sets are known as 
“MOD 09 Surface Reflectance 8-day L3 global” product at 250 (band 1 and band 2) and 500m (band 1 
to band 7). The MODIS Surface-Reflectance Product (MOD 09) is computed from the MODIS Level 
1B land bands 1, 2, 3, 4, 5, 6, and 7 (centered at 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, 
and 2130 nm, respectively). The product is an estimate of the surface spectral reflectance for each band 
as it would have been measured at ground level if there were no atmospheric scattering or absorption 
[35]. Each MODIS Level-1B data product [36], contains the radiometrically corrected, fully calibrated 
and geolocated radiances at-aperture for all 36 MODIS spectral bands at 1km resolution [37]. These 
data are broken into granules approximately 5-min long and stored in Hierarchical Data Format (HDF). 
 
Band 1 to band 36 MODIS data “MOD 02 Level-1B Calibrated Geolocation Data Set” were 
downloaded from EOS Data Gateway [34]. The Level 1B data set contains calibrated and geolocated at-
aperture radiances for 36 bands generated from MODIS Level 1A sensor counts (MOD 01). The 
radiances are in W/(m2 µm sr). In addition, Earth BRDF may be determined for the solar reflective 
bands (1-19, 26) through knowledge of the solar irradiance (e.g., determined from MODIS solar-
diffuser data, and from the target-illumination geometry). Additional data are provided, including 
quality flags, error estimates, and calibration data [38].  
 
Band Number Spectral Range  

Bands 1 – 19 nm 
Bands 20 – 36 µm 

Spatial Resolution Primary Application 

1 
2 

620- 670 
841 – 876 

250 m Land / Cloud / Aerosols 
Boundaries 

3 459 – 479 500 m Land / Cloud / Aerosols 
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4 
5 
6 
7 

545 – 565 
1230 – 1250 
1628 – 1652 
2105 – 2155 

Properties 

8 
9 
10 
11 
12 
13 
14 
15 
16 

405 – 420 
438 – 448 
483 – 493 
526 – 536 
546 – 556 
662 – 672 
673 – 683 
743 – 753 
862 – 877 

1000 m Ocean Colour / Phytoplankton 
Biochemistry 

17 
18 
19 

890 – 920 
931 – 941 
915 – 965 

1000 m Atmospheric Water Vapour 

20 
21 
22 
23 

3.660 – 3.840 
3.929 – 3.989 
3.929 – 3.989 
4.020 – 4.080 

1000 m Surface / Cloud Temperature 

24 
25 

4.433 – 4.498 
4.482 – 4.549 

1000 m Atmospheric Temperature 

26 
27 
28 

1.360 – 1.390 
6.535 – 6.895 
7.175 – 7.475 

1000 m Cirrus Clouds Water Vapour 

29 8.400 – 8.700 1000 m Cloud Properties 
30 9.580 – 9.880 1000 m Ozone 
31 
32 

10.780 – 11.280 
11.770 – 12.270 

1000 m Surface / Cloud Temperature 

33 
34 
35 
36 

13.185 – 13.485 
13.485 – 13.785 
13.785 – 14.085 
14.085 – 14.385 

1000 m Cloud Top Altitude 

Table 1.1: Specifications of MODIS sensor [19].  

 

Details of the data are follows: 
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MODIS data  
 
Bands: 1 and 2 
Resolution: 250 m 
DATA TYPE: HDF 
Latitudes: From 09.9477 to 20.021 
Longitude: From 70.8157 to 85.1463 
Date of acquisition: 8 day composite from 19 December, 2002 to 26 December, 2002 
Number of Rows: 4800 
Number of Columns: 4800 
 
Bands: 1, 2, 3, 4, 5, 6 and 7 
Resolution: 500 m 
DATA TYPE: HDF 
Latitudes: From 09.9477 to 20.021 
Longitude: From 70.8157 to 85.1463 
Date of acquisition: 8 day composite from 19 December, 2002 to 26 December, 2002 
Number of Rows: 2400 
Number of Columns: 2400 
 
Bands: 1 to 36 
Resolution: 1 km 
DATA TYPE: HDF 
Latitudes: From 05.2522 to 26.3711 
Longitude: From 63.0358 to 88.9201 
Date of acquisition: 21 December, 2002 
Time of acquisition: 08:15:00 to 08:20:00  
Number of Rows: 2030 
Number of Columns: 1354 
 
The Indian Remote Sensing Satellites IRS - 1C/1D LISS 3 (Linear Imaging Self-Scanning Sensor 3) 
MSS (Multi Spectral Scanner) data procured from NRSA, Hyderabad, available at Centre for 
Ecological Sciences, Indian Institute of Science, Bangalore, India has been used as the high resolution 
image. The LISS 3 sensor of IRS 1C/1D has the following characteristics. 
 
Satellite/ Sensor IRS 1C LISS 3 IRS 1D LISS 3 
Resolution  23.5 m (visible and near IR region) 

70.5 m (shortwave IR region) 
23.5 m 
 

Swath 141 km (visible and near IR region) 
148 km (shortwave IR region) 

127 km (bands 2, 3, 4) 
134 km (band 5 – MIR) 

Repetitivity 24 days 25 days 
Spectral Bands 0.52 – 0.59 microns (B2) 

0.62 – 0.68 microns (B3) 
0.77 – 0.86 microns (B4) 
1.55 – 1.70 microns (B5) 

0.52 – 0.59 microns (B2) 
0.62 – 0.68 microns (B3) 
0.77 – 0.86 microns (B4) 
1.55 – 1.70 microns (B5) 

Primary 
Application 

These data have a diverse range of applications such as land use and land 
cover mapping, urban planning, biodiversity characterisation, forest survey, 
wetland mapping, environmental impact, crop acreage and production 
estimation of major crops, drought monitoring and assessment based on 
vegetation condition, snowmelt run-off estimation, mineral prospecting, 
coastal studies and so on. 

 
Details of the data are as follows: 
 
LISS-3 MSS Data  
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DATA TYPE: Band Interleaved by Lines (BIL) 
Path Row   Date of acquisition Time of acquisition
100 63 (SAT - 70 %)  25-December-2002      05:23:31 
101 64   22-December-2002      05:19:45 
 
Number of Rows: 5997, Number of Columns: 6142 
 
The main sources of primary data are from field (using GPS), the Survey of India (SOI) toposheets of 
1:50,000, 1:250,000 scale and the secondary data were collected from the government agencies 
(Directorate of census operations, Agriculture department, Forest department and Horticulture 
department) etc. The base layers and the training data (ground truth) for the district were obtained from 
Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, 
Bangalore. 
 

1.6. Study Area 

Burgeoning population coupled with lack of holistic approaches in planning process has contributed to 
a major environmental impact in dry arid regions of Karnataka. Kolar district in Karnataka State, India 
was chosen for this study is located in the southern plain regions (semi arid agro-climatic zone) 
extending over an area of 8238.47 sq. km. between 77°21’ to 78°35’ E and 12°46’ to 13°58’ N (shown 
in Figure 1.1).  
 

 

Figure 1.1: Study area – Kolar district, Karnataka State, India 

Kolar is divided into 11 taluks (or administrative boundaries / blocks / units) for administration 
purposes (Bagepalli, Bangarpet, Chikballapur, Chintamani, Gudibanda, Gauribidanur, Kolar, Malur, 
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Mulbagal, Sidlaghatta, and Srinivaspur). The distribution of rainfall is during southwest and northeast 
monsoon seasons. The average population density of the district is about 2.09 persons / hectare. 
 
The Kolar district forms part of northern extremity of the Bangalore plateau and since it lies off the 
coast, it does not enjoy the full benefit of northeast monsoon and being cut off by the high Western 
Ghats. The rainfall from the southwest monsoon is also prevented, depriving of both the monsoons and 
subjected to recurring drought. The rainfall is not only scanty but also erratic in nature. The district is 
devoid of significant perennial surface water resources. The ground water potential is also assessed to 
be limited. The terrain has a high runoff due to less vegetation cover contributing to erosion of top 
productive soil layer leading to poor crop yield. Out of about 280 thousand hectares of land under 
cultivation, 35% is under well and tank irrigation [39]. 
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2. Preprocessing of Hyperspectral 
Image Data 

One of the challenging problems in processing high dimensional data with better spectral and temporal 
resolution is the computational complexity resulting from processing the vast amount of data volume 
[40]. This is particularly true for hyperspectral images containing numerous spectral bands. 
Preprocessing of hyperspectral imagery is required both for display and for proper band selection to 
reduce the data dimensionality and computational complexity.  
 
When displaying multispectral data, both spatial dimensions and wavelength (x, y and λ) are generally 
used with three of the spectral bands written to the red, green and blue colour elements of the display 
device. Careful band selection is required in this process to ensure the most informative display. To 
enhance the richness of the displayed data, multispectral transformations such as principal components 
are useful. 

2.1. The Challenges for Hyperspectral Processing 

Hyperspectral data offers both challenges and opportunities for processing. The following section 
discusses briefly about calibration, atmospheric correction, radiometric correction and data 
normalisation of MODIS. 

2.1.1. Calibration 

Calibration is the conversion of DN into at-satellite radiances. There are three types of calibrations 
associated with MODIS data - (i) L1B Emissive Calibration [41], (ii) L1B Reflective Calibration [42], 
and (iii) Spectral Calibration [43]. For a brief discussion on each of these see Annexure A.  
 
MODIS External Calibration Sources (ECs) - Two external calibration techniques that MODIS uses are 
views of the moon and deep space. The advantage of "looking" at the moon is that it enables MODIS to 
view an object that is roughly the same brightness as the Earth. Like the on-board Solar Diffuser, the 
moon is illuminated by the sun; however, unlike the Solar Diffuser or the Earth, the moon is not 
expected to change over the lifetime of the MODIS mission.  "Looking" at the moon provides a second 
method for tracking degradation of the Solar Diffuser. "Looking" at deep space provides a photon input 
signal of zero, which is used as an additional point of reference for calibration [44]. 

2.1.2. Atmospheric Correction 

Atmospheric constituents such as gases and aerosols have two types of effects on the radiance observed 
by a hyperspectral sensor, which is indicated in Figure 2.1.  
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Figure 
2.1: Atmospheric effects influencing the measurement of reflected solar energy. Attenuated 
sunlight and skylight (E) is reflected from a terrain element having reflectance p. The attenuated 
radiance reflected from the terrain element (pET/л) combines with the path radiance (Lp) to form 
the total radiance (Ltot) recorded by the sensor [19]. 

 
The atmosphere affects the brightness or radiance, recorded over any given point on the ground in two 
almost contradictory ways, when a sensor records reflected solar energy. First it attenuates (reduces) the 
energy illuminating a ground object (and being reflected from the object) at particular wavelengths, 
thus decreasing the radiance that can be measured. Second, the atmosphere acts as a reflector itself, 
adding a scattered, extraneous path radiance to the signal detected by the sensor which is unrelated to 
the properties of the surface. By expressing these two atmospheric effects mathematically, the total 
radiance recorded by the sensor may be related to the reflectance of the ground object and the incoming 
radiation or irradiance using equation 2.1. 
 
Ltot = pET + Lp                                                                                    --------------------- (equation 2.1) 
           л 
  
where 

Ltot = total spectral radiance measured by sensor 
p= reflectance of object 
E= irradiance on object, incoming energy 
T= transmission of atmosphere 
Lp=path radiance, from the atmosphere and from the object. 

 
All these factors depend on wavelength. The irradiance (E) stems from two sources: directly reflected 
sunlight and diffuse skylight (sunlight scattered by the atmosphere). The relative dominance of sunlight 
versus skylight in a given image is strongly dependent on weather conditions. The irradiance varies 
with the seasonal changes in solar elevation angle and the changing distance between the earth and the 
sun [19]. 
 
The magnitude of absorption and scattering varies from place to place and time to time depending on 
the concentrations and particle sizes of the various atmospheric constituents. The end result is the “raw” 
radiance values observed by a hyperspectral sensor that cannot be directly compared to laboratory 
spectra or remotely sensed hyperspectral imagery acquired at other times or places. Before such 
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comparisons can be performed, an atmospheric correction process must be used to compensate for the 
transient effects of atmospheric absorption and scattering. These effects have not been particularly 
important in the processing and analysis of the multispectral data because of the absence of well defined 
atmospheric features and the use of average irradiance over each of the recorded wavelengths [45].  
 
Hyperspectral data contain substantial amount of information about atmospheric characteristics at the 
time of image acquisition. In some cases, atmospheric models can be used with the image data 
themselves to compute quantities such as the total atmospheric column water vapour content and other 
atmospheric correction parameters. Alternatively, ground measurements of atmospheric transmittance 
or optical depth, obtained by instrument such as sunphotometers, may also be incorporated into the 
atmospheric correction methods. 
 
Since hyperspectral data cover a whole spectral range from 0.4 to 2.4 µm, including water absorption 
features, and have high spectral resolution, a more systematic process is generally required, consisting 
of three possible steps: 
 
1. Compensation for the shape of the solar spectrum. The measured radiances are divided by solar 

irradiances above the atmosphere to obtain the apparent reflectances of the surface.    
2. Compensation for atmospheric gaseous transmittances and molecular and aerosol scattering. 

Simulating these atmospheric effects allows the apparent reflectances to be converted to scaled 
surface reflectances. 

3. Scaled surface reflectances are converted to real surface reflectances after consideration if any 
topographic effects. If topographic data are not available, real reflectance is assumed to be 
identical to scaled reflectance under the assumption that the surfaces of interest are Lambertian. 

 
Procedures for solar curve and atmospheric modelling are incorporated in a number of models [46], 
including Lowtran 7 (Low Resolution Atmospheric Radiance and Transmittance), 5S Code (Simulation 
of the Satellite Signal in the Solar Spectrum) and Modtran 3 (The Moderate Resolution Atmospheric 
Radiance and Transmittance Model) [47]. ATREM (Atmosphere REMoval Program) [48], which is 
built upon 5S code, overcomes a difficulty with the other approaches in removing water vapour 
absorption features; water vapour effects vary from pixel to pixel and from time to time. In ATREM the 
amount of water vapour on a pixel by pixel basis is derived from AVIRIS data itself (although its 
technique may be independent of type of data), particularly from the 0.94 µm to 1.14 µm water vapour 
features. A technique referred to as three-channel ratioing was developed for this purpose [46]. Other 
models like ACORN (Atmospheric CORrection Now) account for accurate and proper cross-track 
spectral variation of push broom hyperspectral sensor (Hyperion, etc.). It also performs atmospheric 
correction of multispectral data with an independent water vapour image. FLAASH (Fast Line-of-Sight 
Atmospheric Analysis of Spectral Hypercubes) is an algorithm that handles data from a variety of 
hyperspectral sensors including AVIRIS, Hyperion, HyMap, etc., and supports off-nadir as well as 
nadir viewing. It also includes water vapour and aerosol retrieval and adjacency effect correction. 
 
The atmospheric correction algorithm over land (the ACA, Atmospheric Correction Algorithm: Spectral 
Reflectances for MODIS [49]) are applied to bands 1 – 7 of the MODIS data that uses aerosol and water 
vapour information derived from MODIS itself and takes into account the directional properties of the 
observed surface. The data being used in this research are therefore atmospherically corrected. The 
correction scheme includes corrections for the effects of atmospheric gases, aerosols, and thin cirrus 
clouds and is applied to all non cloudy L1B pixels that pass the L1B quality. Figure 2.2 gives an 
overview of the overall methodology and processing for atmospheric corrections [49].  For more 
relevant information on atmospheric correction see Annexure A. 
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Figure 2.2: Atmospheric correction processing thread flow chart [49]. 

2.1.3. Radiometric Correction 

The radiance measured by any given system over a given object is influenced by such factors as 
changes in scene illumination, atmospheric conditions, viewing geometry, and instrument response 
characteristics. For generating mosaics of satellite images taken in visible and NIR portion of the EM, it 
is usually necessary to apply a sun elevation correction and earth-sun-distance correction. The sun 
elevation correction accounts for the seasonal position of the sun relative to the earth. This is done by 
dividing each pixel value in a scene by the sine of the solar elevation angle for the particular time and 
location of the imaging. It normalises the image data acquired under different solar illumination angles 
by calculating pixel brightness values assuming the sun was at the zenith on each date of sensing. The 
earth-sun distance correction is applied to normalise for the seasonal changes in the distance between 
the earth and the sun.  
 
Empirical Line procedure is one of the approaches of radiometric correction [50]. At least two 
spectrally uniform targets in the site of interest, one dark and one bright, are selected; their actual 
reflectances are then determined by field or laboratory measurements. The radiance spectra for each 
target are extracted from the image and then mapped to the actual reflectances using linear regression 
techniques. The gain and offset so-derived for each band are then applied to all pixels in the image to 
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calculate their reflectances. While computational load is manageable with this method, field or 
laboratory data may not be available.  
 
Another radiometric data processing activity in many quantitative applications is conversion of DNs to 
absolute radiance values. Such conversions are necessary when changes in the absolute reflectance of 
objects are to be measured over time using different sensors. Normally, detectors and data systems are 
designed to produce a linear response to incident spectral radiance. The absolute spectral radiance 
output of the calibration sources is known from prelaunch calibration and is assumed to be stable over 
the life of the sensor. Thus the onboard calibration sources form the basis for constructing the 
radiometric response function by relating known radiance values incident on the detectors to the 
resulting DNs.  
 
The MODIS data being used in the research are radiometrically corrected and fully calibrated at the 
original instrument spatial and temporal resolution. These data are generated from Level-0 by 
appending geolocation and calibration data to the raw instrument data. The standard IRS 1C/1D LISS-3 
MSS data procured from NRSA (National Remote Sensing Agency), Hyderabad is radiometrically and 
geometrically corrected. Normally all full scene, full scene Shift Along Track (SAT), sub-scenes and 
quadrant data products are supplied as standard data products [51]. 

2.1.4. Data Normalisation 

There is special concern about atmospheric spectral transmittance and absorption characteristic and 
sensor calibration for hyperspectral imagery. This may be due to the following reasons: 
 
1. Hyperspectral sensors bands coinciding with narrow atmospheric absorption features or the edges 

of broader spectral features are affected by the atmosphere differently than the neighbouring 
bands. 

2. The band locations in imaging spectrometer systems are prone to small wavelength shifts under 
different operating conditions, particularly in airborne sensors. 

 
A number of empirical techniques have been developed for the calibration of hyperspectral data that 
produce relative or absolute calibrations in an empirical way, without the explicit use of atmospheric 
data and models; for the reason they are more properly referred to as normalisation techniques, rather 
than calibration techniques. When detailed radiometric correction is not feasible (for example, because 
the necessary ancillary information is unavailable) normalisation is an alternative which makes the 
corrected data independent of multiplicative noise such as topographic and solar spectrum effects. This 
can be performed using Log Residuals [52], based on the relationship between radiance (raw data) and 
reflectance: 
 
Xi, n = TiRinIn,    i = 1,…K; n = 1,…..N                                              ------------------- (equation 2.2) 

where Xi, n is radiance for pixel i in wavelength n. Ti is the topographic effect, which is assumed 
constant for all wavelengths. Rin is the real reflectance for pixel i in wavelength band n. In is the 
(unknown) illumination factor, which is assumed independent of pixel. K and N are the total number of 
the pixels in the image and the total number of bands, respectively. 
 
There are two steps which remove the topographic and illumination effects respectively. Xi, n can be 
made independent of Ti and In by dividing Xi,n by its geometric mean over all bands and then its 
geometric mean over all pixels. The result is not identical to reflectance but is independent of the 
multiplicative illumination and topographic effects present in the raw data. The procedure is carried out 
logarithmically so that the geometric means are replaced by arithmetic means and the final result 
obtained for the normalised data is  
                                                                                   N                        K 
Log Zi, n = log Xi, n – log mn – log mi = log Xin – 1/N  ∑ log Xi, n – 1/K ∑ log Xi, n       -----(equation 2.3)        
                                                                                   n=1                      i=1                                                                
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2.2. Data Characteristics 

The data produced by the imaging spectrometers is different from that of multispectral instruments due 
to its spectral characteristics. Firstly, the band selection for the display device is done in such a way so 
as to display maximum information. A two dimensional display using one geographical dimension and 
the spectral dimension can be created. These types of representation allows changes in spectral 
signatures with position (either along track or across track) to be observed. Usually, the greyscale is 
mapped to colour to enhance the interpretability of the displayed data. Secondly, choosing the most 
appropriate channels for processing is also not straight forward and requires careful selection to 
minimise the loss of the spectral benefits offered by this form of data gathering. A simple linear 
transformation such as the Principal Component Analysis or the Minimum Noise Fraction can be used 
for data dimensionality reduction [45].   

2.2.1. Data Volume 

Although, the hyperspectral data are both voluminous and multidimensional, nowadays with the 
availability of advanced computing systems that possess high speed processors and enormous storage 
power, data volume is no longer a constraint. The problem lies in the data redundancy that needs to be 
removed to obtain the bands with maximum information.    

2.2.2. Redundancy 

Much of the data does not add to the inherent information content for a particular application, even 
though it often helps in discovering that information; it contains redundancies. The data recorded by 
hyperspectral sensors often have substantial overlap of information content over the bands of data 
recorded for a given pixel. In such cases, not all of the data are needed to characterise a pixel properly, 
although redundant data may be different for different applications. Data redundancy can take two 
forms; spatial and spectral. Since hyperspectral imagery has more spectral concern, one way of viewing 
spectral redundancy in hyperspectral data is to form the correlation matrix for an image; the correlation 
matrix can be derived from the covariance matrix. High correlation between band pairs indicates high 
degree of redundancy. For example, PCT (Principal Component Transformation) assist in removing 
redundancy since decorrelation followed by a discarding of low variance components amounts to 
redundancy reduction [45].    

2.3. Feature reduction / Band reduction / Data dimensionality reduction                           
techniques 

Removal of least effective feature is referred to as feature selection, this being one form of feature 
reduction. The other is to transform the pixel vector into a new set of co-ordinates in which the features 
that can be removed are more evident [45]. Therefore, feature reduction, i.e., band reduction, has 
become a more significant part of image interpretation process.  
 
Probably the most common approach is to employ some sort of linear transformation on the original 
dataset to produce a smaller set of factors or components [53], [54] and [55]. Most of the original 
variance is retained with a significant reduction in data volume [1].  

2.3.1. Principal Component Analysis (PCA) 

PCA transform multidimensional image data into a new, uncorrelated co-ordinate system or vector 
space. It produces a space in which the data have maximum variance along its first axis, the next largest 
variance along a second mutually orthogonal axis and so on (figure 2.3). Sometimes even the lower-
order PC’s may contain valuable information. The later principal components would be expected, in 
general, to show little variance. These could be considered therefore to contribute little to separability 
and could be ignored, thereby reducing the essential dimensionality of the classification space and thus 
improving classification speed [45]. Stated differently, the purpose of this process is to compress all the 
information contained in an original n – band data set into fewer than n “new bands” or components. 
The components are then used in lieu of the original data [19]. These transformations may be applied as 
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a preprocessing procedure prior to automated classification process of the data. Fundamentals and 
mathematical description of PCA are given in Annexure A. 
 

 

Figure 2.3: Rotated coordinate axes in PCA [19].  

2.3.2. Minimum Noise Fraction (MNF)  

 covariance matrix, is to decorrelate and rescale the data noise, where the 

ments for subsequent processing. It partitions the data space into 
o parts: one associated with large eigenvalues and coherent eigenimages, and a second with near-

nity eigenvalues and noise-dominated images. By using only the coherent portions in subsequent 
rocessing, the noise is separated from the data, thus improving spectral processing results [58].  

his transformation is equivalent to principal components when the noise variance is the same in all 
ands [56]. By applying the MNF to the Geophysical and Environment Research (GER) 64-band data, 
e results demonstrated the effectiveness of this transformation for noise adjustment in both the spatial 

nd spectral domains [59].  
 
Although PCA can efficiently compress hyperspectral data into a few components, this high 
concentration of total covariance only in the first few components inevitably results from part of the 

 component 
lysis. MNF, 

 

This transformation is mainly used to reduce the dimensionality of hyperspectral data before 
performing the data fusion. It was first developed as an alternative to PCA for the airborne Thematic 
Mapper (ATM) 10- band sensor [56]. It is defined as a two-step cascaded PCA [57]. The first step, 

ased on an estimated noiseb
noise has unit variance and no band-to-band correlations. The next step is a standard PCA of the noise-
whitened data.  
 
The MNF transformation is a linear transformation related to PC that orders the data according to 
signal-to-noise-ratio. It determines the inherent dimensionality of the data, segregates noise in the data 
nd reduces the computational requirea

tw
u
p
 
T
b
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a

noise variance [56], [59] and [60]. The special capability image quality with increasing
number cannot be accomplished easily using other techniques, such as PCA and factor ana
however, can help in this regard [61]. 
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3. Hard Classification Techniques 

Land cover analysis is the first level of classification that helps in identifying land cover in terms of 
vegetation and non vegetation. This is done by slope based and distance based indices depending on the 
region (arid versus vegetated area). The slope based and the distance based vegetation indices (VIs) 

elp in land cover analysis depending on the extent h of vegetation and soil in a region. The slope-based 

rties. The term pattern refers to the set of radiance 
bands for each pixel. Spectral pattern recognition 

ed for land cover 

 its background soil brightness and 

VIs are simple arithmetic combinations that focus on the contrast between the spectral response patterns 
of vegetation in the red and near-infrared portions of the electromagnetic spectrum. The distance-based 
group measures the degree of vegetation present by gauging the difference of any pixel’s reflectance 
from the reflectance of bare soil. 
 
Different feature types lead to different combinations of DNs (Digital Numbers) based on their inherent 
spectral reflectance and emittance prope
measurements obtained in the various wavelength 
refers to the family of classification procedures that utilizes this pixel-by-pixel spectral information as 
the basis for automated image classification and, indeed, the spectral pattern present within the data for 
each pixel is used as the numerical basis for categorization [19]. The overall objective of image 
classification procedures is to automatically categorise all pixels in an image into land cover classes or 
themes. Spectral Classification can be broadly categorised in to two types: Supervised classification 
and Unsupervised Classification. 
 
This chapter discusses the most commonly used Vegetation Index; NDVI (Normalized Difference 
Vegetation Index) for land cover mapping, and then highlights the various hard classification 
techniques including Supervised and Unsupervised (K-means algorithm) that are us
mapping. A comparison of the advantages and the disadvantages of the supervised and unsupervised 
approach is summarised and the chapter concludes with a brief discussion on the accuracy assessment. 

3.1. NDVI time series analysis  

Vegetated areas have a relatively high near-IR (Infrared) reflectance and low visible reflectance. Due to 
this property of the vegetation, various mathematical combinations of the NIR and the Red band have 
been found to be sensitive indicators of the presence and condition of green vegetation. These 
mathematical quantities are thus referred to as vegetation indices [19]. The most commonly used of 
these indices is the NDVI (Normalized Difference Vegetation Index) that is computed using the 

rmula (NIR-RED)/(NIR+RED). It separates green vegetation fromfo
retains the ability to minimize topographic effects while producing a measurement scale ranging from –
1 to +1 with NDVI-values ≤ 0 representing no vegetation. The NDVI is sensitive to the presence of 
vegetation, since green vegetation usually decreases the signal in the red due to chlorophyll absorption 
and increases the signal in the NIR wavelength due to light scattering by leaves [62].  
  
The success of the NDVI to monitor vegetation variations on a large scale, despite the presence of 
atmospheric effects [63], [64] and [65] is due to the normalisation involved in its definition. The 
normalization reduces the effect of degradation of the satellite calibration from 10% - 30% for a single 
hannel to 0-6% for the normalized index [66] and [67]. The effect of the angular dependence of the c

surface bidirectional reflectance and of the atmospheric effects is also reduced significantly in the 
normalized index [66], [69] and [70]. The effect of scattering and absorption by atmospheric aerosol 
and gases (mainly water vapour) and by undetected clouds is reduced significantly in the compositing 
of the NDVI from several consecutive images, choosing a value that corresponds to the maximum 
vegetation index for each pixel [69], [70] and [71].    
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The potential of computing NDVI has created great interest to study global biosphere dynamics [72]. It 
is preferred to the simple index for global vegetation monitoring because the NDVI helps compensate 
for changing illumination conditions, surface slope, aspect and other extraneous factors. Numerous 
investigators have related the NDVI to several vegetation phenomena. These phenomena have ranged 
from vegetation seasonal dynamics at global and continental scales, to tropical forest clearance, leaf 
area index measurement, biomass estimation, percentage ground cover determination and FPAR 
(fraction of absorbed photosynthetically active radiation). In turn, these vegetation attributes are used in 
various models to study photosynthesis, carbon budgets, water balance and related processes [19].  
 
Many researchers have attempted to produce regional-scale land cover datasets using coarse spatial-

ues due to differential scattering effects in red and near-infrared 
ands. Cloud-contaminated measurements also produce lower NDVI values, as clouds reflect strongly 

, [77]) have found that using a time series of the ratio of surface 
mperature to NDVI provides a more stable classification than NDVI alone, primarily by isolating 

ity of the NDVI. Lloyd [80] employed a binary 
lassifier based on summary indices derived from a time series of NDVI data. These phytophenological 

resolution, high temporal-frequency data from the AVHRR instrument aboard the NOAA series of 
meteorological satellites. Almost without exception, these efforts have involved the conversion of 
AVHRR bands 1 and 2 to Normalised Difference Vegetation Index (NDVI) values. A registered time 
series of NDVI images is then composited so that, for every pixel location, the maximum NDVI value 
encountered throughout the compositing period is output. The compositing procedure tends to select 
against measurements that are strongly influenced by atmospheric and aerosol scattering. These 
measurements have reduced NDVI val
b
in both the red and near-infrared wave bands. The compositing of NDVI values further reduces the 
variability associated with changing view and illumination geometry [68], although measurements near 
the forward-scattering direction tend to have slightly higher NDVI values and will thus be preferentially 
selected. Compositing periods are chosen based on a trade-off between the expected frequency of 
changes in vegetation and the minimum length of time necessary to produce cloud-free images. 
 
NDVI generally quantifies the biophysical activity of the land surface and, as such, does not provide 
land cover type directly. However, a time series of NDVI values can separate different land cover types 
based on their phenology, or seasonal signals (e.g. [73]). Reed et al. [74] and DeFries et al. [75] have 
developed and used multitemporal phenological metrics to derive land cover classifications from 
AVHRR data. Lambin and Ehrlich ([76]
te
interannual climatological variability. 
 
Townshend [78] performed supervised classifications on composited NDVI GAC (Global Area 
Coverage) data for South America. While they did not validate their results with test data, they found 
that accuracy for the training sites improved substantially with the increase in the number of images 
included in the time series. Koomanoff [79] used annually-integrated NDVI values to generate a global 
vegetation map using NOAA’s Global Vegetation Index product (GVI). This work represents nine 
vegetation types and does not rely on the seasonal
c
variables included the date of the maximum photosynthetic activity, the length of the growing season, 
and the mean daily NDVI value. The variables were fed through a binary decision tree classifier that 
stratified pixels based first on the date of the maximum NDVI, then the length of the growing season, 
and finally on the mean daily NDVI. 
 
A coarse-resolution global land surface parameter database was generated as an activity of the 
International Satellite Land Surface Climatology Project (ISCLSCP) [81]. The database includes land 
cover classes, absorbed fraction of photosynthetically-active radiation (FPAR), leaf area index (LAI), 
roughness length, and canopy greenness fraction, along with data on global meteorology, soils and 
hydrology. The spatial scale of the database is 1 degree by 1 degree. Variables such as FPAR, LAI and 
canopy greenness fraction are derived from 8-km composited AVHRR NDVI data. The land cover 
classification is based on a spatial aggregation of the 8-km data to one degree followed by supervised 
classification of the temporal patterns in NDVI [18]. 
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Loveland’s efforts were expanded under the auspices of the IGBP-DIS (International Geosphere 
Biosphere Programme-Data and Information System), based on a global database of 1-km AVHRR 
observations received during the period April 1992 through September 1993 [82] and [83]. These have 
been assembled and 10-day composited at the EROS Data Center (EDC). The 10-day composite 
AVHRR data were then monthly composited using maximum NDVI to remove cloud and topographic 

, as well as scan angle dependence of radiance [85]. 

projecti
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.2. Supervised Classification 

rvised c y specifying the numerical 

he following subsections discuss the classification strategies that use the ‘training set’ descriptions of 

um likelihood classifier quantitatively evaluates both the variance and covariance of the 
category spectral response patterns when classifying an unknown pixel. It is assumed that the 
distribution of the cloud of points forming the category training data is Gaussian (normally distributed). 
This assumption of normality is generally reasonable for common spectral response distributions. 
Under this assumption, the distribution of a category response pattern can be completely described by 
the mean vector and the covariance matrix. With these parameters, the statistical probability of a given 
pixel value being a member of a particular land cover class can be computed. The resulting bell-shaped 
surfaces are called probability functions, and there is one such function for each spectral category [19]. 
 
The probability density functions are used to classify an unidentified pixel by computing the probability 
of the pixel value belonging to each category. After evaluating the probability in each category, the 
pixel is assigned to the most likely class (highest probability value) or can be labelled as “unknown” if 
the probability values are all below a threshold set by the analyst. Essentially, the maximum likelihood 
classifier delineates ellipsoidal “equiprobability contours” through a scatter diagram as shown in figure 
3.1 [19].  

effects and extreme off-nadir pixels [68] and [84]
The use of the monthly-composited AVHRR data may be problematic [68]. An analysis by Zhu and 
Yang [86] determined that compositing was biased towards selecting off-nadir pixels, especially in 
forward-scanning views in winter months in the northern hemisphere. As with any large-area 

on, they also found that the effective mapping unit was geographically variable, in this case due 
de’s homolosine projection system and resampling methods. Lack of sensor calibration 

s the temporal trajectory of the multitemporal NDVI signal [87]. Temporal smoothing or 
ization might enhance the meaning of the temporal signal [98]. 
                                                                                                                                                         

al NDVI data provided a multitemporal database for land cover classification using anb
unsupervised clustering and labeling approach. The global IGBP product has recently undergone 
validation based on a global network of some 400 stratified samples that were characterized using finer-
resolution Landsat TM and SPOT-XS data following an expert interpretation approach [1]. 

3

In supe lassification, the pixel categorization process is done b
descriptors of the various land cover types present in a scene. It involves three steps –  

(1) training stage: identifying representative training areas and developing a numerical 
description of the spectral attributes of each land cover type in the scene, known as training 
set,  

(2) classification stage: each pixel in the image data set is categorized into the land cover class 
it most closely resembles, and  

(3) output stage: the process consists of a matrix of interpreted land cover category types [19]. 
 

T
the category spectral response patterns as interpretation keys by which pixels of unidentified cover type 
are categorised into their appropriate classes. 
 

3.2.1. Gaussian Maximum Likelihood Classifier (GMLC) 

The maxim
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Figure 3.1: Equiprobability contours defined by a maximum-likelihood classifier. 

 
An extension of the maximum likelihood approach is the Bayesian classifier. This technique applies 
two weighting factors to the probability estimate. First, the “a priori probability”, or the anticipated 
likelihood of occurrence for each class in the given scene is determined. Secondly, a weight associated 
with the “cost” of misclassification is applied to each class. Together, these factors act to minimize the 
“cost” of misclassification, resulting in a theoretically optimum classification. Most maximum 
likelihood classifications are performed assuming equal probability of occurrence and cost of 
misclassification for all classes. If suitable data exist for these factors, the Bayesian implementation of 
the classifier is preferable [19]. For a mathematical description of Bayes’ Classification see Annexure 
B.           

3.2.1.1. Drawback of the GMLC Technique 

The successful application of MLC is dependent upon having delineated correctly the spectral classes in 
the image data of interest. This is necessary since each class is to be modelled by a normal probability 
distribution, as discussed earlier. If a class happens to be multimodal, and this is not resolved, then 
clearly the modelling cannot be very effective [45]. The drawback of maximum likelihood classification 
is the large number of computation required to classify each pixel. This is particularly true when either 
a large number of spectral channels are involved or a large number of spectral classes must be 
differentiated. In such cases, the maximum likelihood classifier is much slower computationally than 
other algorithms [19]. In addition, MLC requires that every training set must include at least one more 
pixel than there are bands in the sensor and more often it is desirable to have the number of pixels per 
training set be between 10 times and 100 times as large as the number of sensor bands, in order to 
reliably derive class-specific covariance matrices.    
 
To increase the efficiency, of the maximum likelihood classifiers, the category identity for all possible 
combinations of digital numbers occurring in an image is determined in advance of actually classifying 
the image. Hence, the complex statistical computation for each combination is only made once. The 
categorization of each pixel in the image is then simply a matter of indexing the location of its 
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multichannel gray level. Another means of optimizing the implementation of the MLC is to use some 
data dimensionality reduction technique [19].       

3.2.2. Spectral Angle Mapper (SAM) 

In N dimensional multi-(or hyper-) spectral space a pixel vector x has both magnitude (length) and an 
angle measured with respect to the axes that defines the coordinate system of the space [45]. In the 
Spectral Angle Mapper (SAM) technique for identifying pixel spectra only the angular information is 
used. SAM is based on the idea that an observed reflectance spectrum can be considered as a vector in a 
multidimensional space, where the number of dimensions equals the number of spectral bands. If the 
overall illumination increases or decreases (due to the presence of a mix of sunlight and shadows), the 
length of this vector will increase or decrease, but its angular orientation will remain constant. Figure 
3.2 (a) shows that for a given feature type, the vector corresponding to its spectrum will lie along a line 
passing through the origin, with the magnitude of the vector being smaller (A) or larger (B) under lower 
or higher illumination, respectively. Figure 3.2 (b) shows the comparison of the vector for an unknown 
feature type (C) to a known material with laboratory-measured spectral vector (D), the two features 
match if the angle ‘α’ is smaller than a specified tolerance value [89].  
 

 

Figure 3.2: Spectral Angle Mapping concept. (a) For a given feature type, the vector 
corresponding to its spectrum will lie along a line passing through the origin, with the magnitude 
of the vector being smaller (A) or larger (B) under lower or higher illumination, respectively. (b) 

hen comparing the vector for an unknown feature type (C) to a known material with 

e defined for each spectrum and the angle between the two vectors is 
calculated. Smaller angles represent closer matches to the reference spectrum. If this angle is smaller 

 spectra are considered to match, even if one spectrum is much brighter 

medium spatial resolution sensors, such as Quickbird and 

W
laboratory-measured spectral vector (D), the two features match if the angle ‘α’ is smaller than a 
specified tolerance value. (After Kruse et al., 1993) [34]. 

 
To compare two spectra, such as an image pixel spectrum and a library reference spectrum, the 
multidimensional vectors ar

than a given tolerance level, the
than the other (farther from the origin) overall [19]. Pixels further away than the specified maximum 
angle threshold are not classified. The reference endmember spectra used by SAM can come from 
ASCII files, spectral libraries, statistics files, or can be extracted directly from the image.  
 
Girouard et al. [90] validated the SAM algorithm for geological mapping in Central Jebilet Morocco 
and compared the results between high and 
Landsat TM, respectively. The result showed that SAM of TM data can provide mineralogical maps 
that compare favourably with ground truth and known surface geology maps. Even though, Quickbird 
has a high spatial resolution compared to TM; its data did not provide good results for SAM because of 
the low spectral resolution.  
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3.2.2.1. Drawback of SAM 

SAM technique fails if the vector magnitude is important in providing discriminating information, 
which happens in many instances [45]. However, if the pixel spectra from the different classes are well 
distributed in feature space there is a high likelihood that angular information alone will provide good 

aration. This technique functions well in the face of scaling noisesep .  

process. In addition, once they have been fully trained, neural 

ore hidden layers. 

bility to generalize, and increases the time required for training [19].      

igure 3.3 shows an example of a neural network that is used to classify land covers based on a 
bination of spectral information. There are seven nodes in the input layer (Spectral Bands 1 to 7). 

After the input layer, there are two hidden layers, each with nine nodes. Finally, the output layer 
consists of six nodes, each corresponding to a land cover class. When given any combination of input 
data, the network produces the output class that is most likely to result from that set of inputs, based on 
the network’s analysis of previously supplied data. Applying a NN to image classification makes use of 
an iterative training procedure in which the network is provided with matching sets of input and output 
data. Each set of input data represents an example of a pattern to be learned, and each corresponding set 
of output data represents the desired output that should be produced in response to the input. During the 
training process the network autonomously modifies the weights on the linkages between each pair of 
nodes in such a way as to reduce the discrepancy between the desired output and the actual output [19]. 
 
 
 
 

3.2.3. Neural Network 

To overcome difficulties in conventional digital classification that uses the spectral characteristics of the 
pixel as the sole parameter in deciding to which class a pixel belongs to, new approaches such as Neural 
Networks (NN) are being used. They can be used to perform traditional image classification tasks [91] 
and are also increasingly used for more complex operations such as spectral mixture analysis [92]. For 
image classification, neural networks do not require that the training class data have a Gaussian 
statistical distribution, a requirement that is held by maximum-likelihood algorithms. This allows neural 
networks to be used with a much wider range of types of input data than could be used in a traditional 

aximum-likelihood classification m
networks can perform image classification relatively rapidly, although the training process itself can be 
quite time consuming. NN systems are “self-training” in that they adaptively construct linkages 
between a given pattern of input data and particular outputs [19].    
    
A NN consists of a set of three or more layers, each made up of multiple nodes. These nodes are 
somewhat analogous to the neurons in a biological neural network and thus are sometimes referred to as 
neurons”. The network’s layers include an input layer, an output layer, and one or m“

The nodes in the input layer represent variables used as input to the neural network. Typically, these 
might include spectral bands from a remotely sensed image, textural features or other intermediate 
products derived from such images, or ancillary data describing the region to be analysed. The nodes in 
the output layer represent the range of possible output categories to be produced by the network. If the 
network is being used for image classification, there will be one output node for each class in the 
classification system [19].  
 
Between the input and output layers are one or more hidden layers. These consist of multiple nodes, 
each linked to many nodes in the preceding layer and to many nodes in the following layer. These 
linkages between nodes are represented by weights, which guide the flow of information through the 
network. The number of hidden layers used in a neural network is arbitrary. An increase in the number 

f hidden layers permits the network to be used for more complex problems but reduces the network’s o
a
 
F
com
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Figure 3.3: Example of an artificial neural network with one input layer, two hidden layers and 
one output layer [19].   

 
The bulk of neural network classification work in remote sensing has used multiple layer feed-forward 
networks that are trained using the back-propagation algorithm based on a recursive learning procedure 
with a gradient descent search [4]. However, this training procedure is sensitive to the choice of initial 
network parameters and to over-fitting [93]. The use of Adaptive Resonance Theory (ART) can 
overcome these problems. Networks organized on the ART principle are stable as learning proceeds, 
while at the same time they are flexible enough to learn new patterns and improves especially the 
overall accuracy of classification of multi-temporal data sets [94], [93]. Recent MODIS-based land 
cover classification used a class of ART NN called fuzzy ARTMAP, for classification, change detection 
and mixture modelling. Many studies based on ARTMAP have been directed toward recognition of 
land cover classes, which have ranged from broad life-form categories [95] to floristic classes [96]. 
 
Remotely sensed datasets processed by NN-based classifiers have included images acquired by the 
Landsat Multispectral Scanner (MSS) [97], [98], Landsat TM [99], Synthetic Aperture Radar [100], 
SPOT HRV [101], AVHRR [94] and aircraft scanner data [102]. A number of these studies have also 
included ancillary data e.g., topography [103] and texture [104]. Most use a supervised approach, but 
unsupervised classification using self-organizing neural networks has also been attempted [100]. In all 
cases, the neural network classifiers have proven superior to conventional classifiers, often recording 
overall accuracy improvements in the range of 10-20 percent. As the number of successful applications 
of neural network classification increases, it is increasingly clear that neural network-based 
classification can produce more accurate results than conventional approaches for remote sensing.  
 

3.2.3.1. Summary of Neural Network 

While there are a variety of different NN models, most remote sensing applications have used a 
supervised, feedforward structure employing a backpropagation algorithm that adjusts the network 
weights to produce convergence between the network outputs and the training data. In overview, the 

34 



EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

NN classifier is composed of layers of “neurons” that are interconnected through weighted synapses. 
The first layer consists of the classification input variables and the last layer consists of a binary vector 
representing the output classes. Intermediate, “hidden” layers provide an internal representation of 
neural pathways through which input data are processed to arrive at output values or conclusions. 
   
In a supervised approach, the neural network is trained on a dataset for which the output classes are 
known. In this process, the input variables are fed forward through the network to produce an output 
vector. During a following backpropagation phase, the synapse weights are adjusted so that the network 
output vector more closely matches the desired output vector, which is a binary-coded representation of 
the training class. The network weights, or processing element responses, are adjusted by feeding the 
summed squared errors from the output layer back through the hidden layers to the input layer. In this 
fashion, the network cycles through the training set until the synapse weights have been adjusted so that 
the network output has converged, to an acceptable level, with the desired output. The trained neural 
network is then given new data, and the internal synapses guide the processing flow through excitement 
and inhibition of neurons. This results in the assignment of the input data to the output classes. 

3.2.3.2. Advantages and drawbacks of Neural Networks 

(i) Neural network classifiers, without any priori assumptions about data distributions, are able to 
learn nonlinear and discontinuous patterns in the distribution of classes. 

(ii) Neural networks can readily accommodate auxiliary data such as textural information, slope, 
aspect and elevation, and  

(iii) Neural networks are quite flexible and can be adapted to improve performance for particular 
problems [1]. 

 
The back propagation NN is not guaranteed to find the ideal solution to a particular problem. During 
the training process the network may develop in such a way that it becomes caught in a “local 
minimum” in the output error field, rather than reaching the absolute minimum error. Alternatively, the 
network may begin to oscillate between two slightly different states, each of which results in 
approximately equal error [105]. A variety of strategies have been proposed to help push neural 
networks out of these pitfalls and enable them to continue development toward the absolute minimum 
error. Again, the use of ANN in image classification is the subject of continuing research [19]. 
 

3.2.4. Decision Tree Approach 

Decision tree approach is a non-parametric classifier and an example of machine learning algorithm. It 
involves a recursive partitioning of the feature space, based on a set of rules that are learned by an 
analysis of the training set. A tree structure is developed where at each branching a specific decision 
rule is implemented, which may involve one or more combinations of the attribute inputs. A new input 
vector then “travels” from the root node down through successive branches until it is placed in a 
specific class [4]. 
 
The thresholds used for each class decision are chosen using minimum entropy or minimum error 
measures. It is based on using the minimum number of bits to describe each decision at a node in the 
tree based on the frequency of each class at the node. With minimum entropy, the stopping criterion is 
based on the amount of information gained by a rule (the gain ratio) [4].  
 
A decision tree is composed of a root node, a set of interior nodes, and terminal nodes, called “leaves”. 
The root node and interior nodes, referred to collectively as non-terminal nodes, are linked into decision 
stages. The terminal nodes represent final classification. The classification process is implemented by a 
set of rules that determine the path to be followed, starting from the root node and ending at one 
terminal node, which represents the label for the object being classified. At each non-terminal node, a 
decision has to be taken about the path to the next node. Figure 3.4 illustrates a simple decision tree 
using pixel reflectance as input [4]. 
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Figure 3.4: Example of Decision Tree 

 
• If there are k classes denoted {C1, C2,….Ck}, and a training set, T, then 
• If T contains one or more objects which all belong to a single class Cj, then the decision tree is 

pt was m s under different manure/fertilizer 

tree algorithm of data mining technology was used to 
ments. The decision tree approach divided the 

any tree branches. 

e study suggest that the decision tree 
lassifier performs well. The boosting technique improved the classification accuracy of a base 

a leaf identifying class Cj. 
• If T contains no objects, the decision tree is a leaf determined from information other than T.  
• If T contains objects that belong to a mixture of classes, then a test is chosen, based on a single 

attribute that has one or more mutually exclusive outcomes {O1, O2,…On}. T is portioned into 
subsets T1, T2,…Tn, where Ti contains all the objects in T that have outcome Oi of the chosen 
test. The same method is applied recursively to each subset of training objects to build the 
decision tree. 

 
An attem ade by [106] to classify the agricultural field
application strategies. During the summer of 2000, airborn hyperspectral data were collected three times 
at two field sites in south-western Quebec, Canada. One field site contained plots that were amended 
with manure treatments and planned with maize and soya beans. The second field site contained plots 
that received chemical fertilizers and were planted with maize. Reflectances of 71 wave bands of 
hyperspectral data were collected and the decision 
distinguish between manure and chemical fertilizer treat
data to reduce the deviance, and classified them into the pre-defined categories as m
The success of the classification rate was reported to be high. 
 
A decision tree classifier was used for land use classification using Landsat-7 ETM+ data for an 
agricultural area near Littleport (Cambridgeshire), UK, for the year 2000. A field study was carried out 
to collect ground truth information about the various land use classes. Six land use classes (wheat, sugar 
beet, potatoes, peas, onions and lettuce) were selected for classification, and a univariate decision tree 
classifier was used for labelling the image pixels. The results of th
c
classifier and the classification accuracy increased [107]. 

3.2.4.1. Advantages of Decision Tree Approach 

The advantages of decision tree classifier over traditional statistical classifier include its simplicity, 
ability to handle missing and noisy data, and non-parametric nature. Decision trees are not constrained 
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by any lack of knowledge of the class distributions. It can be trained quickly, takes less computational 
time. 

3.3. Unsupervised Classification 

The strength of supervised classification based upon the maximum likelihood procedure is that it 
minimises classification error for classes that are distributed in a multivariate normal fashion. 
Moreover, it can label data relatively quickly. Its major drawback lies in the need for training data and 
the need to have delineated unimodal spectral classes beforehand. This, however, is a task that can be 
handled using clustering, based upon a representative subset of image data. Used for this task, 

on performs the valuable function of identifying the existence of all spectral 

 spectrally similar pixels has been established in the image data. This 

lities of class 
em

by p

3.3

sers o sses. Occasionally it might be 
 in general, the user 

in multispectral 
pac pplied in 

man itions the 
ima
thos p
…… a
clas

terest,

unsupervised classificati
classes, yet it is not expected to perform the entire classification.  
 
Unsupervised Classification is an analytical procedure based upon clustering algorithms. Unsupervised 
classifiers do not utilize training data as the basis for classification. Rather they examine the unknown 
pixels in an image and aggregate them into a number of classes based on the natural groupings or 
clusters present in the image values. The basic premise is that the values within a given cover type 
should be close together in the measurement space, whereas data in different classes should be 
comparatively well separated. The classes that result from unsupervised classification are spectral 
classes. Thus, here spectrally separable classes are determined and then their informational utility is 
defined [19]. The identification of classes of interest against reference data is often more easily carried 

ut when the spatial distribution ofo
is an advantage of unsupervised classification and the technique is therefore a convenient means by 
which to generate signatures for spatially elongated classes such as rivers and roads [45]. Consequently, 
it is not unusual in practice to iterate over sets of steps as experience is gained with the particular 
problem at hand [45]. A final point that must be taken into account when contemplating unsupervised 
lassification via clustering is that there is no facility for including prior probabic

m bership. By comparison the decision functions for maximum likelihood classification can be biased 
revious knowledge or estimates of class membership [45].  

.1. Clustering 

f remotely sensed data can only specify the information claU
possible to guess the number of spectral classes in a particular information class but,

ould have little idea of the number of distinct unimodal groups that the data falls into w
s e. Clustering procedures can be used for that purpose. These are methods that have been a

 Clustering party data analysis fields to enable inherent data structures to be determined.
dge ata into a number of spectral classes, and then labels all pixels of interest as belonging to one of 

e s ectral classes, although the labels are purely nominal (e.g. A, B, C, …., or class1, class 2, 
.) nd are as yet unrelated to ground cover types. Clustering is also the basis for unsupervised 

sification. The classes are preferably unimodal; however, if simple unsupervised classification is of 
 this is not essential [45].  in

 
Clustering techniques fall into a group of undirected data mining tools [108]. The goal of clustering is 
to discover structure in the data as a whole. There is no target variable to be predicted and thus no 
distinction is being made between independent and dependent variables. Clustering techniques are used 
for combining observed examples into clusters (groups) which satisfy two main criteria: 
 

a) Each group or cluster is homogeneous; i.e. examples that belong to the same group are similar 
to each other. 

b) Each group or cluster should be different from other cluster, i.e. examples that belong to one 
cluster should be different from the examples of other clusters. 

 
Depending on the clustering technique, clusters can be expressed in different ways: 
 

a) Identified clusters may be exclusive, so that any example belongs to only one cluster. 
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b) They may be overlapping, an example may belong to several clusters. 

st employed to determine the spectral classes, using a subset of the image data. It is 
erefore recommended that about 3 to 6 small regions, or so-called candidate clustering areas, be 

 an iterative clustering procedure is used, the analyst will have to pre-specify the number of clusters 

ring is generated on a sample of data, with a second phase 
 o a cluster. Feature selection would be performed between the two 

ecisions about merging can be made on the basis of separability measures. During the rationalisation 

ents. Sometimes, depending 
pon the cases in hand, the most significant pair of spectral bands would be chosen in order to view the 

i-

This s 
r an average, an average location of all the members of a particular cluster). When dealing with 

ents a distance 
of example from the origin along the attribute axes. Of course, in order to use this geometry 

c) They may be probabilistic, whereby an example belongs to each cluster with a certain 
probability. 

d) Clusters might have hierarchical structure, having crude division of examples at highest level of 
hierarchy, which is then refined to sub-clusters at lower levels. 

 
Clustering is fir
th
chosen for this purpose. These should be well spaced over the image and located such that each one 
contains several of the cover types (information class) of interest and such that all cover types are 
represented in the collection of clustering areas. An advantage in choosing heterogeneous regions to 
cluster, as against apparently homogeneous training areas used in supervised classification, is that 
mixture pixels lying on class boundaries will be identified as legitimate spectral classes [45].  
 
If
expected in each candidate area. Experience has shown that, on average, there are about 2 to 3 spectral 
classes per information class. This number should be chosen with a view of removing or rationalising 
unnecessary clusters at a later stage. It is useful to cluster each region separately as this saves 
computation, and produces cluster maps within those areas with more distinct class boundaries than 
would be the case if all regions were pooled beforehand [45]. 
 
Most clustering procedures in remote sensing generate the mean vector and covariance matrix for each 
cluster found. Accordingly, separability measures can be used to assess whether feature reduction is 
necessary or whether some clusters are sufficiently similar spectrally and should be merged. These are 
only considerations of course if the cluste
used to allocate all image pixels t
phases [45].      
 
Clustering sorts the image into unknown classes [45]. Following this sorting of the data space by 
clustering, the clusters or spectral classes are associated with information classes – i.e. ground cover 
types – by the analyst, using available reference data. Thus a posteriori identification may need to be 
performed explicitly only for classes of interest. The other classes will have been used by the algorithm 
to ensure good discrimination but will remain labelled only by arbitrary symbols rather than by class 
names [45].  
 
D
procedure it is useful to be able to visualise the locations of spectral classes. For this a bispectral plot 
can be constructed. This bispectral plot is not unlike a two dimensional scatter plot view of the 
multispectral space in which the data appears. However, rather than having the individual pixels shown, 
the class or cluster means are located according to their spectral compon
u
relative locations of the cluster centres. In general, the choice of bands and combinations to use in a b
spectral plot will depend on the sensor and application. Sometimes, several plots with different bands 
will give a fuller appreciation of the distribution of classes in feature space [45]. For a discussion on 
clustering criteria, please see Annexure B. 

2. K – Means Algorithm 3.3.

 algorithm has as an input, a predefined number of clusters (i.e., the K from its name. Means stand
fo
clustering techniques, one has to adopt a notion of a higher dimensional space, or space in which 
orthogonal dimensions are all attributes. The value of each attribute of an example repres

the 
efficiently, the values in the data set must all be numeric (categorical data must be transformed into 
numeric ones) and should be normalized in order to allow fair computation of the overall distances in a 
multi-attribute space. 
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The K-means algorithm is a simple, iterative procedure, in which a crucial concept is the one of 
centroid”. Centroid is an artificial point in the space of records which represents an average location of 

this point are averages of attribute values of all examples that 
to -means algorithm are given below. 

ii) Calculate new centroids of the clusters. For that purpose, average all attribute values of the 

 this ples to clusters needs 
ee Annexure B. 

 of the data space in the absence of any information provided by any 
nalyst. Analyst information is used only to attach information class (or ground cover type, or map) 

pared 
ith clustering. For example, for Landsat MSS data, therefore, in a situation where all 4 spectral bands 

are used, clustering would have to be completed within  be speed  MLC.  
 
Trainin lassifie % mand; however a significant time 
loading should also be added to clustering to acco  labelling phase. Often this is done by 
associating pixels with the nearest (Euclidean dista er, som alanobis, or 
Maximum Likelihood dis . Th bstantially to the cost of the clustering. 

“
the particular cluster. The coordinates of 
belong  the cluster. The steps of the k
 
(i) Select randomly k points (it can also be examples) to be the seeds for the centroids of k clusters. 
(ii) Assign each example to the centroid closest to the example, forming in this way k exclusive 

clusters of examples. 
(i

examples belonging to the same cluster (centroid). 
(iv) Check if the cluster centroids have changed their “coordinates”. If yes, start again from the step 

(ii). If not, cluster detection is finished and all examples have their cluster memberships defined. 
 
Usually iterative procedure of redefining centroids and reassigning the exam
only a few iterations to converge. For a discussion on cluster detection s

 
To summarise, clustering techniques are used when there are natural grouping in a data set. Clusters 
should then represent groups of items that have a lot in common. Creating clusters prior to application 
of some other data mining technique might reduce the complexity of the problem by dividing the space 
of data set. This space partitions can be mined separately and such two steps procedure might give 
improved results as compared to data mining without using clustering. 
 

3.3.3. Drawbacks of Clustering 

The result of unsupervised classification is simply the identification of spectrally distinct classes in 
image data. Hence, proper interpretation of these spectral classes by analyst is required along with 
reference data to associate the spectral classes with the cover types of interest. This process, like the 
training set refinement step in supervised classification, can be quite involved [19].  
 
Access to efficient hardware and software is an important factor in determining the ease with which an 
unsupervised classification can be performed. The quality of the classification still depends upon the 
analyst’s understanding of the concepts behind the classifiers available and knowledge about the land 
cover types under analysis [19].   

3.4. Supervised versus Unsupervised Classification 

In contrast to the a priori use of analyst-provided information in supervised classification; unsupervised 
classification is a segmentation
a
labels to the segments established by clustering. Clearly this is an advantage of the approach. However, 
it is a time-consuming procedure computationally by comparison to techniques for supervised 
classification. Suppose a particular classification exercise involves N spectral bands and C classes. 
MLC requires CPN (N+1) multiplications where P is the number of pixels in the image segment of 
interest. By comparison, clustering of the data requires PCI distance measures for I iterations. Each 
distance calculation demands N multiplications (usually distance squared is calculated avoiding the 
need to evaluate the square root operation), so that the total number of multiplications for clustering is 
PCIN. Thus the speed comparison of the two approaches is approximately (N+1)/I for MLC com
w

 5 iterations to  competitive with

g of the c r would add about a 10

tance labelling is used

loading to its time de
unt for the
nce) cluster. Howev
is adds su

etimes Mah
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Because of the time dema  algorithm sifica often carried out 
with small image segment resen ata is used in the actual clustering 
phase in order to cluster o  feature spac rmation th  all the 
image pixels to a cluster [45].  
 
When comparing time requirement of supervised unsupervised classificatio lled that 
a large demand on user time is required in trai rocedure sary both 
determining training data and then identifying by reference to that data. The 
corresponding step in unsupervised classification i
earlier, data are only required for those classes of int only a handful of labelled pixels is 
necessary to identify a class. By comparison, su  pixels per class are required in 
supervised training to ensure reliable estimates of class signatures are generated [45]. Table 3.1 
summarises the genesis, advantages and the disadvantages of all the techniques discussed above. 
 

Algorithms Genesis es Disadvantages 
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erest; moreover 
fficient training
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identifying angular 
spectra and 
classifying the pixel. 
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states, each of 
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Training Ne
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• 

DTA is a non-
parametric classi
and an example of 
machine learn
algorithm that 
involves a recursive
partitioning of the
feature space, based 
on a set of rules that 
are learned by an 
analysis of the 
training set.  

• 
“divide and 
conquer” strategy. 

A tree structure is 
developed wh
each branching a 
specific decision ru

handle m
noisy data, and non

arametric nature. 

It can genera
understanda

translated int
comprehensible 
English or SQL. 

DTA can t
forms, in practice, 
the algorithms use
to produce
trees generally yield 
trees with a low 
branching 
simple tests a
node. 

 Decision trees are
ss appropriate for 
timation

edict the value of a 

ch as remote 
nsing data.  

 Decision trees a

time-series data 
unless a lot of eff
is put into 
presenting the d
in such a way that 
trends and 
sequential patterns 
are made vis

The process of 
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is implemented, 
which may involve 
one or more 
combinations of the 
attribute inputs. A 
new input vector 
then “travels” from 
the root node down 
through successive 
branches until it is 
placed in a specific 
class. 

 
• At each branching, a 

specific decision rule 
is implemented, 
which may involve 
one or more 
combinations of the 
attribute inputs or 
features. 

 
•
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•
h 
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one branch for each 
category. 
Continuous 
variables are equally 
easy to split by 

s
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 DTA are equally 
adept at handling 
continuous and 

variables.  

 Categorical 
variables, whic
 pose problems for 
neural networks a
statistical 
techniques, come 
ready-made with 
their own 

picking a number 
omewhere in their 

• 
to clearly indicate 

est fields. 
ecision-tree 

ut the field that 

ode of the tree. 

growing a decisio
tree is 
computationa
expensive. A

candidate splitting 
field must
before its best split 
can be found.  

In some algorithm
combinations of 
fields are used and a 
search must be 
made for optim
combining weigh
Pruning algorith
can also be 
computationall
expensive since 

sub-trees must 
formed and 
compared. 

DTA have trouble
with non-
rectangular regions
Most decision-tree
algorithms only
examine a single 
field at a time
leads to rectang
classific
that may not 
correspond well
with the actual 
distribution of 

decision space. 

K – Means Clustering It examines the 
unknown pixels in 
an image and 
aggregates them into 
a number of classes 
based on the natural 
groupings or clusters 
present in the image 
values. 

 
• The values within a 

given cover type 
should be close 

•  
the training data as 

 
 
 The identification 

 
is 

often more easily 
carried out when 
the spatial 
distribution of 

• 
 

t 

essarily 
he 

re 

• It does not utilize

the basis for 
classification.

•
of classes of 
interest against
reference data 

The results of 
clustering is simply
the identification of 
spectrally distinc
classes in image 
data. These classes 
do not nec
correspond to t
informational 
categories that a
of interest to 
analyst. Hence 
proper 
interpretation of 
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together in the 
measurement space, 
whereas data in 
different classes 
should be 
comparatively well 
separated. 

 

spectrally similar 
pixels has been 
established in the 
image data.  
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region required. 

 
• The opportunity for 

human error 
minimized. 

 
• Unique classes are 
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required along with 

 
•  
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constant and 

to others. 
 
• The quality of 

classification still 
depends upon the 
analyst’s 
understanding of 
the concepts behind 
the classifiers 
available and 
knowledge about 
the area under 
analysis. 

these class

reference data. 

Spectral properties
of specific
information classe
will change over 
time (on a seas
basis, as well a
over the years.) As
a result, relation
between 

recognised as 
distinct units. 

classes and sp
classes are not

 
 
 
 

relationship defined 
for one image can 
seldom be extended 

 

Table 3.1: Genesis, advantages and the disadvantages of the classification techniques. 

 
Figure 3.5, shows the steps for the LISS-3 preprocessing and classification. Figure 3.6 shows the 
overall methodology of the processing and hard classification of the MODIS bands 1 to 7, MODIS 
Principal Components and MODIS MNF components. A total of 14 different maps are produced from 
the MODIS classification which is discussed in Chapter 5. 
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Figure 3.5: LISS-3 Preprocessing and Classification. 
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Figure 3.6: Processing and Hard Classification of MODIS data. 

3.5. Validation of the result 

Statistical accuracy assessment of classified data is done to measure the agreement of classification with 
the field data (ground condition), and it constitutes an important stage in remote sensing data 
classification. One of the most common means of expressing classification accuracy is the preparation 
of a classification error matrix (also called confusion matrix or a contingency table). An adequate 

umber of sample points representing different land cover categories are identified on the training data 
sets for accuracy estimation. A one-to-one comparison of the categories is mapped from all the training 
n
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datasets and the classified image. Then based on the confusion matrix (errors of commission and 
omission), accuracy estimation in terms of producer's accuracy, user's accuracy, overall accuracy is 
subsequently calculated [109]. The Bradley-Terry (BT) model, which compares categories pairwise, 
was also attempted for accuracy assessment. The probability of one class over another class is estimated 
as well as the expected values of class pixels [110].   

3.5.1. Classification Error Matrix 

Error matrices compare, on a category by category basis, the relationship between the reference field 
data (ground truth) and the corresponding results of a classification. These are square matrices having 
equal number of rows, columns and categories (whose classification accuracy is being assessed). The 
major diagonal of the error matrix represents the properly classified land use categories. The non-
diagonal elements of the matrix represent errors of omission or commission. Omission errors 
correspond to non diagonal column elements and commission errors are represented by non diagonal 

w elements. Overall accuracy is computed by dividing the total number of correctly classified pixels 
(sum of the elements along the major diagonal) by the total number of references pixels. Similarly, the 
ccuracies of individual categories can be calculated by dividing the number of correctly classified 
ixels in each category by either the total number of pixels in the corresponding row or column. 

number of correctly classified pixels in each category 
ng set pixels used for that category (the column total). 

ser’s accuracies are computed by dividing the number of correctly classified pixels in each category 

ro

a
p
Producer’s accuracies result from dividing the 
(on the major diagonal) by the number of traini
U
by the total number of pixels that were classified in that category (the row total). This figure is a 
measure of commission error and indicates the probability that a pixel classified into a given category 
actually represents that category on the ground. Finally, the khat (KHAT or Kappa) statistics is a 
measure of the difference between the actual agreement between the reference data and an automated 
classifier and the chance agreement between the reference data and a random classifier. 
 

k = observed accuracy – chance agreement
1 – chance agreement 

 
This statistics serves as an indicator of the extent to which the percentage correct values of an error 

atrix are due to “true” agreement versus “chance” agreement. As true agreement observed approaches 
1 and chance agreement approaches 0, k approaches 1. This is the ideal case. In reality, k usually ranges 
m

between 0 and 1 [19].  
 
The results and findings of the above algorithms on MODIS data are discussed in Chapter 5 (Results) 
and their accuracy assessment is done in Chapter-6 (Accuracy Assessment). 
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4. Soft Classification: Spectral             
Unmixing 

4.1. Introduction  

Low spatial resolution space borne sensors (such as MODIS) improve the ability to image large areas of 
arth’s surface quickly and inexpensively. The emergence of hyperspectral technology based on the 

d the limitation of few spectral bands as is the case with 
e mapping of each spatial resolution element the pixel, to a 
ctors interact to produce the signal received by the imaging 

pectrometer for any pixel. Spatial mixing of materials within a pixel footprint result in spectrally 
 is necessary for identifying and discriminating the 

nt spatial features present on the earth’s surface.   

the most popular methods used for classifying remotely sensed data is to identify the pixels 
ng user-specified categories. This image classification routine assumes “pure” or homogeneous 

 
ethods, such as spectral 

d spectral angle mapper [113] are appropriate 
aterials with correlated spectra, have been developed.  

izes of 250 m and 
 km, respectively) and is thus typically larger than the surface expression of features on the earth’s 

 is interested in classifying a single pixel, unless of 
objects of subpixel size [111]. On the 

ther hand, it is often the case in remote sensing that one wants to deal with identification, detection and 

 are normally 
und in boundaries between two or more mapping units, along gradients, etc. when the occurrence of 

any linear or small subpixel object takes place as shown in figure 4.1. 

e
spectral imaging principle has remove
multispectral data. Spectral imaging is th
quantized energy spectrum. A variety of fa
s
mixed reflected signals. Classification of these pixels
differe
 
One of 
containi
pixels and allocates a pixel to the maximally “similar” class, which is then expected to be the class of
maximum occupancy within the pixel [111]. A variety of other classification m
matched filter [112], mixture tune matched filtering an
when pixels do not contain mixtures of m
 
Natural surfaces are rarely composed of a single uniform category. For example, each pixel produced 
by MODIS covers approximately 62,500 m2 – 1,000,000 m2 on the ground (for pixel s
1
surface. Therefore, it is seldom the case that one
course the application is specifically oriented toward identifying 
o
quantification of fractions of the target materials for each pixel for diverse coverages in a region. Thus 
the problem of mixed pixel classification is a major issue in remote sensing and geography and many 
approaches have been developed to deal with it. For those cases, a more suitable way of extracting 
information is to estimate the composition of each pixel by spectral unmixing. This approach is known 
as soft classification. Subpixel classifiers deal with the mixed pixel problem. Mixed pixels
fo
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igure 4.1: Four cases of mF ixed pixels [116].  

each class, which depends on the 
haracteristics of the class type and the area covered by that type. 

t, larger ground coverage and higher temporal resolution than many other systems [22].  

The linear unmixing method [120], is used for solving the mixed pixel problem of MODIS data.  The 
hypothesis underlying linear unmixing is that the spectral radiance measured by the sensor consists of 
the radiances reflected by all of these materials, summed in proportion to the sub-pixel area covered by 
each material. To the degree that, this hypothesis is valid, and that the ‘endmembers’ are given by the 
reference spectra of each of the individual pure materials, and under the condition that these spectra are 
linearly independent, then in theory one can deduce the makeup of the target pixel by calculating the 
particular combination of the endmember spectra required to synthesize the target pixel spectrum. In 
dealing with coarse resolution data, it is assumed that the spectral response due to ground class mixtures 

 
To resolve the mixed pixel problem, the scale and linearity of the mixture have been investigated by 
several researchers, (e.g. [115], [116], [21], [111] and [117]). There have been two different models. 
The microscopic mixture model considers mixing as nonlinear. It deals with not only with the pixel of 
interest, but also neighbouring pixels. The macro spectral mixture model assumes no interaction 
between materials and a pixel is treated as a linear combination of signatures resident in the pixel with 
relative concentrations. This is also referred as Linear Mixture Model (LMM). The basic idea of the 
LMM is the assumption of insignificant multiple scattering between the different class types, i.e., each 
photon that reaches the sensor has interacted with just one class type. Therefore, the received energy 
an be considered as a sum of the energies received from c

c
 

4.2. Linear Unmixing 

To address the problem of mixed pixels, there is a growing interest in the use of techniques designed to 
estimate class proportions (rather than a single class label) for individual pixels (eg. [118], [119]). Such 
methods attempt to model the spectral response from a mixture of classes and the approach is 
generically termed as ‘mixture modelling’. If the mixture model can provide information from MODIS 
data compared to that normally obtained from higher resolution data, albeit at 250 m to 1 Km 
resolution, then MODIS data is particularly attractive for many applications because of their relatively 
low cos
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varies linearly with the relative proportions of those classes. Sites of ‘pure’ land cover for each class (or 
‘component’) of interest are identified, and their spectra used to define ‘endmember’ signatures. These 
signatures lie at extreme ends of a continuum in spectral feature space. According to this linear mixture 
model, the position of the spectral signature of an input pixel along this continuum indicates directly the 
percentage cover for each component [21]. 
 
A linear relation is used to represent the spectral mixture of targets within the pixel of remote sensing 
system. Based on this assumption, the response of each resolution element (pixel) of the remote sensing 
system in any spectral wavelength can be considered as a linear combination of the responses of each 
component, which are assumed to be in the mixture. Thus, each image pixel, which can assume any 
value within the gray scale, contains information about the proportion and spectral response of each 
component within the ground resolution unit. 
 
Hence, given a hyperspectral image, it is possible to model each pixel spectrum of this image as a linear 
combination of a finite set of components:   
 
r  = a  * x  + a  * x  + ... + a  * x  + e

j l. 

he reflected spectrum of a pure feature is called a reference or endmember spectrum. Endmember 

1 11 1 12 2 1n n 1
r2 = a21 * x1 + a22 * x2 + ... + a2n * xn + e2  
rm = am1 * x1 + am2 * x2 + ... + amn * xn + em
 
or 
       n 
ri = ∑(aij  xij) + ei                                                                              ---------------------equation (4.1)
           j=1 
where, 
ri = Spectral reflectance of the pixel in ith spectral band of a pixel containing one or more components. 
aij = Spectral reflectance of the jth component in the pixel for ith spectral band. 
x  = Proportion value of the jth component in the pixe
ei = Error term for the ith spectral band. 
 
The error term (ei) is due to the assumption made that the response of each pixel in any spectral 
wavelength is a linear combination of the proportional responses of each component  
 
j = 1, 2, 3 ... n (Number of components assumed) 
i = 1, 2, 3 ... m (Number of Spectral bands for the sensor system) 
 
A linear constraint is added, since the sum of the proportions for any pixel must be one. Also, the 
proportion values must be non-negative. Considering that in case of the hyperspectral image analysis, 
the number of components (n) is less than the number of spectral bands (m) of sensor, the system of the 
equation is over-determined and can be solved by a number of techniques such as the Constrained 
Least-Squares method [120]. The diagonal elements in equation (4.1) are the pure pixels. 
 

4.3. Constraint Least Squares method (CLSM) 

Constrained Least Squares Method (CLSM) estimates the proportion of each component within a pixel 
by minimizing the sum of squares of the errors [120]. The proportion values must be non-negative, and 
they also must add to one. In order to solve this problem, a quasi-closed solution method (e.g., a method 
which achieves the solution by making approximations to the variables in order to satisfy the 
constraints) is used. For a mathematical derivation of CLSM, please see Annexure C. 

4.4. Endmember Extraction 

T
spectra are extracted under idealized laboratory conditions where reflected spectrum is obtained with a 
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spectrometer focused on a single feature. When this is impractical, the endmembers are derived from 
imagery manually. 
 
One possible source for the endmember spectra are libraries of spectral reflectance. The risk in using 
such library spectra is that the library spectra are rarely, if ever, acquired under the same conditions as 
the air-borne/space-born data. A better match will be obtained if the endmember spectra are taken from 
the image cube under analysis.  
 
Techniques have been developed to automatically extract endmember spectra from the remotely sensed 
data set [121]. All these algorithms have been successfully used to determine end-members and unmix 
several hyperspectral data sets without the use of any priori knowledge of the constituent spectra [122].  
 
Endmember variability was incorporated into mixture analysis by representing each endmember by a 

7% for senescent grass, and 93% for trees. Averages of bounding images 
stimated fractional coverage used in the simulation with an average error of ≤ 0.05, a significant 

d when these lengths are very different. The attempt could derive an improved representation of 
e error term, or residual, in the linear mixture model, taking account of the variability of endmember 

ligent review of the spectra themselves and through N-dimensional visualization 

set or bundle of spectra, each of which could reasonably be the reflectance of an instance of the 
endmember. Endmember bundles were constructed from the data itself by a small extension to the 
method of manually deriving endmembers from the remote sensing data. When applied to remotely 
sensed images, bundle unmixing produced maximum and minimum fraction images bounding the 
correct cover fractions and specifying error due to endmember variability. This paper discussed a 
method by which the endmember bundles and bounding fraction images were created for an airborne 
visible/infrared imaging spectrometer (AVIRIS) subscene simulated with a canopy radiative 
transfer/geometric-optical model. Variation in endmember reflectance was achieved using ranges of 
parameter values including leaf area index (LAI) and tissue optical properties observed in a North 
Texas Savana. The subscene’s spatial pattern was based on a 1992 Landsat Thematic Mapper image of 
the study region. Bounding fraction images bracketed the cover fractions of the simulated data for 98% 
of the pixels for soil, 9
e
improvement over other methods with important implications for regional-scale research on vegetation 
extent and dynamics [123]. 
 
In a study conducted by [124], the endmember spectra have been allowed to have random fluctuations, 
giving rise to a covariance matrix for the residual that depends on the underlying proportions using 
linear model. It was shown that under a simple set of models for the variability for both endmembers 
and abundance, the covariance matrix for the residual is a weighted sum. Generally, the balance is 
determined by the length scale for changes in the reflectance of any given cover type, and the length 
scale for changes in surface cover itself; one or other of the two limit models (linear or non-linear) is 
preferre
th
spectra, and of subpixel variation in fractional abundance of surface cover. A few of the endmember 
extraction techniques used in this study are discussed briefly here. 
 

4.4.1. Pixel Purity Index (PPI)  

A dimensionality reduction is first performed using the MNF transformation (refer section 2.3.2 in 
chapter 2). The next step is the calculation of the pixel purity index for each point in the image cube. 
This is accomplished by randomly generating lines in the N-dimensional space comprising a scatter plot 
of the MNF transformed data. All of the points in the space are then projected onto the line. Those 
pixels that fall at the extremes of the lines are counted. After many repeated projections to different 
lines, those pixels with a count above a certain threshold are declared “pure”. As a result, there will be 
many redundant spectra in the pure pixel list. The actual end-member spectra are selected by a 
combination of intel
[122]. 
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4.4.2. Scatter Plot  

 

Figure 4.2: Scatter plots between two bands typically show a triangular shape, with the data 
radiating away from the shade-point and A, B, C as the endmembers. 

 
Each scene spectrum maps to a point in this PC 
scatter plot. The endmemb

space, and the set of all scene spectra constitutes a 
er spectra occur at the extremities of this scatter plot. The methods most often 

 as spectral LMM, the area proportions of each 
n member (basic land cover class) for all five scenes were estimated. In the second step as temporal 

LMM, the annual fluctuations of proportions of each endmember were used as new endmembers. 
Finally, the propor  had a distinctive 
phenological pattern. In the proposed model, the characteristics of annual fluctuations of each 
ndmember were used to determine land cover classes. The paper also introduced the method of 

 model based mixture supervised classification approach in hyperspectral data analysis (Dundar et al., 
002) [125] favoured the mixture classifier over the simple quadratic classifier. The majority of the 
ases showed that characterising class densities by a mixture density is useful in obtaining a more 
recise class definition. However, as with most classifiers, the success of the mixture classifier is also 
mited by the size of the training data set available. The main difference between a simple quadratic 
lassifier and a mixture classifier is that the former does not guarantee a better performance when a 
rger training dataset is used during the design process, but the latter usually does, given enough 

omponents and separability among classes. The larger the number the training dataset, the more 
ccurately the densities are estimated and hence the better the performance of the mixture classifier.  

 successful geologic case analysis of hyperspectral data using an end-to-end approach on Airborne 
isible/Infrared Imaging Spectrometer (AVIRIS) data was attempted by (Kruse et al., 1997) [58]. It 

used to acquire the endmember spectra from the data rely upon computer visualization tools which 
allow manipulation of this scatter plot, permitting one to project the plot onto an arbitrary plane in the 
PC or MNF transformed space. This permits an operator to locate the extremities, the endmember 
spectra, in the scatter plot. The spectra of all the pixels selected from the extremities in this scatter plot 
then constitute the set of endmember spectra [122].  

4.5. Literature review: Spectral Unmixing 

A study was conducted at Lake Baikal region in Russia by using remote sensing technique and 
phenological pattern of plants for land cover mapping (Shimazaki et al., 2001) [2]. A new linear 
mixture method, a spectral and temporal linear mixing model was proposed, which is developed from 
both spectral and temporal aspects. To estimate the proportion of components in the mixed pixel, the 
Linear Mixture Model (LMM) was applied to five temporal scenes of LANDSAT 7/ETM satellite data. 
The LMM proposed has two steps. In the first step
e d

tions of several plants in the mixed pixel were estimated, which

e
proposed LMM, though the validation of this LMM was left for the further research.        
 
A
2
c
p
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a
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V
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included data calibration to reflectance, use of linear transformation to minimize noise and determine 
ata dimensionality, location of the most spectrally pure pixels, extraction of endmember spectra, and 
patial mapping of specific endmembers. Several supporting case studies using AVIRIS data of near-
hore marine environments demonstrate the viability of these methods for studying the coastal zone. 
he methods described provide a starting point for image segmentation, material identification, and 
apping of marine processes in the near-shore environment. This analysis showed the separation of 

istinct near-shore characteristic such as bottom-type, pigment concentrations and suspended solids, as 
ell as mapping of coastal marshlands, marine vegetation and urban encroachment.  In some cases, the 

pectral properties of materials in the near-shore environment are explained by near-linear mixing, 
owever, clearly, non-linearity is an issue in analysis of these data, and adaptations of this methodology 
ill require that this non-linearity be dealt with by linearizing the data using appropriate transformation 
rior to analysis. 

inear mixture modelling for quantifying vegetation cover using time series NDVI data was attempted 
y Zhu et al. [126]. Fraction images of forest, farmland and steppe were extracted using the Constrained 
east Squares (CLS) method over a test area. Classification results of multi-temporal Landsat TM data 
ere used to validate the performance of the linear mixture modelling. Also, land cover change of the 
st area between 1992 and 2000 was detected. Then linear mixture modelling technique was extended 

to vegetation cover mapping of Asia. Selection of appropriate endmembers was based on Global Land 
Cover Ground Truth (GLCGT) database. Percentage images of vegetation cover type of Asia were 
obtained from SPOT vegetation monthly composite NDVI data of 2000. The study suggested that with 

r values and more sophisticated methods to fully utilize the included 
lling technique can have great potential when applied to coarse spatial 
ion of ground cover proportions at local and continental scales as well 

as for global studies.      
 

cted. The data quality and the solution of single-band unmixing were 
en investigated in spectral space. Due to the difference of the discrepancy of band reflectance between 

 Enhanced Thematic Mapper (ETM) images for the year 
000 for areas south of Lake Baikal, Russia. Dominant vegetation types are pine, birch/aspen, shrubs 

pes were prepared by 
ges by experts. Both the comparisons of 

al methods. A limitation of this method observed was that the number of classified 
egetation types must be smaller than the number of multi-temporal remotely-sensed images used for 

p

 China. The validation of the model for 
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improved estimates of endmembe
information, linear mixture mode
time series NDVI data for estimat

Another study on spectral mixture analysis of hyperspectral data was conducted by Tseng et al. [127]. 
High-resolution spectra of mixed soil and vegetation were collected for the analysis using a field 
spectrometer. The instrument FOV (Field of View) was validated to ensure the correctness of the 
mixture proportions of the sensed materials. A dataset of designed sample targets with linear variation 
of mixture proportions was colle
th
endmembers and the noise level of measurements, the spectral bands do not have equal contributions to 
the solution of spectral unmixing. Based on the analysis, a weighted least-squares method is suggested 
to reinforce the solution of spectral unmixing that proved to be effective for improving the unmixing 
result.  
 
A study was conducted by Tateishi et al., 2004 [128] to find a better method for subpixel classification 
of vegetation. This new method of linear mixing model is the sequential combination of spectral LMM 
and temporal LMM. Subpixel components of relative green vegetation were derived by spectral LMM; 
subpixel components of vegetation types were estimated by subsequent temporal LMM. The proposed 
method was applied to five temporal Landsat
2
and wheat with weedy plants in the study area. Ground truth data of vegetation ty
field survey and visual interpretation of Landsat ETM ima
classification results among the proposed method and conventional LMM methods and the simulation 
results among them indicate that this proposed spectral and temporal LMM has better accuracy than 
onventionc

v
the tem oral LMM. 
 
The possibility of using a linear mixture model to generate fraction images from 1 km time series 
NOAA AVHRR monthly composite NDVI data was explored by Zhu et al. [129]. The percentages of 
forest, grassland and farmland in the pixel were determined by applying the Constrained Least Squares 
(CLS) method over the study area in the northeast region of
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AVHRR monthly composite NDVI data was performed by comparing the resulting fraction images 
e ved from coincident multi-temporal Landsat TM data and NOAA 

I data using conventional methods. The result shows that linear 

yperspectral image data sets acquired near Cuprite, Nevada, in 1995 with the Short-Wave Infrared 
WIR) Full Spectrum Imager (SFSI) and in 1996 with the Airborne-Visible Imaging Spectrometer 
VIRIS) were analysed with a spectral unmixing procedure and the results were compared in a study 

onducted by Neville et al. [130]. Both data cubes had nominal spectral band centre spacings of 
pproximately 10 nm. The image data, converted to radiance units, were atmospherically corrected and 
onverted to surface reflectances. Spectral endmembers were extracted automatically from the two data 
ets. Those representing mineral species common to both were compared to each other and to reference 
pectra obtained with a field instrument, the Portable Infrared Mineral Analyser (PIMA). The full sets 

embers were used in a constrained linear unmixing of the respective hyperspectral image cubes. 
The resulting unmixing fraction images derived from the AVIRIS and SFSI data sets for the minerals 
alunite, buddingtonite, kaolinite, and opal correlated well, with correlation coefficients ranging from 
0.75 to 0.91, after compensation for shadowing and misregistration effects. 
 

4.6. Summary 

Spectral mixture analysis provides an efficient mechanism for the interpretation of remotely sensed 
multidimensional imagery. It aims to identify a set of reference signatures (endmembers) that can be 
used to model the reflectance spectrum at each pixel of the original image. These endmembers can be 
directly extracted from the image using techniques like PPI, scatter plot etc. Thus, the modelling is 
carried out as a linear combination of a finite number of ground components. The modelling can be 
used to estimate the proportion of each endmember is a single pixel and to produce an abundance map 
pertaining to each class.  
 
MODIS has a coarse spatial resolution (250 m) and there are chances of more than one ground 
component (endmember) in a single pixel in the study area. The problem of mixed pixels can be 
resolved using linear unmixing technique to produce the abundance maps pertaining to each class and 
to estimate the proportion of the classes in each pixel. Figure 4.3 shows the flowchart depicting the 
overall methodology of the linear unmixing process. 
 

with th  classification results deri
AVHRR monthly composite NDV
unmixing techniques, with improved estimates of endmember values and more sophisticated methods to 
fully utilize the included information, can have great potential when applied to coarse spatial series 
AVHRR NDVI data for global studies.  
 
H
(S
(A
c
a
c
s
s
of endm
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Figure 4.3: Overall methodology of linear unmixing process. 

l , Results), shows the abundance maps obtained for each class and 
 
The fol owing chapter (Chapter -5
discusses the interpretation of these maps.  
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5. Resu  

age processing algorithm can be considered successful, if it provides good results on images with a 

hapter highlights 
the algorithms (discussed in chapter 3 and chapter 4) on 

ection (5.4.1) shows the result obtained from MODIS 
ands 1 to 7 classification using Maximum Likelihood Classifier, Spectral Angle Mapper, Neural 

Network and Decision Tree Approach. The second subsection (5.4.2) shows the results of the 
implementation of above algorithms on Principal Components (PC) of MOIDS bands 1 to 36. Results 
of the above algorithms on Minimum Noise Fraction (MNF) Components of MODIS bands 1 to 36 is 
shown in sub section 3 (5.4.3). The last section (5.5) of this chapter deals with the results obtained from 
linear spectral unmixing of MODIS imagery. 
 

5.1. Land cover Mapping using LISS-3 MSS  

The LISS-3 MSS data (of spatial resolution 23.5 m) were used as a high resolution data for land cover 
mapping. 
 

5.1.1. Georeferencing and Geometric Correction 

The LISS-3 images (having bands in Green, Red and Near-infrared wavelengths) were geometrically 
corrected by using ground control points (GCPs) and reference toposheets of the Survey of India. These 
GCPs were collected in the field using hand held GPS. The images were resampled using nearest 
neighbourhood technique with an overall RMS error of 0.11.  
 

5.1.2. Land Cover Analysis 

NDVI was generated using LISS-3 data for land cover analysis, is given in figure 5.1 ranges from 0.71 
to -0.50. NDVI gave land cover (vegetation/green versus non-vegetation/non-green) information. The 
NDVI showed that 46.03% of the area has vegetation (agriculture, forest and plantations /orchards) and 
the remaining 53.98 % has non-vegetation (built up land, waste / barren rock / stony and waterbodies). 
 
 
 
 
 
 
 

lts

Im
wide variety of areas covered. These image processing algorithms are also implemented in a controlled 
manner under adverse conditions depending upon the input and desired output. This c
the results obtained from implementation of 
LISS-3 MSS and MODIS data.  
 
The chapter is arranged in 5 sections. The first and second section (5.1 and 5.2) discusses the Land 
cover analysis using NDVI (Normalised Difference Vegetation Index) from LISS-3 MSS and MODIS 
bands respectively. The third section (5.3) deals with the LISS-3 image processing. The fourth section 
(5.4) is divided into 3 sub-sections. The first subs
B
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Figure 5.1: NDVI of LISS-3 MSS based on bands 3 (Red) and 4 (NIR). 

 

Figure 5.2: NDVI generated using MODIS bands 1 and 2. 
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5.2. apping using MOD ta 

As mention ODIS data having coarse s solution (250m sed for land cover 
apping. The acquisition and preprocessing of the MODIS data is discussed in detail in chapter 1 and 

. 

Georeferencing and Geometric Correction 

ug uracy of the satellite was of 150 m, but nowadays, after 
ametric and non parametric (GCP’s, DEM) methods to 

 MODIS web sources it could even be around 40 m [132]. Still, in order to achieve pixel 
vel accuracy, georeferencing was done with the metadata accompanying the original image, GCPs 

c  of 
India, etc.) with an accuracy of 11 m. 
  
The spatial resolution of MODIS (MOD 09 Surface Reflectance 8-day L3 global Products) bands 1 and 

 are 250 m, while bands 3 to 7 have pixel sizes of 500 m. Bands 3-7 were resampled by nearest 
n  
consistency. The first 2 bands of the MODIS were stacked with the remaining 5 bands (bands 3 to 7). 
Finally, the first seven bands with spatial resolution of 250 m were used for further processing. 

The MODIS L1B product (MOD 02 Level-1B Calibrated Geolocation Data Set) with 36 spectral bands 
ampled to 250 m, as getting a pure pixel of 250 x 

/ barren rock / stony and waterbodies). 

5.3 ssi lu SS- a

ifiers work  pixel le ith spe  distinctive classes. If this condition is not met, 
isk of confu etween asses, g to po ssificati uracies. T sue is 
rly important when working with few al band e ability entify a specific class 

ith fewe s, and su ently less information is depicted.

tral ch ristics fo ix land lasses SS-3 MS ds 2 (Gree (Red) 
and 4 (NIR) were determined and the Transformed Divergence matrix (table 5.1) helped in 

han 1.9 
dicate that the ROI pairs have a very good separability. It is seen that the overall separability is good 

xcept for agriculture, forest and plantation classes. 

 Agriculture Built up Forest Plantation Wasteland Waterbodies 

Land Cover M IS Da

ed earlier, M patial re ) were u
m
2
 

5.2.1. 

Altho h the original expected geolocation acc
several updates which involved the use of par
eliminate bias and other sources of error, the accuracy of higher level products is of 50 m [131] and 
according to
le
ollected in the field using hand held GPS and reference maps (topographic maps of the Survey

2
eighbourhood technique to 250 m for easy processing, overlaying and comparison, and for analysis

 

has a spatial resolution of 1 km. These bands were res
250 m was relatively easier compared to still coarser resolutions. All these bands were reprojected from 
Sinusoidal projection to Polyconic projection with Evrst 1956 as the datum, followed by masking of the 
study area. 
 

5.2.2. Land Cover Analysis 

Red and near-infrared bands of the MODIS sensor at 250 m spatial resolution were used to compute 
NDVI, which is given in figure 5.2. NDVI ranges from 0.35 to -0.54, indicating that 47.35% of the area 
under vegetation (agriculture, forest and plantations / orchards) and the remaining 52.65 % under non-

egetation (built up land, waste v
 

. Cla fication of high reso tion LI 3 MSS dat  

The class
r

at the vel w ctrally
there is 
particula

sion b  the cl leadin
spectr

or cla
s as th

on acc
 to id

his is

diminishes w r band bsequ  
 
The class spec aracte r the s  use c for LI S ban n), 3 

distinguishing different classess. The values in the table range from 0 to 2.0. Values greater t
in
e
 
 
 
 
 

57 



EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

Agriculture 2.00 1.63 0.92 0.95 1.33 1.99 
Built up 1.63 2.00 1.51 1.31 1.21 1.46 
Forest 0.92 1.51 2.00 0.98 1.56 1.99 
Plantation 0.95 1.31 0.98 2.00 1.74 1.97 
Wasteland 1.33 1.21 1.56 1.74 2.00 1.89 
Waterbodies 1.99 1.46 1.99 1.97 1.89 2.00 

Table 5.1: Transformed Divergence matrix of the spectral classes in LISS-3. Values greater than 
1.9 indicate a very good separability. 

 
Ground truth obtained from field and other ancillary data were used for the LISS-3 MSS classification. 
This was done in two steps: unsupervised classification and supervised classification. 

5.3.1. Unsupervised Classification 

Histograms were generated to ascertain the number of likely land cover categories based on the number 
of distinguishable peaks. Unsupervised classification was performed on this data using the K-means 
clustering algorithm. The results of the unsupervised classification (given in figure 5.3), indicated that 
the mapping of the classes can be done accurately with the MLC classifier, giving an overall good 
representation of what was observed in the field. 
 

 
Figure 5.3: Unsupervised classification of LISS-3 image. 
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Figure 5.4: (A) False Colour Composite of the LISS-3 image, (B) Kolar district with training data 
set, (C) Supervised Classified image of LISS-3 MSS.  
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5.3.2. Supervised Classification 

False colour composite (FCC) was generated from the LISS-3 MSS data after geometric correction by 
assigning blue to green, green to red and red to near-infrared bands respectively and is given in figure 
5.4 (A). The heterogeneous patches (training polygons) were chosen for the field data collection is 
given in figure 5.4 (B). Supervised classification using GMLC was performed with the ground truth 
data. Care was taken to see that these training sets are uniformly distributed representing / covering the 
tudy ares

o
a. The supervised classified image shown in figure 5.4 (C) was validated by field visit and by 

verl  training sets used for cla (A  A nt, d sed
 
The p s of each class i ervi su  c tion a  in table 
5.2. 
 

Class Unsupervised Supervised 

aying the ssification ccuracy ssessme iscus  in chapter 6). 

ercentage statistic n unsup sed and pervised lassifica re listed

Agriculture (%) 17.48 19.03 

Built up land (Urban/Rural) 3 (%) 18.35 17.1

Evergreen/Semi-Evergreen 
Forest (%) 

11.27 11.41 

Plantations/orchards (%) 10.58 10.96 

Wasteland/Barren Rocky/S
e (%) 

9 tony 
Wast

41.48 40.3

Waterbodies (%)  0.84 1.08

Total (%) 100.00 100.00 

 

Table 5.2: Class wise percentage statistics for Unsupervised and Supervised classified maps  using 
LISS-3 MSS. 

5.4. Classification of MODIS data 

Three different types of input were given to the various hard classification algorithms as shown in 
figure 5.5.  
 
1) MODIS Bands 1 to 7 (MOD 09 Surface Reflectance 8-day L3 global Products) 
 
2) Principal Components of MODIS Bands 1 to 36 (MOD 02 Level-1B Calibrated Geolocation Data 

Set) 
 
3) MNF Components of MODIS Bands 1 to 36 (MOD 02 Level-1B Calibrated Geolocation Data Set) 
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Figure 5.5: Different MODIS inputs to the hard classification algorithms.   

 L3 global Products) were used as the 
first input” to various classification algorithms. The MODIS Surface-Reflectance bands (MOD 09) is 

ance for each band comparable to measurements at ground level in absence 
f atmospheric disturbances (scattering or absorption). The class spectral characteristics for the six 
lasses defined in this study across the first seven bands of the MODIS sensor were determined and the 
ransformed Div x tab how at e ng 

ty amo  various es. It n that the overall separability is gen
ISS3 (t .1). 

Agr re Built  Forest Plantation Wasteland Waterbodies 

5.4.1. Classification of MODIS Bands 1 to 7 

The MODIS bands 1 to 7 (MOD 09 Surface Reflectance 8-day
“
computed from the MODIS Level 1B land-bands 1 to 7, (explained in chapter 1), which is an estimate 
of the surface spectral reflect
o
c
T ergence matri  given in le 5.3, s s a similar p tern that help d in determini
the separabili
compared to L

ng the
able 5

 class is see erally good 

 
 

Classes icultu up
Agriculture 2.00 1.84 1.67 1.13 1.39 1.99 
Built up 1.84 2.00 1.99 1.95 1.74 1.99 
Forest 1.67 1.99 2.00 1.10 1.89 1.99 
Plantation 1.13 1.95 1.10 2.00 1.64 1.99 
Wasteland 1.39 1.74 1.89 1.64 2.00 1.99 
Wat odierb es 1.99 1.99 1.99 1.99 1.99 2.00 

Table 5.3: Transformed Divergence matrix of the spectral classes in MODIS Bands 1 to 7. 

 

5.4.1.1. 

nsupervised classification of the MODIS 7 bands was performed using K-means algorithms. Initial 
clustering o
pixels as 
finally, the

Unsupervised Classification 

U
f the bands into 25 classes was attempted at various thresholds. The maximum number of 

w classified when the threshold was maintained at 0.8. Later on, the classes were merged and 
 unsupervised classification resulted in 6 land cover classes as shown in figure 5.6. A 
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histogram g
various clas
 
 

enerated for FCC show 6 peaks, indicating 6 categories of land uses. The statistics for the 
ses are shown in table 5.4. 

 

Figure 5.6: Unsupervised Classification on MODIS Bands 1 to 7. 

pervised Classification 

was perform

 

5.4.1.2. Su

Supervised classification on MODIS bands 1 to 7 ed using Gaussian Maximum Likelihood 
Clas ie C), pper two tree Approach 
(DTA).  
 
 

• C was c ed using  ban Red), 2 (NIR) d 4 (Green). The 
geneous p hes were ide  for tr ata collection. T  MODIS bands 1 to 
e classifie  GMLC te . At a old of 0.001, th bands gave a good 
entation o  land cover . 

 
• bove band re then cla sing t  technique. At ngle of 0.5 radians, 

tput of the ssified map also represented the 6 land cover classes. 
 

• s used fo assifying MODIS data of 7 bands. The process the neurons 
e consum g. Although  consi be one of the m

ssification  remotely sensed data, y trolling the traini process in NN was 
lt. Figure  shows neu ork R ot. The training cess of the neurons 
rated 100 mes to see t ergin . The iterations s ped with the overall 
.09.  The mber of hid er wa at 1 and the out  activation function 
pt 0.001. e output act functi  increased in ste see the variations 

in the classification. The training momentum was initially 0 and was increased gradually. 

sif r (GML Spectral Angle Ma  (SAM), Neural Ne rk (NN) and Decision 

A FC r tea MODIS ds 1 (  an
hetero atc ntified aining d he
7 wer
repres

d by
f the

chnique
 classes

 thresh e 7 

The a s we ssified u he SAM an a
the ou  cla

NN wa r cl of training 
was tim in  NN is dered to ost robust techniques 
for cla  of et, con ng 
difficu 5.7 ral netw MS pl pro
was ite 0 ti he conv g point top
RMS 0  nu den lay s kept put
was ke Th ivation on was ps to 
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The training RMS exit criteria were 0.1, the training threshold contribution was kept 0.1, 
and the training rate was maintained 0.2 during the training process. 

 

 
 

Figure 5.7: Plot of training RMS vs. iterations of NN applied on MODIS bands 1 to 7. 

 
•  Tree approach with s u e k e clas classify the 

MODIS 7 bands. Thus, this  was a more controlled kind of 
r of 

ence 
level for each class to control its accuracy. The confidence level shows a feasible way of 
rules by probability forms, and it also raises a flexibility of data error tolerance. The table 
also highlights the number of rules used for classification at a confidence level of 0.6. The 
procedure is described below: 

 
(i) A set of points were defined as training sites based on a priori knowledge of the 

study area, for various land cover classes in the data set. 
(ii) The scaled reflectance values for land cover classes were extracted for the training 

data. 
(iii) The data were converted into SEE5 compatible format and submitted for extraction 

of rules. 
(iv) Since the boosting option changes the exact confidence of the rule, the rules were 

extracted without boosting option. A 10% cut off was allowed for pruning the wrong 
observations. 

(v) Once the rules were framed by the SEE5, these rules were ported into Knowledge 
engineer to make a knowledge based classification schema. It was ensured that 90% 
confidence level is maintained for all the classes defined. 

(vi) Subsequently the decision tree schema was applied over the data set to produce the 
colour coded land cover output. 

 
 
 
 
 
 

Class Rules 
generated 

Confidence level 
Maximum        Minimum 

Number of Rules at 
Confidence level – 0.600 

Decision See5 wa
rule based approach

sed by th nowledg sifier to 

classification process among all the other techniques. Table 5.4 shows the total numbe
rules generated by the decision tree classifier, the maximum and the minimum confid
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Agriculture 87 0.982 0.563 87 
Built up 
( rban/Rural) U

27 0.988 0.551 27 

Evergreen/ Semi- 9 0.958 0.667 9 
Evergreen Forest 
Plantation/ orchards 86 0.981 0.648 86 
Waste land/Barren 
Rock / Stony waste 

43 0.929 0.253 43 

Waterbodies 18 18 0.955 0.625 

Table 5.4: Knowledge based Land cover classification of MODIS data (Bands 1 to 7). 

 
The results obtained from the various classification techniqu r MODIS bands 1 to 7 are listed in 
table 5.5 for comparative analysis. Fro the table it is clear that in the neural network based 
classification there is an increase in the built up land and plantation classes with a decrease in the waste 
land percentage. The percentage of vegetation (agriculture, forest and plantation) in K-means clustering 
was 40.77%, 44.34% (in MLC), 38.06 (in SAM), 49.15% (in NN) and 44.61% (in Decision Tree). The 
percentage of no terbodies) were 

es fo
m 

n-vegetation (built up, waste land/ Barren rock / Stony waste and wa
found to be 59.23% in K-means clustering, 55.64% (in MLC), 61.95% (in SAM), 51.13% (in NN) and 
55.39% (in Decision Tree) approach respectively. Figure 5.8 shows the corresponding classified 
images. 
 

Classes K-Means MLC SAM NN Decision Tree 

Agriculture (%) 21.13 20.76 17.88 21.88 17.97 

Built up (Urban/Rural) (%) 17.83 15.54 20.55 26.44 16.44 

Evergreen/ Sem ergreen 
st (%) 

6.85 0.41 7 7.68 13.11 i-Ev
Fore

1 8.3

Plantation/ orc  (%) 2.79 3.19 1 19.31 11.53 hards 1 1 11.8

Waste land/Ba ock / 
ste (%

0.43 9.11 2 24.38 40.23 rren R
Stony wa ) 

4 3 40.9

Waterbodies (%) 00.97 00.99 00.47 00.31 00.72 

Total (%) 100.00 100.00 100.00 100.00 100.00 

Table 5.5: 
using  K-M

Percentage wise distribution of  land cover classes for MODIS bands 1 to 7 classified 
eans, MLC, SAM, NN and Decision Tree Approach.  
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Figure 5.8: Supervised Classification using (A) MLC, (B) SAM, (C) NN and (D) Decision Tree 
Approach on MODIS Bands 1 to 7. 
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5.4.2. Classification of Principal Components (PC’s) of MODIS Bands 1 to 36 

Principal Analysis (PCA) wa ed on MODIS 36 bands (MOD 02 Level-1B 
Calibrated  Data Set) of spatial n e e ma
matrix were calculated and eigenvalues are listed in table 5.6. 

Eigenvalue 

Component 
 Geolocation

s perform
resolutio 250m. Th covarianc trix and the correlation 

 
PC 

1 326014 

2 2175 

3 1705 

4 741 

5 189 

Table 5.6: Eigenvalue for the PCA analysis of MODIS 36 bands. 

It is observed, that only the first few bands have higher information. The first five bands of the PCA 
were chosen for further analysis based on higher eigenvalues, and the information content that was 
perceived from visual interpretation of the images through false colour composite. These 5 components 
were used as the “second input” to the classification algorithms. 
 
Transformed Divergence matrix is given in table 5.7 indicated that except built up all other classes are 
well separable across PC’s. 
 
 
 Agriculture Built up Forest Plantation Wasteland Waterbodies 
Agriculture 2.00 1.10 1.99 1.97 1.99 1.84 
Built up 1.10 2.00 1.45 1.35 1.49 1.52 
Forest 1.99 1.45 2.00 1.36 2.00 2.00 
Plantation 1.97 1.35 1.36 2.00 2.00 2.00 
Wasteland 1.99 1.49 2.00 2.00 2.00 2.00 
Waterbodies 1.84 1.52 2.00 2.00 2.00 2.00 

Table 5.7: Transformed Divergence matrix of the spectral classes in PCs. 

 
• PC’s were first classified by GMLC technique and at a threshold of 0.001, gave the best 

representation of the land cover classes. 
 
• PC’s were then classified using the Spectral Angle Mapper technique. Here the spectral 

2 
rest and 0.02 for waterbodies) after iterations of tuning the angle 

 obtained here was very smooth 
and the process of training the neurons converg ite  n en 
ayers was kept at 1 and the output activation function was m

that as the num hidden r is increased, the training process takes more tim
 outp , ma g th en la  was j  with th t. The 

angle was set different for each class (5 for agriculture, 5 for built up, 0.05 for forest, 0.0
for plantation, 3 for fo
between the class spectra and the reference spectra to avoid misclassifications.  

 
• Neural Network technique was applied to PC’s. After several iterations of the training 

process, stability was achieved. Figure 5.9 shows the NN plot of the training process 
iteration versus the RMS error obtained. The training curve

ed at 1000 rations. The
aintained at 0.001. It was seen 

umber of hidd
l

ber of 
uts. So

laye
intainin

e, giving 
is resulirrelevant e hidd yer at 1 ustified
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training
was ob

 mom as i all steps when it 
served  train eu each ility. 

 

entum w
that the

nitially kept 0 and was later on increased in sm
ing of n rons is r ing stab

  
Figure 5.9: Plot of training RMS vs. iterations of NN applied on PCA bands (MODIS Bands 1 to 
36). 

Class Rules generated Confidence level 
Maximum   Minimum

Number of Rules at 
Confidence level – 0.92 

 
• Decision Tree approach using See5 and the knowledge engineer was used to classify PC’s. 

For each training site, a level of confidence in characterisation of the site was recorded. 
Table 5.8 shows the total number of rules generated, the maximum and the minimum 
confidence level for each class and the number of rules used for classification at a 
confidence level of 0.92. Here the image was classified into 16 classes initially and were 
ultimately merged into six categories.  

 

Class 1 49 0.989 0.737 36 
Class 2 29 0.997 0.944 20 
Class 3 3 0.944 0.833 2 
Class 4 2 0.354 0.315 1 
Class 5 25 0.985 0.591 11 
Class 6 31 0.989 0.800 18 
Class 7 31 0.993 0.688 13 
Class 8 4 0.875 0.667 1 
Class 9 6 0.929 0.800 1 
Class 10 2 0.833 0.833 1 
Class 11 2 0.929 0.889 1 
Class 12 4 0.917 0.875 1 
Class 13 2 0.938 0.875 1 
Class 14 3 0.963 0.875 1 
Class 15 2 0.944 0.833 1 
Class 16 3 0.889 0.722 1 

 

Table 5.8: Knowledge based LC classification of PC’s. 

The results obtained from these classification techniques are listed in table 5.9. The percentage of 
vegetation (agriculture, forest and plantation) was 45.56% (in MLC), 43.67 (in SAM), 45.98% (in NN) 
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and 43.12% (in Decision Tree). The percentage of non-vegetation (built up, waste land / barren rock / 
54.41% (in MLC), 56.31% (in SAM), 54.00% (in NN) 

 approach respectively. Figure 5.10 shows the classified images using 
stony waste and waterbodies) were found to be 
and 56.88% (in Decision Tree)
MLC, SAM, NN and DTA. 
 

Classes MLC SAM NN Decision Tree 

Agriculture (%) 25.93 19.78 21.49 22.11 

Built up (Urban/Rural) (%) 16.66 11.46 15.78 15.96 

Evergreen/ Semi-Evergreen 
Forest (%) 

10.78 10.73 12.04 9.58 

Plantation/ orchards (%) 8.85 13.16 09.45 11.43 

Waste land/Barren Rock / 
Stony waste (%) 

37.16 44.47 40.33 38.29 

Waterbodies (%) 0.62 0.40 0.91 2.63 

Total (%) 100.00 100.00 100.00 100.00 

Table 5.9: Percentage wise distribution of LC using MLC, SAM, NN and DTA on PC’s. 
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Figure 5.10: Supervised Classification using (A) MLC, (B) SAM, (C) NN and (D) Decision Tree 
Approach on PC’s. 
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5.4.3. Classification of Minimum Noise Fraction (MNF) components of MODIS Bands 1 
to 36 

Minimum Noise Fraction (MNF) was performed on the MODIS bands 1 to 36. The covariance matrix, 
correlation matrix, eigenvectors and eigenvalues were computed for the MNF and the eigenvalues are 
listed in table 5.10.  
 

MNF Components Eigenvalue 
1 91 
2 59 
3 45 
4 29 
5 24 

 

Table 5.10: Eigenvalue for the MNF analysis of MODIS 36 bands. 

The first five components of MNF were chosen depending on their higher eigenvalues for 
classification. The output of MNF reflected more information content, yet the image obtained were 
more pixilated and appeared to be arranged in a brick line fashion in some places on the image. To 
avoid noise, the other components of MNF were ignored as they that had lower signal-to-noise ratio. 
These 5 components were used as the “third input” to the various classification algorithms. The 
Transformed Divergence matrix is given in table 5.11, showed that the overall inter class separability is 
very high due to reduced noise. 
 
Class Agriculture Built up Forest Plantation Wasteland Waterbodies 
Agriculture 2.00 2.00 1.58 0.96 1.93 1.98 
Built up 2.00 2.00 1.99 2.00 1.91 2.00 
Forest 1.58 1.99 2.00 1.16 1.51 1.99 
Plantation 0.96 2.00 1.16 2.00 1.94 1.99 
Wasteland 1.93 1.91 1.51 1.94 2.00 2.00 
Waterbodies 1.98 2.00 1.99 1.99 2.00 2.00 

Table 5.11: Transformed Divergence matrix of the spectral classes in MNF. 

• The pixels in the MNF components were not very distinct and were clustered into mini 
groups (comprising of two or three pixels). Though, the class separability was very good, 
yet it was difficult to classify each pixel based on signature, since the image was slightly 
pixilated. The MNF components were classified by GMLC technique at a threshold of 
0.001.  

 
• MNF components were then classified using the SAM technique. At an angle of 5 radians, 

all the classes represented the land cover classes well (except water, which was classified at 
an angle of 0.2 radians).  

 
• NN was used to classify the MNF components. The graph in figure 5.11 was relatively 

smooth for the whole process and shows the training process converging at 1000 iterations. 
The hidden layer was 1 and the output activation function was 0.001. The training 
momentum was initially 0 and was increased gradually. Other observations were similar to 
that of PCA classification. The RMS error at the completion of the process was 0.29.   
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Figure 5.11: Plot of training RMS vs. iterations of NN applied on MNF Components. 

• Decision Tree approach was used to generate the rules for the knowledge classifier to 
classify the image. The threshold factor was maintained at 0.7. Table 5.12 shows the total 
number of rules generated, the maximum and the minimum confidence level for each class 
and the number of rules used for classification at a confidence level 0.7.  

 
 

Class Rules generated Confidence level 
Maximum  Minimum 

Number of Rules at 
Confidence level -  0.7 

Agriculture 59 0.989 0.500 58 

Built up 
(Urban/Rural) 

24 0.996 0.875 25 

Evergreen/ Semi-
Ever

64 0.995 0.971 63 
green Forest  

Plant
orchards 

ation/ 43 0.970 0.667 44 

Waste land/ Barren 
Rock / Stony waste 

36 0.993 0.500 36 

Waterbodies 5 0.929 0.750 5 

Table 5.12: Knowledge based LC classification for MNF components. 

The results obtained from these classification techniques are listed in table 5.13. In SAM classification 

. The classified images obtained are shown in figure 
.12 

 
. 

  

there is an increase in the forest and plantation class whereas in ML classification, agriculture is high 
and on the other hand forest and waterbodies show a relatively low contribution to the land cover class 
percentage. In the decision tree approach, there is a slight decrease in the water class percentage. 
Vegetation (agriculture, forest and plantation) contributes 45.37% (in MLC), 46.90% (in SAM), 
39.81% (in NN) and 46.29% (in Decision Tree) and non-vegetation (built up, waste land/ Barren rock / 
Stony waste and waterbodies) contributes 54.96% (in MLC), 53.08% (in SAM), 60.46% (in NN) and 
53.71% (in Decision Tree) approach, respectively
5
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Classes MLC SAM NN Decision Tree 

Agriculture (%) 26.63 19.55 19.38 21.70 

Built up (Urban/Rural) (%) 14.33 12.20 17.55 17.56 

Evergreen/ Semi-Evergreen 
Forest (%) 

7.29 14.30 11.32 10.15 

Plantation/ orchards (%) 11.12 13.07 10.84 9.44 

Waste land/Barren Rock / 40.27 40.21 39.97 40.39 
Stony waste (%) 
Waterbodies (%) 00.36 00.67 00.94 00.76 

Total (%) 100.00 100.00 100.00 100.00 

Table 5.13: Percentage wise distribution of LC classes obtained from MNF components 
classification using MLC, SAM, NN and DTA. 
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Figure 5.12: Supervised Classificati g (A) MLC, ) SAM, (C) NN and (D) Decision Tree 

NF components. 
on usin (B

Approach on M
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T tion of various c with respect to different classification algorithms compared 
on the basis of percentage area is depicted in Table 5.14. The table shows the uniform distribution of 
agriculture, forest, plantation and waterbodies classes whereas built up has increased and waste land fell 
below average line in NN based classification for MODIS Bands 1 to 7. 
 

Agriculture p Forest Waste land Waterbodies 
(%) 

he overall representa lasses 

Algorithms (%) (%) (%) (%) (%) 
Built u Plantation 

K-Means (B1 to B7) 21.13 17.83 6.85 12.79 40.43 00.97 

MLC (B1 to B7)  20.76 15.54 10.41 13.19 39.11 00.99 

SAM (B1 to B7) 17.88 20.55 8.37 11.81 40.92 00.47 

NN (B1 to B7) 21.88 26.44 7.68 19.31 24.38 00.31 

DTA (B1 to B7) 17.97 16.44 13.11 11.53 40.23 00.72 

MLC (PCA) 25.93 16.66 10.78 8.85 37.16 0.62 

SAM (PCA) 19.78 11.46 10.73 13.16 44.47 0.40 

NN (PCA) 21.49 15.78 12.04 09.45 40.33 0.91 

DTA (PCA) 22.11 15.96 9.58 11.43 38.29 2.63 

MLC (MNF) 26.63 14.33 7.29 11.12 40.27 00.36 

SAM (MNF) 19.55 12.20 14.30 13.07 40.21 00.67 

NN (MNF) 19.38 17.55 11.32 10.84 39.97 00.94 

DTA (MNF) 21.70 17.56 10.15 9.44 40.39 00.76 
 

T of different algorithms versus percentage 
a

ixel to a known single land cover 
class. 
p ixed pixel e in ttem gh ca IS 
d  seri unda ps,  each class considered, instead of a single one 
depicting all classes present in an ima e, ev el w assigne sively to one class, 
b , modeled by a linear m
 

5 ansform

M n was p ed on 
8 l Products)  used erm inher ension  the dat duce 
n putational requirements sequ cess  using e coher ions 
in subsequent processing, the noise is separated from proving spectral processing 
r
 

5.5.2. Endmember collection 

T rs were ex direc  th witho g exis ectral libraries. The 
selections of endmembers to train the algorithm were done in several steps.  
 
 

able 5.14: Land cover classes compared on the basis 
rea.  

5.5. Soft classification: Spectral Unmixing of MODIS imagery 

The hard classification techniques discussed above classified each p
with coarse spatial resolution are likelyPixels 

roblem of m
 to have m

g was a
ore than one 

pted throu
land cover ty

 soft classifi
pe posing the 

tion of MODs. Hence lin ar unmix
ata. LSU generated a es of ab nce ma one for

ge. Her ery pix as not d exclu
ut was part of many odel.  

.5.1. MNF Tr ation 

NF transformatio erform the seven bands of the MODIS (MOD 09 Surface Reflectance 
-day L3 globa . It was  to det ine the ent dim ality of a, to re
oise and com for sub ent pro ing. By  only th ent port

 the data, thus im
esults. 

he endmembe tracted tly from e data ut usin ting sp
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5.5.2.1. Using Pixel Purity Index (PPI) 

The MNF bands were used in the PPI (as explained in chapter 4), processing designed to locate the 
 in 

sponded to the number of times that pixel was recorded as 
 the PPI. A threshold was 
t pixels in order to keep the 

o endmembers mix, then the mixed pixels fall in a line in 
e histogram. The pure endmembers fall at the two ends of the mixing line. If three endmembers mix, 

t d pixels f ria r e bers fall inside a tetrahedron, etc. Mixtures of 
e l in between t em ll  spectra erior to  endmemb
i ed by the endmem rti cause al undance sitive and 
t t of mixed pixels were used to determine how m em re present 
h g their spec
 

5 -Dimensio ual n 

The spectra are the points in an n-dimen l plot, w  is the n of bands. 
coordinates of the points in n-space consist of ‘n’ that are s  the spec ectance va
in each band for a given pixel. The distribution of e points pace was estimate
n ctral endmembe their sp signatures  provided uitive mea
understand the spectral characteristics of mate ls.
 
The pixels from the spectral ere  i n-dimen scatter p  rotated on

tool until points emities on the plot were exposed. These projections were 
 rotated in lesser dimensions to 

end member) was exported to a ROI in the image. 
Mean spectra were then extracted for each ROI to act as endmembers for spectral unmixing. These 
endmembers were then used for subsequent classification and other processing. 
 

5.5.2.4. Training sites obtained from Ground Truths 

A few of the training sets were exclusively collected in the field, corresponding to pure pixels. These 
training data were overlaid on the FCC of the image and a region of interest (ROI) was created, thus 
enabling direct selection of assumed pure pixels from the images. This was done for all classes 
(agriculture, built up, forest, plantation, waste land and waterbodies) where a clear distinction between 
their pixels was possible.  
 
Finally, these ROIs obtained by different methods were merged into six classes and exported as 
endmembers. 
 

5.5.3. Class spectral characteristics of the Endmembers 

The spectral characteristics of the endmembers were analysed by plotting the endmembers and
obtaining the Transformed Divergence matrix which showed a clear separability between the 
endmembers. These endmembers were then rotated using the n-dimensional visualiser. Snapshots of the 
visualisation are shown in figure 5.13. The endmembers are marked using a white circle in figure 5.13 

most spectrally pure pixels typically corresponding to mixing endmembers. A PPI image was created
which the digital number of each pixel corre
extreme. A histogram of these images showed the distribution of hits by
interactively selected using the histogram and used to extract only the pures
number of pixels to be analyzed to be minimum. These pixels were used as input to an interactive 
visualization procedure for separation of specific endmembers. 
 

5.5.2.2. Using Scatter Plot 

Scatter plots of the bands also helped in locating some of the purest endmembers by taking the extreme 
corner pixels. In two dimensions, if only tw
th
hen the mixe all inside a t ngle, fou ndmem
ndmembers fil he endm bers. A  mixed are int the pure ers, 
nside the simplex form ber ve ces, be l the ab s are po sum 
o unity. These se any endm bers we and 
elped in estimatin tra. 

.5.2.3. Using n nal Vis izatio

here nsiona scatter umber The 
values imply tral refl lues 

 thes  in n-s  used to  the 
umber of spe rs and  pure ectral , and  an int n to 

ria   

bands w
or extr

 loaded nto an 
scatter 

sional lot and  the 
visualisation 
marked using region of interest (ROI) tool and then were repeatedly

etermine if their signatures were unique. Once a set of unique pixels were defined, then each separate d
projection on the scatter plot (corresponding to pure 
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(A). It shows that the endmembers selected for the analysis are well separable and can be distinguished 
from each other. 

 

 
Figure 5.13: 3-Dimensional visualisation of the Endmembers showing their separability. 

5.5.4. Linear Spectral Unmixing 

Linear Unmixing was performed using the endmem er obtained, and keeping the unit sum constraint as 
1. Fraction images corresponding to each endmem r were generated. The visual inspection of the 
fraction images shown in figure 5.14 and figure 5.15 indicates that the LSU algorithm was generally 
capable to detect the patterns present in the supervised classification, but at the same time incurred in 
significant errors. The proportions of the endmembers in the fraction image ranges from 0 to 1. 0 
indicates absence of the endmember and increasing value shows higher abundance with 1 representing 
100% presence of the endmember in a particular pixel.  
 
This is evident when looking at the fraction map for Agriculture (figure 5.14 (A)) which has mixed at 
several places with forest / plantations. The first exhibits an over detection along a wide range of the 
central portion of the area. Plantation and agriculture seems to have mixed at a few places when 
compared to the hard classified image. The overall representation of wasteland / barren rock / stone was 
better and in the case of waterbodies, there is a clear case of false detection of the endmember in the 
northern region of the district and, particularly in the central portion of the district. By and large, other 
classes show a better behaviour, with distribution and relative values more closely resembling the 
outputs of the supervised classification, though still some errors exist. 
 

b
be
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Figure 5. 14: (A) Gray scale Abundance Maps for Agriculture and (B) Built up land (Urban / 
ural).  R
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Figure 5.15: Gray scale aps for Evergreen / Semi-Evergreen Forest (A) 
Plantations/orchards (B) Wasteland/Barren rock/Stone (C) and Waterbodies (D). Bright pixels 
represent higher abundance of 50% or more stretched from black to white. 

Abundance M
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It has to be y times fell 
ond acceptable limits, showing highly positive and negative values, usually corresponding to areas 

f high RMSE (figure 5.16). In those cases, values that exceeded 1 were considered to be 1 and values 
k) represents no error and 1 (white) 

noted that output values of the different MPF’s (Material Pixel Fractions) man
bey
o
under 0 were assimilated to this cipher. In figure 5.16, 0 (blac
represents high error in the fraction image.  

 
 

Figure 5.16: Overall RMSE for MODIS. Bright pixels represent high error. 

 
w good correspondence between the visual patterns and relative values of 

the fractions when compared with the hard supervised classification suggesting a better behaviour in the 
here are many areas where proportions of agriculture are properly 

ametric 

Overall, the MPF images sho

distribution of the endmembers. T
predicted, mainly in the western central portion of the study area however, there is clear 
underestimation in the south central region of the district. Errors can be seen in the wrong detection of 
waterbodies showing high discrepancies.  
 
As the experimental results show, classes identified in remote-sensing data may exhibit an interclass 
variability too high to allow the unique linear spectral unmixing of single pixels. Par
representation of the constituent pure classes used for linear unmixing does not properly represent local 
classes since the sampling error may be significant and, in most cases, parametric probability density 
functions are valid when certain assumptions are met that do not always hold in practice [133]. The 
variability of the pixels that represent the local pure classes then is responsible for the uncertainity with 
which the mixture proportions can be identified.  
 
The accuracy of these classified images is discussed in chapter 6 (Accuracy Assessment). 
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6. Accuracy Assessment 

Image classification results in a raster file in which the individual raster elements are class labelled. As 

ent of the LISS-3 MSS classified image (of spatial 
solution 23.5 m) and MODIS classified image (of spatial resolution 250 m). The chapter is arranged 

hard classified maps. This assessment has been done at three levels 
 with the ground truth data collected from the field, at the administrative boundary level (Taluk level) 

cronym used in this chapter: 

 Decision Tree Approach applied on MODIS Bands 1 to 7. 
1

Spectral Angle Mapper applied on MNF2 components of MODIS 36 bands. 
13. NN (MNF) – Neural Network applied on MNF2 components of MODIS 36 bands. 

proach applied on MNF2 components of MODIS 36 bands. 

-3 MSS Classification Accuracy 

image classification is based on samples of the classes, the actual quality should be checked and 
quantified afterwards. This is usually done by a sampling approach in which a number of raster 
elements are selected and both the classification result and the true world class are computed. 
Comparison is done by creating an error matrix from which different accuracy measures can be 
calculated.   
 
This chapter deals with the accuracy assessm
re
into 3 sections. The first section (6.1) discusses the accuracy assessment of the LISS-3 supervised and 
unsupervised classification. MODIS classification accuracy assessment is shown in second section 
(6.2). Section 6.2 is further sub-divided into 2 sub sections. The first subsection (6.2.1) discusses the 
accuracy estimation of the MODIS 
–
and at the pixel level; by comparing on pixel by pixel basis with respect to LISS-3 classified map. The 
second subsection (6.2.2) shows the accuracy assessment of the soft classification at the administrative 
boundary level and at the pixel level, compared to LISS-3 classified image. The chapter concludes with 
a short discussion on the results of hard classification, soft classification and accuracy assessment 
(section 6.3).   
 
A
 

1. MLC (LISS-3) – Maximum Likelihood classification on LISS-3 MSS. 
2. K-Means (B1 to B7) – K- Means Clustering algorithm applied on MODIS Bands 1 to 7. 
3. MLC (B1 to B7) – Maximum Likelihood classification on MODIS Bands 1 to 7 
4. SAM (B1 to B7) – Spectral Angle Mapper applied on MODIS Bands 1 to 7.  
5. NN (B1 to B7) – Neural Network applied on MODIS Bands 1 to 7. 
6. DTA (B1 to B7) –
7. MLC (PCA) – Maximum Likelihood classification applied on PC  of MODIS 36 bands. 
8. SAM (PCA) – Spectral Angle Mapper applied on PC1 of MODIS 36 bands. 
9. NN (PCA) - Neural Network applied on PC1 of MODIS 36 bands. 
10. DTA (PCA) – Decision Tree Approach applied on PC1 of MODIS 36 bands. 
11. MLC (MNF) – Maximum Likelihood classification on MNF2 components of MODIS 36 bands. 
12. SAM (MNF) – 

14. DTA (MNF) – Decision Tree Ap
1  PC – Principal Components 
2  MNF – Minimum Noise Fraction 

6.1. LISS

Accuracy assessment was done for Chikballapur administrative unit (taluk), where field data were 
collected on 5th September and 25th November 2005. Figure 6.1 shows overview of the Chikballapur 
taluk and its location in Kolar district. Table 6.1 gives the area of each taluk in hectares. 
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Figure 6.1: Chikballapur taluk in Kolar district where field data were collected. 

Taluks Area (in hectares) 
 

Bagepalli 92898 
Gudibanda 22727 
Gauribidanur 88859 
Chikballapur 63821 
Sidlaghatta 67057 
Chintamani 88904 
Srinivaspur 86279 
Kolar 79218 
Mulbagal 81974 
Malur 64500 
Bangarpet 86806 
Total 823043 

Table 6.1: Area statistics of each taluk in Kolar district. 

he producer’s and user’s accuracy (as explained in chapter 4) corresponding to the various categories, 
nd the overall accuracy were computed, along with the error matrices for supervised and unsupervised 
lassified MSS data of LISS-3, which is summarised in table 6.2 and Annexure D (table 1 and 2). The 

LISS-3 supervised classification accuracy assessment gave a kappa (k) value of 0.95 indicating that an 
observed classification is in agreement to the order of 95 percent. 
 

   Unsupervised Classification 

T
a
c

Supervised Classification 
Category Producer’s  

Accuracy (%) 
(%)

User’s 
Accuracy (%) 

Ov
acc

erall 
uracy (%) 

(%)

Producer’s 
Accuracy (%) 

User’s 
Accuracy (%) 
(%)

Overall 
Accuracy (%) 
(%)Agriculture 94.21 84.54 94.47 83.39 

Built up 96.47 83.11 89.68 80.30 
Forest 94.73 96.20 86.77 89.71 
Plantation 92.27 91.73 84.44 90.10 
Waste land 97.49 89.88 

  

93.03 93.37 

95.63 
 
 

90.22 
 
 

Water 96.13 98.33 92.91 94.89 

Table 6.2: Producer’s accuracy, user’s accuracy and overall accuracy of land cover classification 
using LISS-3 MSS data for Chikballapur Taluk. 

81 



EVALUATION   OF THE   ALGORITHMS   FOR   LAND   COVER   ANALYSIS USING   HYPERSPECTRAL   DATA 
 

6.2. MODIS Classification Accuracy 

he ground truth data and the results are listed in Table 
3, 6.4 and 6.5 respectively.  

6.2.1. Accuracy Assessment of hard classification for MODIS  

6.2.1.1. Using Error matrix 

User’s (3), Producer’s (4) and Overall accuracy assessment of the MODIS classified maps (using hard 
classifier) was done for Chikballapur taluk with t
6.
 
Algorithms Overall Accuracy Rank 
NN (MNF) 86.11 1
MLC (B1 to B7) 75.99 2
DTA (MNF) 74.66 3
DTA (B1 to B7) 71.89 4
NN (PCA)  71.02 5
DTA (PCA) 70.10 6
SA 1 to B7) 69.41 7M (B
NN (B1 to B7) 68.88 8
K-Means (B1 to B7) 59.88 9
SAM (MNF) 49.27 10
MLC (MNF) 42.22 11
SAM (PCA) 35.22 12
MLC (PCA) 30.44 13

Table 

 
Algor

6.3: Overall Accuracy of classified MODIS Data of Chikballapur taluk. 

ithms Agriculture Built up Forest Plantation Waste land Waterbodies 

K-Means (B1 to B7) 54.23 75.44 79.57 61.88 82.63 48.07 

MLC (B1 to B7) 84.01 84.77 94.21 51.33 84.33 51.49 

SAM (B1 to B7) 46.63 71.71 84.05 61.18 87.53 45.61 

NN (B1 to B7) 94.00 80.80 94.65 59.40 93.87 45.55 

DTA (B1 to B7) 64.44 98.27 89.21 63.35 62.55 88.91 

MLC (PCA) 71.22 69.99 89.05 86.48 67.33 64.41 

SAM (PCA) 53.44 65.31 88.32 54.97 73.99 61.45 

NN (PCA) 97.33 95.18 67.67 95.38 74.07 48.00 

DTA (PCA) 63.12 79.11 81.11 69.33 66.29 63.01 

MLC 22 85.11 41.22  (MNF) 43.33 61.02 91.23 61.

SAM (MNF) 57.45 49.94 53.22 63.07 81.05 70.34 

NN (MNF) 93.89 94.46 89.13 85.60 74.22 59.40 

DTA (MNF) 74.44 62.22 74.58 61.37 71.35 55.18 

 Table

 - It is a m  actually   

 6.4: User’s Accuracy of classified MODIS Data of Chikballapur taluk.  

easure of commission error indicating the probability that a pixel classified into a given category(3) 

        represents that category on the ground. 
(4)  - It indicates how well training set pixels of the given cover type are classified. 
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Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 

K-Means (B1 to B7) 73.33 87.48 62.88 41.68 71.19 30.83 

MLC (B1 to B7) 76.49 81.66 73.64 36.31 76.82 89.35 

SAM (B1 to B7) 63.49 81.53 71.42 27.99 51.61 70.01 

NN (B1 to B7) 68.56 56.73 99.00 73.07 96.60 89.53 

DTA (B1 to B7) 40.91 93.04 90.71 44.98 71.62 23.36 

MLC (PCA) 53.21 69.78 48.26 69.91 92.20 91.11 

SAM (PCA) 86.79 86.21 24.52 67.05 33.09 44.07 

NN (PCA) 57.55 93.00 94.00 93.00 93.00 73.51 

DTA (PCA) 51.93 81.33 86.21 35.47 53.02 36.49 

MLC (MNF) 71.66 56.77 45.35 66.13 45.77 99.00 

SAM (MNF) 47.66 31.89 31.42 51.01 45.51 67.22 

NN (MNF) 69.99 91.89 87.24 99.00 95.00 56.93 

DTA (MNF) 49.91 79.66 81.66 83.33 77.09 36.84 

Table 6.5: Producer’s Accuracy of classified MODIS Data of Chikballapur taluk. 

 
From the overall accuracy assessment, NN on MNF and MLC classification on MODIS bands 1 to 7 
performed better than the other techniques. 

6.2.1.2. Comparison based on land cover class percentage area 

Accuracy Assessment of MODIS classified maps was also performed at two spatial scales – at the 
administrative boundary level (Taluk) and at the pixel level. Land cover statistics were computed for all 
taluks pertaining to each classification algorithm. Land cover percentage area versus various algorithms 
or Chikballapur is shown in table 6.6. Percentage area statistics for the six land cover classesf  were 

computed for all the taluks and were compared on the basis of the different algorithms (please see 
Annexure D, table 3 to table 13). Figure 6.2 shows the best (left) to worst (right) algorithms for land 
cover class mapping in Chikballapur taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 28.07 11.51 17.06 11.56 31.04 0.76
K-Means (B1 to B7) 18.1 19.48 16.45 16.74 28.72 0.03
MLC (B1 to B7) 28.31 11.71 16.35 10.4 32.72 0.51
SAM (B1 to B7) 48.16 21.38 12.97 14.91 35.38 0.5
NN (B1 to B7) 15.83 20.56 11.11 28.37 23.23 0.89
DTA (B1 to B7) 18.79 16.99 23.43 9.68 30.72 0.39
MLC (PCA) 40.27 7.09 13.06 4.89 34.01 0.68
SAM (PCA) 17.4 8.28 15.37 14.96 43.82 0.16
NN (PCA) 21.34 0 21.46 8.04 49.03 0.13
DTA (PCA) 27.73 24.65 13.9 11.19 21.86 0.67
MLC (MNF) 23.72 3.48 14.62 16.1 41.87 0.21
SAM (MNF) 30.73 0 28.74 4.02 36.21 0.3
NN (MNF) 28.69 10.1 15.72 10.66 34.13 0.7
DTA (MNF) 16.08 14.84 25.73 7.06 35.64 0.65

 
Table 6.6: Land Cover statistics for Chikballapur Taluk. 
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Figure  land cover classes in 

hikballapur taluk. LISS-3 MSS classified image is used for comparison. 
6.2: Best (left) to worst (right) classification algorithms for mapping

C
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The o rall taluk wise percentage area for various algorithms shows that NN based classification on 
 MNF is most comparable to LISS-3 classified

ve
MODIS  image and is suitable for land cover 
lassification at regional level. MLC on MODIS bands 1 to 7 also proved to be second best algorithm 

6.2.1.3

ODIS classified data were also compared with LISS-3 MSS classified data on a pixel by pixel basis 

121 pix
user’s a cer’s accuracy and overall accuracy for the taluk and is listed in table 6.7, 6.8 and 

.9. This analysis also indicates that NN (MNF) classification technique is relatively better among 13 

 
Algorithms Overall Accuracy Rank 

c
for classification. 

. Pixel to pixel analysis with LISS-3 MSS classified image 

M
for accuracy assessment of pure (homogenous) pixels. One pixel of MODIS spatially corresponds to 

els (that is approximately equal to 258.5 m) of LISS-3. The error matrix was generated with 
ccuracy, produ

6
techniques.  

NN (MNF) 69.87 1 
MLC(B1 to B7) 65.77 2 
NN (PCA) 63.69 3 
DTA (MNF) 62.38 4 
DTA (PCA) 62.22 5 
DTA(B1 to B7) 61.40 6 
K-Mea 57.64 7 ns(B1 to 7) 
SAM(B1 to B7) 56.66 8 
MLC (PCA) 53.02 9 
SAM ( 51.38 10 PCA) 
NN(B1 to B7) 51.34 11 
SAM (MNF) 47.38 12 
MLC (MNF) 41.55 13 

 

Table 6.7: Overall Accuracy obtained from pixel to pixel analysis with LISS-3 image comparison 

 

 

Algorit Plantation Waste land Waterbodies 

for Chikballapur Taluk.    

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

hms Agriculture Built up Forest 
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K-Means (B1 to B7) 41 11 63 56 85 40 

MLC ( 51 B1 to B7) 69 39 72 65 85 

SAM (B1 to B7) 37 29 75 64 61 49 

NN (B1 to B7) 37 17 59 44 87 29 

DTA ( 29 49 34 88 48 B1 to B7) 41 

MLC (PCA) 36 24 50 48 82 49 

SAM ( 64 79 51 PCA) 17 31 71 

NN (PCA) 20 45 61 69 81 56 

DTA ( 67 82 37 PCA) 34 41 49 

MLC (MNF) 40 45 53 69 92 55 

SAM (MNF) 21 45 39 61 88 33 

NN (M 75 81 65 NF) 41 55 61 

DTA (MNF) 31 27 64 61 81 55 
 

.8: User’s Accuracy obtained from pixel to pixTable 6 el analysis with LISS-3 image comparison 
r Chikballapur taluk. 

Algorithms ntation Waste land Waterbodies 

fo

 
 Agriculture Built up Forest Pla

K-Means (B1 to B7) 51 44 55 56 62 55 

MLC ( 73 66 55 B1 to B7) 45 56 66 

SAM (B1 to B7) 41 55 31 54 59 41 

NN (B 41 60 45 1 to B7) 46 65 19 

DTA (B1 to B7) 51 44 53 67 65 43 

MLC ( 61 66 39 PCA) 65 49 32 

SAM (PCA) 21 41 29 66 74 37 

NN (P 29 38 69 78 45 CA) 61 

DTA (PCA) 41 56 38 59 61 42 

MLC ( 48 MNF) 58 57 41 57 60 

SAM (MNF) 29 55 45 61 61 42 

NN (MNF) 59 41 55 76 83 65 

DTA ( 58 MNF) 31 44 53 69 71 
 

Table  
omparison for Chikballapur taluk. 

6.9: Producer’s Accuracy obtained from pixel to pixel analysis with LISS-3 image
c
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6.2.2. Accuracy Assessment of Soft classification for MODIS  

6.2.2.1 S-3 MSS 

able 6.  the abundance maps 

ori
the area. For the land cover details of each taluk see Annexure D (table 14). 

. Comparison on the basis of percentage area with LIS

T 10 shows the land cover statistics for Chikballapur taluk obtained from
generated using Linear Mixture Model (LMM), which is compared with LISS-3 classified map. All 
categ es show comparable values of MODIS to LISS-3 except waterbodies that were overestimated in 

 
Class LMM LISS-3 
Agriculture (%) 25.34 28.07 
Built up (%) 11.94 11.51 
Forest (%) 16.44 17.06 
Plantation (%) 12.12 11.56 
Waste land (%) 31.83 31.04 
Waterbodies (%) 02.33 0.76 

 

The talu y 9 km) gird and homogeneous 
ure) pixels were verified in each grid. At the pixel level, a total of 51 parcels with respect to the six 

provide

Table 6.10: Land Cover details of fraction images for Chikballapur taluk. 

 

6.2.2.2. Accuracy Assessment based on Pixel Analysis 

k was divided into 16 quadrants of 5 min by 5 min (9 km b
(p
land cover classes were verified using handheld Magellan GPS in Chikballapur taluk and table 6.11 

s the validation results.  
 

Class Total no. of 
pixels identified 

Pure pixels Mixed pixels Wrongly 
classified 

Agric
 

ulture 23 18 5 0 

Built up  6 4 2 0 
(Urban / Rural) 
Everg
Everg

reen / Semi-
reen Forest  

2 1 1 0 

Plantation/Orchards 11 7 4 0 
 

Waste
Rock

 land / Barren 
 / Stony waste 

6 4 2 0 

Waterbodies 3 1 0 2 
 

Total 5 14 2 
     

51 3

 

 11: Validation of land cover classes in ChikTable 6. ballapur. 

Waterbodies which constitute less than 1% of the total area in the district were misclassified and were 
rongly estimated. Field verification showed that most of the pure pixels as well as few mixed pixels 

i

 

w
(for example agriculture with plantations/orchards, open forest class mixed with plantation and barren 
land m xed with urban class) were classified correctly. 
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6.3. Discussion 

6.3.1 Hard Classification 

assification technique performs well with high spatial resolution as in the case with LISS-3 

. 

Hard cl
image when the actual ground cover is heterogeneous in nature. Good training site and ancillary data, 
long with minimum difference between the date of acquisition and date of ground truth collection 

r 
uti

  
urther,  cover parameter, errors are generated when the classification algorithm selects 

e clas , perhaps as a result of 

avoided

dit

. 

For Lin
ssentia operly identify different endmembers for MODIS since it proved to be highly relevant, as 

attribute
e land spatial resolution (250 m), where 

The rea
he results suggest that this could be a limitation to the use of MODIS data in areas of high contrasting 

e, 
en

 
hen u generate the abundance maps, from the presence of endmembers which do 

ot mix in a linear fashion is a 

for exam
for MO  present, 

enerally showing the capacity of estimating values within 20 % to 25 % of the actual values. 

The Lin
avoidable. The overall values on the difference maps show only slight divergence, producing good 
stimates across the whole maps, except for the waterbodies endmembers. It suggest that the selection 

vari bil
cognizable patterns are found and the RMSE is overall small, it can be deduced that a near perfect 

The spe
rm of  equations can be inverted taking the endmember spectra to 
construct the spectra of each pixel from the original image. Divergences between the original and 

a
furthe aids in achieving better classification result. MODIS classified image with coarse spatial 
resol on had many pixels that were misclassified as is clear from the Accuracy Assessment.    

 within the landF
the wrong class. With respect to a particular class, errors of omission occur when pixels of that class are 
assigned wrong labels; errors of commission occur when other pixels are wrongly assigned the label of 

s considered. These errors occur when the signal of a pixel is ambiguousth
spectral mixing, or when the signal is produced by a cover type that is not accounted for in the training 
process. These errors are a normal part of the classification process. They can be minimized, but not 

 entirely.  
 
As ad ional argument it can be said that as pixel size increases, the chances of high accuracies in hard 
classifications being product of random assignment of values declines. 
 

6.3.2 Soft Classification using Linear Spectral Unmixing 

ear Mixture Modelling (LMM), the selection of the endmembers has an important effect. This is 
l to pre

it is clear from the results that a high adjacency effect exists between contrasting features (forest and 
plantation, for example). When comparing LISS-3 MSS and MODIS, another important fact that can be 

d to LISS-3 is its spatial resolution (23.5), the reason for its superior results in the detection of 
 cover class distribution and MODIS data having a coarse th

misclassification of the pixels are more likely.   
 

son for the MODIS low accuracy can be the presence of another singularity: adjacency effects. 
T
natur as is the case of waterbodies, and raises concerns about its application especially on heavily 
fragm ted or small isolated areas. 

nmixing an image to W
n matter of concern. Errors in sensor operation and sensor noise can also 
add to the ones already mentioned. These errors take place when the selection of endmembers is wrong, 

ple when these do not correspond to pure pixels. The determination of endmember fractions 
DIS in the study area exhibits good behaviour in places where the endmembers are

g
 

ear Spectral Unmixing (LSU) of MODIS on the other hand presents more errors which are 

e
for this endmember could be improved, which is reasonable as this endmember shows high spectral 

a ity (for example, clear water is different from turbid water or muddy water). When no more 
re
model has been reached. 
 

ctra of the different endmembers were modelled by linear equations. This introduces another 
 quality assurance, as thesefo

re
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reconstructed image also give idea of the goodness of fit of the model, and give insights to which bands 
e to the errors. add mor

 

. 

When a
most im t one is the way of data collection that served as input for the classification of the 

ference set.  

ren
source d
LISS-3 

een int the training data, the image and validation data are not temporally coincident 

MSS (2
forma out that time from other sources. Nevertheless, even when counting with a high 

utio

lly is representative of the entire classification.  

quality orking 
ith MODIS data, as the quality of its georeferencing could mean a maximum of 10 to 15 % of error in 

ea
error y
measure  uncertainty in true geolocation. Therefore, 
lthough no accurate value can be given, it becomes evident that MODIS subpixel classification 

rm

 

 

 

 
 
 
 

 

6.3.3 Classification Accuracy 

ssessing the accuracies of the image classifications, several things have to be kept in mind. The 
portan

re
 
Refe ce data include both ground truth data and other ancillary data. The time difference for the 

ata used in developing a reference dataset, the reference (field based) date and the MODIS and 
MSS acquisition dates impact both utility and accuracy of classified maps. Errors may have 
roduced since b

with the sensor observations. Every possible measure was taken to minimize this effect, relating other 
ancillary data and vegetation presence information with the visual interpretation of the fused LISS-3 

3.5 m) and IRS-1C/1D Panchromatic data (of spatial resolution 5.8 m) and having acquired 
tion abin

resol n image, which certainly helps to ameliorate the effects of the sampling, care has to be taken in 
the interpretation of the results, as the presence of bias is likely to happen. To summarize, it is not 
certain that the reference data in this case actua
 
Another source of bias that influences the conclusions that can be drawn from the classification is the 

in the co-registration of the images [134]. This is still a matter of consideration when w
w
the ar  of a pixel. Although care was taken in the geo-referencing process so as to minimize the RMSE 

et, small misregistration may be another significant source of error. Since each MODIS 
ment is geolocated, this problem amounts to

a
perfo ance is definitely better, when mixed pixels are present. 
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7. Conclusions  

This study highlights the various preprocssing techniques and the classification algorithms (hard and 
ed in the research and summarises the results obtained from the accuracy assess

re
oft) us sment. The 

rch

  
This wo

eans ier (MLC), Spectral Angle Mapper (SAM), Neural 
etwork (NN) and Decision Tree Approach (DTA) as well as Linear Mixture Model (LMM) as a soft 

product
 

rincipal Component Analysis (PCA) and Minimum Noise Fraction (MNF) were used to remove the 

cover (g tate, India) using 
ISS-3 (23.5 m spatial resolution) data and MODIS data. LISS-3 data were classified using supervised 

 in
Evergre
Waterbo

compon
Likelihood Classifier, Spectral Angle Mapper, Neural Network and Decision Tree Approach. In the 
econd phase, 6 fraction images pertaining to each class were generated using the Linear Mixture 

l. 
 

he error matrix for LISS-3 classified map showed an overall accuracy of 95.63 % for Chikballapur 

maps w
 

) Error matrices were generated with ground truth data for Chikballapur taluk. The overall 
a
o
t  in ranking with 75.99 % accuracy (see table 6.3 for details). MLC on 
Principal Components ranked 13th among the techniques with an overall accuracy of 30.44 %.  

(ii) A
d hat MLC on MODIS Bands 1 to 7 is 
best for mapping agriculture and built up. K-Means algorithm was best for mapping forest. 
D
o
m

A
m
a
Neural Network classification on MNF components has the highest accuracy of 69.87 % and 
M
d
a
f IS classified maps, only 100% pure 
land cover classes (the matrix of 11 x 11 pixels in LISS-3 classified map) were considered and 

sea  questions have been answered after an insight in to the findings of the result. Finally the 
chapter concludes with the scope for further research. 

rk compares and assesses the efficacy of various hard classification algorithms namely K-
Clustering, Maximum Likelihood ClassifM

N
classifier for land cover mapping using the MODIS (250 m spatial resolution) surface reflectance 

. 

P
redundancy and noise from the MODIS data. To begin with, NDVI helped in obtaining the general land 

reen versus non-green) mapping for study area (Kolar district, Karnataka s
L
MLC to 6 broader land cover categories (Agriculture, Built up (Urban / Rural), Evergreen / Semi-

en forest, Plantations / orchards, Waste lands / Barren rock/ Stony waste / Sheet rock and 
dies / Lakes / Ponds / Tanks / Wetland). 

  
In the first phase of experiments, MODIS Bands 1 to 7, PCA-derived components and MNF 

ents were classified into the same 6 land cover classes using K-Means clustering, Maximum 

s
Mode  

T
taluk (table 6.2) where field data were collected. Accuracy assessment of the MODIS hard classified 

ere estimated at three levels.  

(i
ccuracy, producer’s and user’s accuracy were computed. Neural Network based classification 
n MNF components showed the best overall accuracy of 86.11 % and MLC on MODIS bands 1 
o 7 was the second

 
 comparison of the land cover percentage area among the various classification algorithms was 
one for Chikballapur taluk (table 6.6). The results showed t

ecision Tree Approach on PCs was found to be good for plantation, while the same technique 
n MODIS Bands 1 to 7 was best for mapping waste land. Neural Network on MNF component 
apped the waterbodies accurately.  

 
(iii) t pixel level, MODIS hard classified maps were compared to high resolution LISS-3 classified 

ap. The corresponding producer’s, user’s and overall accuracy were computed. This 
ssessment was in agreement with the error matrix computed using ground truth. It showed that 

LC on MODIS Bands 1 to 7 had an accuracy of 65.77 % in decreasing order (see table 6.7 for 
etails). The other rankings did not tally exactly with the rankings computed using ground truth 
nd were shuffled to 2 or 3 positions high or low in the rankings. This may be due to the 
ollowing reasons. While comparing the LISS-3 and MOD
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t
w
a of the existing hard classification techniques for 
land cover mapping at regional scale using MODIS data. 

The ab  at 
dministrative boundary (taluk level) as well as at pixel levels.  

(i.) A n was based on the percentage area of each class with respect to 
LISS-3 classified map and the percentage of the classes were found to be similar (see table 6.10 
f

 
A
T
w y/barren (see table 6.11). Waterbodies were overestimated in the study 
area, indicating requirement of adequate training sites / endmembers representing water 
c
v  while mixed 
pixels were within 20-25% of the actual values. The result shows the utility of spectral unmixing 
m

 
he consequence of different spatial scales (at administrative boundary level and at pixel level) on 

cover c
est but ponents proved to be superior 

ixel le dary level. To interpret similar “percentages” from different classifiers 

o
gion) l analysis gives an 

he pre inimum Noise Fraction (MNF) on 

results 
verall lso gave good result and ranked 

ho
observa

ISS-3 e data to be normally 

on
 

s well for classifying the image into broader land cover 

definite
perform ntage area and the accuracy assessment done at 

ixel level (showing good agreement with the LISS-3 classified image as discussed above). 

Hypersp
surface features. The classification of MODIS data (of higher spectral and coarse spatial resolution) 
hows comparable classification accuracy with LISS-3 MSS data (lower spectral and high spatial 

hose ranging from 90 – 100 % were neglected. Also, 11 pixels of LISS-3 are 258.5 m spatially, 
hich is 8.5 m more than the spatial resolution of MODIS pixel (250 m). To summarize, the 

bove discussion shows the utility / usefulness 

 
undance maps that could give the fraction of each class in a pixel were also verified

a
 

t the taluk level, the compariso

or details). The percentage of waterbodies was higher in the abundance map.  

(ii.) t the pixel level, the accuracy of the proportions of the classes was validated on the ground. 
here is mixing of classes in agriculture--plantation/orchards, forest--plantations and built up--
aste land/rocky/ston

ategory. MODIS land cover outputs is comparable to LISS-3 classified map, evident from the 
alidation exercise, as most endmembers (pure pixels) were correctly classified

odel to obtain the abundance maps of the different interpretable classes.  

T
classification accuracy was noticed. When comparing the land cover percentage area among the various 
algorithms with respect to LISS-3 classified image, it was observed that for mapping a particular land 

lass at the boundary level, say for agriculture and built up MLC on MODIS bands 1 to 7 was the 
when the accuracy was assessed at pixel level, NN on MNF comb

than the other techniques. A certain algorithm may be good for mapping a particular class but at the 
same time may not be equally good for mapping all other classes. Further, it is recommended to rely on 

vel result than at the bounp
as an indicator for correct classification is not advisable and reliable. The percentage area of class “A” 
for tw  classifiers may be very similar on an administrative boundary level (i.e. for the entire study 

but quite different if the classified images are compared pixel-by-pixel. Pixere
idea about the “stability” of classification results. 
 

processing techniques (Principal Component Analysis) and MT
MODIS data had different effects on the accuracy of the hard classification algorithms. It was observed 
that Neural Network (NN) and Decision Tree Approach (DTA) on MNF components give the best 

as is evident from their ranking (see table 6.3 for details) which was generated on the basis of 
accuracy from ground truth. NN and DTA approach on PC’s ao

5th and 6th among the algorithms. The interesting point here is Spectral Angle Mapper and Maximum 
Likeli od classification that performed worst on the MNF components as well as PCs. The same 

tion was made in the accuracy assessment based on pixel to pixel comparison with respect to 
classified image. One reason for this effect is that NN does not assumL

distributed and DTA uses a non-parametric classification algorithm that involves a recursive 
partiti ing of the feature space, based on a set of rules learned by an analysis of the training set. 

Although, hard classification techniques perform
categories having homogeneous surface features, the abundance maps generated from MODIS data is 

ly better when considering mixed pixels. The result is evident from the accuracy assessment 
ed at the taluk level comparison of the perce

p
 

ectral sensing holds the potential to provide a high spectral data obtained about the earth’s 

s
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resolution) for land cover mapping at a regional level. It is true that the subpixel classification is better 
rd classifiers for coarse resolution satellite data, yet to what extent this statement holthan ha ds good and 

ow far this technique is valid at a global level mapping with high number of endmembers can be a 

from L
includin ixing of MODIS data is 
lso another area of research along with methods on how to optimize the analysis of the high volumes 

virtually
 

within 
The mo Mixture Model 

LMM). The NLMM takes into account the multiple radiances of the ground cover materials, and thus 
x

phenom  various spectral 
nmixing applications. NLMM can further be investigated and is the subject of ongoing research.  

Study o
spectral and spatial resolution. Future research can be carried out to realise the effect of fusion of high 
patial resolution data and true hyperspectral data (having wavelengths in continuous EM spectrum). 

f 
complex
problem aphazard urban sprawl, global warming, climate change etc. 

 
 

 
 

 

 
 

 

 

h
subject of research. Methods can be developed to estimate the accuracy of the fraction images obtained 

MM other than ground survey. Use of high resolution classified maps to extract endmembers 
g techniques like Iterative Error Analysis (IEA), N-FINDR, etc. for unm

a
of data acquired. The scope of digital image classification and its application with hyperspectral data is 

 limitless. 
  
Use of neighbourhood operations on classification with the presence of adjacency effects between and 

features present on the ground also contribute to heterogeneity and leads to misclassification. 
st important research area that has not been studied enough is the Non-Linear 

(N
the mi ture is no longer linear. The NLMM has a relatively more accurate simulation of physical 

ena and there is not a simple and generic NLMM that can be utilized in
u
 

f vegetation requires species level identification which could be carried out with much higher 

s
Use o temporal data can further help in understanding land cover dynamics analysis where the 

ities of abrupt policy decisions and lack of prior planning have resulted in environmental 
s like h
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Annexure A 

Calibration of Hyperspectral data  

L a T IS  the 
at-aperture spectral radiance of the Earth scene with its associated uncertainties. Level 1A data is Earth-
located raw sensor digital numbers and Level 1B data is Earth-located, calibrated data in physical units. 
The On-board Blackbody and Space View are used every scan to calibrate the emissive bands. The on-
orbit emissive band MODIS calibration is a two point me hich f nonlin spon
pre-la ents [1].  

L1B Reflective Calibration - The MODIS reflective calibration algorithm is designed to determine the 
at-aperture spectral radiance of the Earth scene and the bidirectional reflectance of the Earth scene with 
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[134]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1B Emissive C libration - he MOD  emissive calibration algorithm is designed to determine

thod w its a ear re se by using 
unch measurem
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their respective associated uncertainties. Level 1A data is Earth-located raw sensor digital numbers and 
Level 1B data is Earth-locate ata in physical units. The Solar Diffuser, Spectroradiometric 
Calibration Assembly (SRCA) and Space View are used periodically to determine calibration 
coefficients for the reflective bands. The Space View is used every scan along with the periodic 
calib ults to rate the lective b . The it refle e band bratio  one-

ted by data from a two-point periodic method to fit a linear detector response [2].  

Sp ation ODIS tral ban ponses  well  and The 
bandpass filters were constructed with Ion Ass  
of the solar reflecting spectral bands will not during the lifetime of MODIS. Spectral shifts have 
o vio er ins nts going from a t to . T ctr etric 

bl A) measures any ch to on-orbit center wavelength shift. The SRCA 
as the capability of wavelength self-calibration for solar reflective bands [3].   

tmospheric Correction for MODIS 
 
The MODIS atmospheric cor d  7 ntred at 648, 858, 
470, 555, 1240, 1640 and 2130 nm. Previous operations have assu rd atmosphere with zero 
or constant aerosol loading and a uniform Lambertian surface. The MODIS algorithm relies on the 
modelling of atmosp ffects a escribed e Second Simulation of the Satellite Signal in the 
Solar Spectrum Radiative Code (6S) [4] and is simplified in the MODIS code for operational 
application. The code is documented and includes simulation of the effects of the atmospheric point 
spread function and surface reflection directionality. Currently the 6S code is being used as a reference 
to test the correct impl MOD spheric correction algorithm
 
The inclusion of specific bands for atmosp sens the M IS ins nt provides for 

ric correction and allows the estimation of surface directional reflectances in the 
 [6 ata obtai  from MODIS are fre  cloud spheric contam , and 

ang nd illumination effects. Rectification has posed particular difficulties for AVHRR 
processing in producing composited images, analyzing 
comparing data from multiple time periods to assess change. These problems are significantly reduced 
with the in-flight navigation capabilities of MODIS. Geolocation error estimate DI ined 

ith the growth of pixel size with scan angle, provide an effective pixel size close to 1-km using the 

escription of PCA 

i) Fundamentals of PCA 

rincipal component analysis is an analytical procedure for transforming one set of variates into another 
s ent variat e f  pr  [
 
1 ctions o rigin ates
2 gonal, i.e., in den h 
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 of the remainde so fo

(  Operational S nce

T t mathematical operational nc PCA that re esents o  aspect of th
a ollows: 
  

ion of the prelim aria
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vary 
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A

rection algorithm over lan  are applied to bands 1 –
med a standa

, ce

heric e s d  in th
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heric ing on OD trume
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ular view a
time trajectories of land surface data, and 

s of MO S, comb
w
500-m and 250-m land bands as inputs [7].  
 
D
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nce 
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nalysis is as f
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b) Determination of either the variance-covariance or the correlation matrix  
c) Calculation of the above matrix 

ination of the eigenvalues and eigenvectors of the m
on of th e  a

of deriv pon

T of selecting limi ari  extreme ificant. variables sh
be quantitative characters, and preferably easured on a continuous scale, although many disc
variables adequately approxim tin riable ]. Consequently, the next step involves the
o nce-covaria trix o cor  matrix. Normally, if al  are of the s
s  units of length se o ari ovariance ix is rec ded. Use o
variance-covariance matrix h  grea stat appeal e the s  theory is less 
c n the others [1 wever, the  are mixed (e.g., length, volume, weight), 
n  becomes import d th relat atrix is used. The linear transformation 
original variants into p “artif ariate he th ep invo  the tran tion. This is
m equivalent of d ining the eigenvectors and d eigenv of a varia
c r of a correlation   
 

n variables (i.e., the eigenvectors) and their 
ariances (i.e., eigenvalues) from the variance-covariance or correlation matrix. A simplistic 

ent of the mathematical derivation of eigenvectors and eigenvalues can be found in [11]. 

( matical Des n o   

C al space  larg be els plott t. Each p escribed b
appropriate vector x. The mea ion pix the spac fined by ected valu
t according to
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d  product of the d deviation of the features represented by t esponding 
and image in band 2) in the matrix C, then the 

orresponding correlation r12 is obtained by  

r                            --- a
 
w standard ons d 1 and 2, r vely. Co  for the o
e e found in ar m . Th t step i lation of genvalues 
eigenvectors of the matrix C. It is determined by solving the following equations 
 
 i 0  ------ ----------- uation 2.7) 
 
W 1, a2, ...am)t  is the eigenvector corresponding to the eigenvalue λi,  feature sp
d d I is the identit x ( mat h diagon tries set d off-diago
entries are set to 0). 
 
All the eigenvalues λ¸ can be d ed b ing
 

   ------------------------- (equation 2.8) 

nd finally the new coordinate system is formed by normalized eigenvectors of the variance -
c r correlat Th g  fi xel 3..
p nent is given b
 
f 1 + x2 * a2 + k * a                 ---- ----------- ation 2.9) 
 
 
 
 
T ric correction for M S da etero ous gro nditions h  addressed by 
s rchers [12], [13] an ]. The atmospheric correction approach adopted by MODIS is to 
a e signal received  sat  a co ation of t lectance rget pixel a
reflectances from the surroundi els, eigh y their distance from th t. Because t
apparent signal at the top-of–the-atmosp OA es from arget and nt pixels, this 
effect is called the adjacency effect. The correcti volves inve ng the li mbination of 
r  solve for the ref e of t get p 5].  
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Annexure B 

Mathematical Description of Bayes’ C ficat

here M is the total number of classes. In trying to determine the class or category to which a pixel at a 
cation x belongs, it is strictly the conditional probabilities 

p .M  
that are of interest. The position vector x colum ctor of br ness valu the pixel. 
d l as a point tispec ace w o-ordina fined by ghtness. Th
p ) gives the likelihood that the correct class is ώi fo l at a po   
 
Classification is performed according to  
x ώi | x) > p(ώj | x ll j ≠        --------- ---------- on 3.1) 
i.e., the pixel at x belongs to cl i, if p(ώ is t est. Thi ive decision rule is a special 
case of a more general rule in which the decision can be biased according to different degrees of 
significance being attached to different incorrect classifications [15]. 
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L l classes for an im e repre d by  
ώi, i = 1,……..M 

et the spectra age b sente

w
lo

(ώi | x), i= ,…1
 is a n ve ight es for It 

escribes the pixe in mul tral sp ith c tes de the bri e 
robability p(ώi | x r a pixe sition x.

 Є ώi   if p( ) for a i                  ------ (equati
ass ώ i | x) he larg s intuit
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S trics and Clus  Crit

Clustering implies a grouping ls in m pect ce. Pixe nging to cular clust
 relationship it is nec to device 

posed but those used commonly in clustering 
rocedures are usually simple distance measures in multispectral space. The most frequently 

encountered are Euclidean distance an inte di 1 a o p
s e checked then clidean nce en them
 
D 2 || 
 
  x2)t (x1 - x2)}
 

     
 (x1 - x2)2}1/2

                     i=1 
w e number of spectral componen e L nce bet e pixels 
                    N 
d 1 - x2| 
                    i=1 
C ter is computatio aster rm . Howe can be s less accura

easure it should be possible to determin
date clustering has been found it is desirable 

 have a means by which the “quality” of clustering can be measured. The availability of such a 
easure should allow one cluster assignment of the data to be chosen over all others [15].  

imilarity Me tering eria 

 of pixe ultis r
is

al spa ls belo  a parti er 
are therefore spectrally similar. In order to quantify th
similarity measure. Many similarity metrics have been pro

essary a 

p
d L1 (or rpoint) stance. If X nd X2 are tw ixels whose 

imilarity is to b  the Eu  dista  betwe  is  

(x1, x2) = || x1 - x

              = {(x1 - 1/2 

                    N    
              = {∑

here, N is th ts. Th 1 dista ween th is  

(x1 - x2) =  ∑ | x

learly the la nally f to dete ine [15]
 m

ver it een as te 
e than the Euclidean distance measure. By using a distance

clusters in data, as depicted in figure 1, so that once a candi
to
m
 

 
Figure 1: Two apparently acceptable  of im a

comm s  c n li ic s the sum ar r  m e d  as 
E =     ( x - mi) m
         є c
    =  i 
         ci 

ere, e  o it te x  a rn ne a r. out  is 
er all lu T ea o s m e nc ac er  its cluster 
ntre f h  u n  s o a v he er  is the 
tance  s s an  al ll he eri ul eg  fav ly. 

the la li c ng su  iv w lu ca easure” by 

clusterings  a set of two d ensional dat . 
  
A on clu tering riterio

t
 or qua ty ind ator i of squ ed erro  (SSE) easur efined

SS  ∑   ∑  ( x – i) 
    
    

ci   x 
∑   ∑    || x – m

i 
||2

    c    x єi

 
f the h clus r and є ci is  patte  assig d to thwh mi is th  mean t cluste  The er sum

ov  the c sters. his m sure c mpute  the cu ulativ  dista e of e h patt n from
ce or eac cluster individ ally, a d then ums th se me sures o er all t  clust s. If it small 
dis s from pattern  to clu ter me s are l sma and t  clust ng wo d be r arded ourab
Ano r popu r qua ty of lusteri  mea res is to der e a “ ithin c ster s tter m
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determining the average covariance m of lusters, and a “between cluster scatter measure” by 
g  m f u om d he al  o at se easures are 

ombined into a single figure of merit as discussed in Duda and Hart (1973) [16] and Coleman and 
e 

hich corresponds to all clusters 
natural clusters 

r spectral classes in a set of data then it has a guaranteed termination point, at least in principle. In 
to allow natural termination. Instead, iterative procedures are often 
e of clustering has been achieved. While the implementation of an 

tual clustering algorithm depend upon a progressive minimization (and thus calculation) of SSE for 
evaluation of all candidate clusterings. For example, there are approximately Cp/C! ways of placing 

f squared error) values would require 
omputation at each stage of clustering to allow a minimum to be chosen. Some of the clustering 

igrating Means) Clustering Algorithm, 
 Single Pass Clustering Technique, Self-Organizing maps (Kohonen networks), Probabilistic 

 Hierarchical Clustering, Clustering by 
istogram peak Selection, K-Means Clustering etc. which are sophisticated and proficient [15]. The 

clusterin
the rem ge about the data set. 

Most of
data pre
 
Distanc
(square ach attribute axes). Non-numeric variables 

ust be transformed and scaled before the clustering can take place. Depending on the transformation, 

 
Choice  method is not 
hosen so to match the natural structure of the data, the results will not be good, as the clusters obtained 

 no
this is t
intra-clu s. More sophisticated techniques measure these 

lities

) 

) 
. 

ren

 

atrix the c
lookin  at the eans o  the cl sters c pare  with t  glob  mean f the d a. The  two m
c
Andrews (1979) [17]. It can be shown that figures of merit such as these are essentially the same as th
sum of squared error criterion.  
 
It is of interest to note that SSE has a theoretical minimum of zero, w
ontaining only a single data point. As a result, if an iterative method is used to seek the c

o
practice it may be too expensive 
stopped when an acceptable degre
ac
the 
P patterns into C clusters [15]. This number of SSE (sum o
c
techniques that are often used are The Iterative Optimization (M
a
Clustering Methods (Auto Class algorithm), Agglomerative
H
basics of the simplest of clustering methods namely K-means algorithm, which is used for data 

g is discussed in the next section. K-means algorithm is the one which is most widely used in 
ote sensing application, when there is no prior knowled

Automatic Cluster Detection 

 the issues related to automatic cluster detection are connected to the data mining project, or 
paration for their successful application.  

e measure: Most clustering techniques use for the distance measure the Euclidean distance 
root of the sum of the squares of distances along e

m
the categorical variables may dominate clustering results or they may be even completely ignored.  

of the right number of clusters: If the number of clusters k in the k-means
c
may t be homogenous or two or more clusters may merge in one cluster. The proper way to alleviate 

o experiment with different values for k. In principle, the best k value will exhibit the smallest 
ster distances and largest inter-cluster distance

qua  automatically, and optimize the number of clusters in a separate loop. 
 
Once the clusters are discovered they have to be interpreted in order to have some value for the data 
mining project. There are different ways to utilize clustering results: 
 

1 Cluster membership can be used as a label for the separate classification problem. Some 
descriptive data mining technique (like decision trees) can be used to find descriptions of 
clusters. 

2 Clusters can be visualized using 2D and 3D scatter graphs or some other visualization 
technique

 
Diffe ces in attribute values among different clusters can be examined, one attribute at a time. 
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Annexure C 

Mathematical Derivation of Constraint Least Squares method (CLSM) 

 
Let us assume we have three end members (X1, X2, and X3) within the pixel. The mixture model in 
equation (4.1) can be rewritten as 
 
             n  
ei = ri – ∑ (aij  xj)                                                        --------------------------equation (4.2) 
             j=1  
The function to be minimized is  
      m 
F = ∑ ei

2                                                                                                         --------------------------equation (4.3) 
      i=1 
where, m is the number of spectral bands. Now, considering the first constraint i.e., 
 
x1 + x2 + x3 = 1 or x3 = 1 - x1 - x2 
 
Now, after substituting x3 in equation (4.3), the function to be minimized becomes 
F = A1x1

2 + A2x2
2 + A3x1x2 + A4x1 + A5x2 + A6  

 
where the coeffcients A1 to A6 are functions of ri (Spectral response of the pixel in ith spectral band) and 
aij (Spectral response of the jth component in the pixel for ith spectral band). The approach to solve this 
problem is to find a minimum inside the area (figure 2) defined by the hatching lines. 
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Figure 2: Region that satisfies the constraints for n = 3 components.  
 
0 <= x1 <= a, 0 <= x2 <= b, and x1/a + x2/b = 1, where a=b=1 (Figure 4.1). Considering the function to 
be minimized, in order to find a minimum, the partial derivatives are calculated and set equal to zero. 
 
δF/δx1 = 2A1x1 + A2x2 + A4 = 0 
δF/δx2 = 2A2x2 + A3x1 + A5 = 0 
 
Solving for x1 and x2: 
 
 
x1 = (A3A5 - 2A2 A4)/(4A1A2 - A3 P

2
P) 

x2 = (A3A4 - 2A1A5)/(4A1A2 - A3 P

2
P) 

 
Then there are 5 possible outcomes, as given in Table 1. 
 

Outcomes X1 x2 Within the 
Region 

Values to be 
Recalculated 

x3 

1 POS (+) POS (+) YES - 1 – x1 – x2 
2 POS (+) POS (+) NO x1 and x2 0 
3 NEG (-) POS (+) NO x2(x1 = 0) 1 – x2 
4 NEG (-) NEG (-) NO x1 = x2 =0 1 
5 POS (+) NEG (-) NO x1(x2 = 0) 1 – x1 

 
Table: 1: Possible outcomes for the system equation solution. 
 
The procedure to calculate the values of x1, x2, and consequently, x3 for the five outcomes shown in 
Table 4.1 is as follows. 
 

(i) The minimum lies within the region of interest and, thus this is final solution and x3 = (1 - x1 - x2). 
 
(ii) The minimum lies outside the region of interest and, x1, x2 are positive. In this case, the 

constrained minimum sought on the line x1 + x2 = 1 (i.e., x3 = 0). Now, letting x2 = 1 - x1, the 
function to be minimized becomes: 

 
    F = (A1 + A2 - A3)x1 P

2
P + (A3 + A4 - A5 - 2A2)x1 + (A2 + A5 + A6) 

 
    and finding the minimum, 
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     δF/δx1 = 2(A1 + A2 - A3)x1 + (A3 + A4 - A5 - 2A2) = 0 then, 
     x1 = - (A3 + A4 - A5 - 2A2)/(2(A1 + A2 - A3)) 
     if x1 > 1, then let x1 = 1, or if x1 < 0, then let x1 =0, and x2 = 1 - x1. 
 

(iii) The minimum lies outside the region of interest and, x1 is negative and x2 is positive. In this case, 
making x1 = 0, the function to be minimized becomes: 

 
F = A2x2 P

2
P + A5x2 + A6 

 
       solving for the minimum, x2 = -A5/2A2. If x2 > 1, then let x2 = 1, or if x2 < 0, then let x2 =0, and        
       x3 = 1- x2. 
 
(iv) The minimum lies outside the region of interest and x1 and x2 are negative. In this case x1 and x2 

become equal to zero and x3 = 1. 
 
(v) The minimum lies outside the region of interest and, x1 is positive and x2 is negative. In this case, 

making x2 = 0, the function to be minimized becomes 
       F = A1x1 P

2
P + A4x1 + A6 

       solving for the minimum, x1 = -A4/2A1.  If x1 > 1, then x1 = 1, or if x1 < 0, then let x1 = 0, and       
       x3=1 - x1. 
 
The CLS method presents similar concepts of quadratic programming; i.e., both methods search for the 
solution by minimizing the objective function which is the sum of the errors. While the CLS is the most 
widely used method in estimating the proportion of the endmember within mixed pixels in a linear 
mixture model; there are other techniques such as The Weighted Least-Squares (WLS) method [18]. 
[19] presents a novel method for mixed pixel classification where the Hough transform and the trimmed 
means methods are used to classify small sets of pixels. In the presence of outliers, this method is more 
reliable than the traditional least square method and even when no outliers are present, its performance 
is comparable to that of least squares error method.   
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Annexure D 

Classification 
data  

Agriculture Built up 
(Urban/Rural)

Evergreen/ 
Semi-Forest

Plantation/ 
orchards 

Waste land/ 
Barren rocky/ 
Stony Waste 

Waterbod
ies 

Row Total

Agriculture 
5913 23 259 454 161 

 
106 6916 

Built up 
(Urban/Rural) 39 857 60 39 47 

12 
 1054 

Evergreen/Semi-
Forest 74 36 5136 96 104 

 
479 5925 

Plantation/ 
Orchards 102 3 124 2978 98 

 
65 3370 

Waste land/Barren 
rocky/Stony Waste 24 73 143 39 11704 

 
182 

 
12165 

Waterbodies 
52 3 230 25 13 

 
11282 11605 

 
Column Total 6204 995 5952 3631 12127 

 
12126 41035 

 
Table 1: Error matrix for Unsupervised classification. 
 

Classification 
data  

Agriculture Built up 
(Urban/Rural)

Evergreen/ 
Semi-Forest

Plantation/ 
orchards 

Waste land/ 
Barren rocky/ 
Stony Waste 

Waterbod
ies 

Row Total

Agriculture 
2193 7 247 98 12 

 
54 2611 

Built up 
(Urban/Rural) 16 1671 107 79 41 

 
65 1979 
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Classification 
data  

Agriculture Built up 
(Urban/Rural)

Evergreen/ 
Semi-Forest

Plantation/ 
orchards 

Waste land/ 
Barren rocky/ 
Stony Waste 

Waterbod
ies 

Row Total

Evergreen/Semi-
Forest 50 6 25539 1029 21 

 
142 26787 

Plantation/ 
Orchards 37 5 993 17168 14 

 
218 18435 

Waste land/Barren 
rocky/Stony Waste 20 30 117 14 1477 

 
58 

 
1716 

Waterbodies 
1 2 23 33 11 

 
28890 28960 

 
Column Total 2317 1721 27026 18421 1576 

 
29427 80488 

 
Table 2: Error Matrix for Supervised classification.  
 
 
 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 10.22 37.58 7.8 4.75 38.58 1.06
K-Means (B1 to B7) 2.66 51.16 5.14 0.63 40.33 0.08
MLC (B1 to B7) 1.23 41.03 15.35 7.62 33.55 1.21
SAM (B1 to B7) 0.82 57.17 5.79 2.46 32.61 1.14
NN (B1 to B7) 1.69 56.79 10.22 3.37 27.62 0.31
DTA (B1 to B7) 2.43 44.92 9.53 7.74 35.23 0.16
MLC (PCA) 5.01 42.69 24.8 1.14 26.36 0
SAM (PCA) 7.83 44.19 3.27 2.65 42.06 0
NN (PCA) 4.84 37.68 2.66 1.2 49.3 4.32
DTA (PCA) 8.73 31.93 21.42 2.27 19.31 16.35
MLC (MNF) 0 76.4 7.32 0 16.28 0
SAM (MNF) 0.2 83.29 10.68 0 5.82 0
NN (MNF) 9.05 41.97 5.66 3.27 38.99 1.04
DTA (MNF) 9.69 33.78 24.43 11.74 20.37 0

Table 3: Land Cover statistics for Bagapalli Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 14.78 10.05 17.98 12.85 42.75 1.6
K-Means (B1 to B7) 23.72 10.43 12.78 21.56 31.46 0.06
MLC (B1 to B7) 22.8 6.85 16.02 15.5 38.02 0.82
SAM (B1 to B7) 19.28 8.77 17.61 17.73 36.37 0.24
NN (B1 to B7) 23.8 19.29 14 28.08 14.51 0.31
DTA (B1 to B7) 16.38 7.95 25.32 13.04 36.5 0.82
MLC (PCA) 25.11 10.78 14.22 18.4 30.82 0.67
SAM (PCA) 32.23 2.84 17.22 14.72 31.63 1.35
NN (PCA) 31.85 0 18.71 9.15 39.47 0.83
DTA (PCA) 20.2 7.37 7.65 22.26 41.25 1.28
MLC (MNF) 18.58 0.89 9.14 23.82 47.46 0.11
SAM (MNF) 9.89 0 0.14 40.05 49.5 0.42
NN (MNF) 14.64 6.38 20.85 16.23 41.3 0.59
DTA (MNF) 22.27 7.28 13.65 21.97 34.83 0

Table 4: Land Cover statistics for Bangarpet Taluk. 
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Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 28.07 11.51 17.06 11.56 31.04 0.76
K-Means (B1 to B7) 18.1 19.48 16.45 16.74 28.72 0.03
MLC (B1 to B7) 28.31 11.71 16.35 10.4 32.72 0.51
SAM (B1 to B7) 48.16 21.38 12.97 14.91 35.38 0.5
NN (B1 to B7) 15.83 20.56 11.11 28.37 23.23 0.89
DTA (B1 to B7) 18.79 16.99 23.43 9.68 30.72 0.39
MLC (PCA) 40.27 7.09 13.06 4.89 34.01 0.68
SAM (PCA) 17.4 8.28 15.37 14.96 43.82 0.16
NN (PCA) 21.34 0 21.46 8.04 49.03 0.13
DTA (PCA) 27.73 24.65 13.9 11.19 21.86 0.67
MLC (MNF) 23.72 3.48 14.62 16.1 41.87 0.21
SAM (MNF) 30.73 0 28.74 4.02 36.21 0.3
NN (MNF) 28.69 10.1 15.72 10.66 34.13 0.7
DTA (MNF) 16.08 14.84 25.73 7.06 35.64 0.65

Table 5: Land Cover statistics for Chikballapur Taluk. 
 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 16.79 17.61 4.83 7.52 51.84 1.4
K-Means (B1 to B7) 15.58 13.73 0.65 11.79 58.24 0.01
MLC (B1 to B7) 20 14.38 1.91 7.82 54.19 1.7
SAM (B1 to B7) 18.23 19.04 0.93 4.57 56.89 0.35
NN (B1 to B7) 28.31 26.56 0.93 7.11 36.89 0.2
DTA (B1 to B7) 15.12 15.12 3.77 11.65 53.82 0.53
MLC (PCA) 22.63 18.07 0.79 5.89 52.3 0.31
SAM (PCA) 14.2 9.99 3.73 18.48 53.4 0.2
NN (PCA) 26.57 5.93 2.22 5.06 60.08 0.24
DTA (PCA) 20.02 20.28 3.14 6.29 47.5 2.77
MLC (MNF) 25.35 15.32 0.77 6.2 51.79 0.57
SAM (MNF) 27.92 12.06 6.74 0.84 51.45 0.99
NN (MNF) 17.26 17.04 3.15 6.46 55.27 0.82
DTA (MNF) 20.39 13.85 5.72 3.68 55.94 0.42

Table 6: Land Cover statistics for Chintamani Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 17.29 23.07 9.65 8.68 40.6 0.7
K-Means (B1 to B7) 19.15 17.15 4 11.42 48.19 0.1
MLC (B1 to B7) 13.88 16.37 9.69 17.24 42.18 0.64
SAM (B1 to B7) 12.03 19.76 5.98 13.05 48.82 0.36
NN (B1 to B7) 6.04 35.66 1.9 7.93 48.18 0.29
DTA (B1 to B7) 15.7 16.42 11.55 12.4 43.29 0.64
MLC (PCA) 28.69 24.59 10.48 4.04 32.19 0
SAM (PCA) 8.75 18.25 7.6 10.87 54.53 0
NN (PCA) 31.79 2.27 14.69 6.19 44.83 0.24
DTA (PCA) 35.67 26.13 10.29 9.34 17.23 1.35
MLC (MNF) 30.73 12.54 11.47 7.92 37.2 0.13
SAM (MNF) 9.74 6.29 39.75 10.82 33.4 0
NN (MNF) 18.49 22.07 7.98 9.53 41.14 0.79
DTA (MNF) 16.58 10.04 11.43 11.05 50.86 0.03
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Table 7: Land Cover statistics for Gauribidanur Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 16.36 16.21 7.92 6.56 52.35 0.6
K-Means (B1 to B7) 4.7 15.17 1.76 1.76 76.55 0.05
MLC (B1 to B7) 1.71 26.16 3.71 5.93 62.05 0.43
SAM (B1 to B7) 1.79 28.19 1.9 3.96 63.66 0.51
NN (B1 to B7) 6.04 35.66 1.9 7.93 48.18 0.29
DTA (B1 to B7) 6.37 18.38 4.24 5.78 64.7 0.54
MLC (PCA) 8.79 9.94 3.23 2.99 75.05 0
SAM (PCA) 3.9 1.76 1.6 16.72 76.02 0
NN (PCA) 4.43 0 2.91 1.66 91 0
DTA (PCA) 8.84 27.05 2.11 2.99 57.99 1.02
MLC (MNF) 5.21 28.84 2.54 2.27 61.06 0.08
SAM (MNF) 6.19 3.56 8.88 0 81.37 0
NN (MNF) 2.32 1.34 4.25 0 92.09 0
DTA (MNF) 12.44 8.63 4.06 7.69 67.18 0

Table 8: Land Cover statistics for Gudibanda Taluk. 
 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 21.23 13.39 13.02 14.15 37.33 0.87
K-Means (B1 to B7) 28.97 10.6 8.54 24.76 27.12 0.01
MLC (B1 to B7) 36.11 6.48 11.4 10.8 33.73 1.48
SAM (B1 to B7) 32.19 9.1 10.59 13.8 33.98 0.35
NN (B1 to B7) 39.24 14.44 9.2 21.21 15.56 0.35
DTA (B1 to B7) 20.5 9.52 18.98 16.46 33.7 0.83
MLC (PCA) 36.18 13.96 7.67 10.08 30.86 1.25
SAM (PCA) 35.05 3.4 8.97 17.78 34.03 0.78
NN (PCA) 44.49 0 9.82 10.49 34.64 0.56
DTA (PCA) 24.74 6.83 6.78 15.96 44.64 1.05
MLC (MNF) 61.95 0.15 4.04 9.11 23.29 1.46
SAM (MNF) 54.13 0 1.17 10.79 30.87 3.04
NN (MNF) 51.01 0.19 6.19 6.51 34.06 2.05
DTA (MNF) 39.95 7.07 11.74 5.92 34.88 0.44

Table 9: Land Cover statistics for Kolar Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 21.37 13.36 15.08 15.45 34.11 0.63
K-Means (B1 to B7) 36.5 10.12 6.75 20.84 25.51 0.28
MLC (B1 to B7) 35.34 11.1 9.59 15.85 27.49 0.63
SAM (B1 to B7) 30.85 11.87 9.3 18.86 28.88 0.26
NN (B1 to B7) 33.48 15.04 6.63 30.95 13.78 0.11
DTA (B1 to B7) 24.67 11.77 21.53 14.01 27.44 0.58
MLC (PCA) 47.74 11.39 6.92 12.8 20.15 0.99
SAM (PCA) 31.47 0.97 22.83 19.62 24.16 0.94
NN (PCA) 36.36 0 16.03 16.55 31.05 0
DTA (PCA) 29.88 10.33 8 19.86 31.79 0.14
MLC (MNF) 35.12 1.08 3.48 25.56 34.7 0.06
SAM (MNF) 15.71 0 0 50.93 33.01 0.35
NN (MNF) 40.85 1.15 23.82 4.74 26.58 2.85
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DTA (MNF) 32.61 9.45 10.98 15.85 31.11 0
Table 10: Land Cover statistics for Malur Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 16.9 10.81 4.75 7.3 58.09 2.15
K-Means (B1 to B7) 13.08 18.36 1.51 11.98 55 0.07
MLC (B1 to B7) 16.49 9.61 5.42 9.23 58.5 0.75
SAM (B1 to B7) 12.26 17.85 2.83 6.67 60.15 0.25
NN (B1 to B7) 19.97 32.89 3.99 8.62 34.43 0.1
DTA (B1 to B7) 12.38 13.99 5.25 12.68 55.08 0.62
MLC (PCA) 11.01 5.6 1.63 16.2 65.07 0.49
SAM (PCA) 13.35 0.12 4.77 9.21 72.09 0.46
NN (PCA) 21.46 0 0.88 3.39 74.13 0.15
DTA (PCA) 8.24 3.27 1.35 8.57 78 0.58
MLC (MNF) 13.75 0.57 1.67 0.72 83.08 0.21
SAM (MNF) 8.01 0 0.31 3.2 88.29 0.19
NN (MNF) 14.99 1.71 0.34 0.2 82.66 0.09
DTA (MNF) 24.67 0.94 5.6 3.89 64.85 0.06

Table 11: Land Cover statistics for Mulbagal Taluk. 
 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 25.73 20.98 10.29 12.11 30.15 0.74
K-Means (B1 to B7) 26.93 20.17 4.95 8.4 39.53 0.02
MLC (B1 to B7) 22.33 22.37 5.74 17.49 31.42 0.65
SAM (B1 to B7) 18.25 29.07 4.14 15.06 33.05 0.44
NN (B1 to B7) 14.83 28.12 2.21 28.57 26.22 0.04
DTA (B1 to B7) 18.78 20.97 14.92 9.5 35.44 0.4
MLC (PCA) 23.72 15.48 11.13 6.35 43.32 0
SAM (PCA) 8.96 16.9 14.92 10.92 48.3 0
NN (PCA) 17.19 3.05 21.45 7.37 50.93 0
DTA (PCA) 25.62 17.47 16.65 5.53 33.8 0.93
MLC (MNF) 28.05 16.38 1.9 19.15 34.52 0
SAM (MNF) 11.4 12.66 31.27 8.06 36.16 0.45
NN (MNF) 26.01 18.6 9.74 11.68 33.36 0.61
DTA (MNF) 21.2 9.15 17.09 6.85 45.46 0.25

Table 12: Land Cover statistics for Sidlaghatta Taluk. 
 

Algorithms Agriculture Built up Forest Plantation Waste land Waterbodies 
MLC (LISS3) 23.96 9.25 17.05 18.66 30.25 0.83
K-Means (B1 to B7) 29.98 8.11 14.4 22.91 24.49 0.11
MLC (B1 to B7) 32.85 3.13 14.31 18.07 30.24 1.4
SAM (B1 to B7) 29.64 5.41 16.03 17.24 31.4 0.28
NN (B1 to B7) 34.05 11.94 11.93 29.24 12.48 0.37
DTA (B1 to B7) 22.45 5.37 28.03 12.91 30.19 1.04
MLC (PCA) 34.45 11.43 17.18 11.13 23.66 2.16
SAM (PCA) 35.24 6.01 16.68 14.29 27.46 0.32
NN (PCA) 38.32 0 21.08 12.14 26.48 1.99
DTA (PCA) 28.46 3.65 10.74 17.38 37.14 2.64
MLC (MNF) 40.84 0.62 18.92 12.27 26.75 0.61
SAM (MNF) 32.73 0.86 26.41 11.85 27. 07 1.08
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NN (MNF) 22.32 10.76 17.65 16.23 32.31 0.73
DTA (MNF) 26.77 5.66 27.59 6.96 32.23 0.79

Table 13: Land Cover statistics for Srinivaspur Taluk. 
 
 

 

 

 

 

 

 

 

 

 

Taluk Agriculture (%) Built up (%) Forest (%) Plantation (%) Waste land (%) Waterbodies (%) 

 LMM LISS-3 LMM LISS-3 LMM LISS-3 LMM LISS-3 LMM LISS-3 LMM LISS-3 

1 10.63 10.22 33.29 37.58 7.99 7.80 6.21 4.75 37.06 38.58 4.82 1.06 

2 15.05 14.78 10.08 10.05 15.62 17.98 12.60 12.85 42.95 42.75 3.70 1.60 

3 25.34 28.07 11.94 11.51 16.44 17.06 12.12 11.56 31.83 31.04 2.33 0.76 

4 12.40 16.79 13.44 17.61 8.10 4.83 7.47 7.52 55.95 51.84 2.64 1.40 

5 16.36 17.29 22.26 23.07 9.94 9.65 10.71 8.68 36.99 40.60 3.74 0.70 

6 12.84 16.36 18.06 16.21 11.64 7.92 8.98 6.56 46.49 52.35 1.99 0.60 

7 24.61 21.23 9.61 13.39 17.13 13.02 11.80 14.15 33.17 37.33 3.68 0.87 

8 21.04 21.37 10.93 13.36 15.91 15.08 16.27 15.45 34.12 34.11 1.73 0.63 

9 15.87 16.90 12.18 10.81 6.66 4.75 7.90 7.30 54.74 58.09 2.65 2.15 

10 22.83 25.73 20.37 20.98 11.84 10.29 13.60 12.11 28.34 30.15 3.02 0.74 

11 25.19 23.96 8.88 9.25 6.60 9.25 21.61 18.66 33.72 30.25 4.00 0.83 

Total 17.03 19.03 15.82 17.13 9.62 11.41 9.28 10.96 45.20 40.37 3.05 1.08 

 
1. Bagepalli, 2. Bangarpet, 3. Chikballapur, 4. Chintamani, 5. Gauribidanur, 6. Gudibanda, 7. Kolar,    
8. Malur, 9. Mulbagal, 10. Sidlaghatta, 11. Srinivaspur 
 
Table 14: Land Cover details of fraction images for Kolar district. 
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