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Abstract
Excessive use of phosphorus (P) based fertilizers for improved agricultural pro-
ductivity has resulted in nutrient enrichment and consequent deterioration of sur-
face and ground waters. Naturally, available soil microbes in an agricultural 
set-up are capable of mineralization of organic P and/or solubilisation of inor-
ganic P thus making it bioavailable to the crop systems. As an alternative to 
conventional P based fertilizers, wastewater rich in nutrients can be cheap and 
economic P sources ensuring phosphorous recycle and reuse. However, the treat-
ment of these waters to check pathogens, heavy metals and other toxicants; con-
veyance and storage are practical constraints that limits the usage of wastewaters 
directly to croplands. Wastewater grown algae as proficient biofertilizer can be 
potentially used to immobilize P and channelize P to croplands. Such algal bio-
mass abundantly growing in natural waters as well as in treatment ponds can be 
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rich sources of nutrients due to their higher P uptake abilities, growth rate and 
productivity. Although there are huge opportunities for using algae as a bio-filter 
to recover P from wastewater streams. However, their use for tapping valuable P 
with present day technologies are still evolving and are in infancy. Efforts on 
understanding the mechanism of P uptake, immobilization in algal cells and sub-
sequent P transport to agricultural soil systems are important. This can provide 
global solutions in stocking wastewater P and its sustainable reuse as algal-based 
P rich biofertilizer.

Keywords
Phosphorus · Immobilization · Algae · Agriculture · Biofertilizer · Sustainability

1.1  Introduction

P is crucial in crop development and growth, comprising of ~0.2% of crop plants 
dry weight. After nitrogen, it is the second most important nutrient limiting the crop 
growth (Kvakic et al. 2018). Although 0.5 kg P/ton of agricultural soil is naturally 
found, but only 0.5  g of soil bound P is actually available for plant uptake. 
Conventional agricultural practices have minimized the inadequacy of the P in soils 
through external application of P rich fertilizer. Such practices over decades has 
resulted in environmental externalities as nutrient enrichments in surface and ground 
waters (Bauke et al. 2018). This necessitates identification of potential alternatives 
to chemically fixed synthetic fertilizer and explore possible microbial immobiliza-
tion and channeling strategies for a sustainable agriculture.

Microbiota is soils perform nutrient mineralization and thus aid in nutrient assimi-
lation in crops. They are mainly involved in breaking down complex insoluble 
organic/inorganic forms into simpler ions through solubilization/mineralization 
(Menezes-Blackburn et al. 2017). An array of pedosphere microbiota associated with 
the rhizosphere are generally known for P mineralization, solubilisation and mobili-
zation in plants (Turner et  al. 2015) and are refereed at P solubilizing microbes 
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(PSM). Some stress tolerant microbes as halophiles also aid in solubilizing P from 
alkaline soils (Sharma et al. 2013). Propagating such suitable and select microbes are 
smart ways for soil nutrient enrichment that directly evades the risks of application 
of costly chemical fertilizers and restricts environmental damages (Nath et al. 2017).

Capturing nutrients from wastewaters through its direct application or through 
temporary immobilization through beneficial algal communities are attractive solu-
tions for closing the phosphorus cycle ensuring reusability and ecological gains 
(Sharma et al. 2013). Wastewaters could be potential nutrient hubs for agricultural 
food security. However, there can be several constraints in its utility (a) quality con-
cerns (pathogens/toxins) (b) time for storage and preserve the nature of the dissolved 
nutrients as crops have seasonality (c) transportation to various agricultural locations 
(for applications of 1 ton of P around 150 kilotons of wastewater is required). 
Wastewater as potential P sources albeit effective are however challenging in terms 
of treatment, storage and transportation costs (Shilton et al. 2012). If, the irrigational 
requirements are met, a suitable way for nutrients applications to agricultural crops 
is through temporary immobilization of dissolved forms in the form of algal bio-
mass. This nutrient rich algal biomass can be directly applied to these croplands and 
potentially acts like slow release fertilizer as elucidated in Fig. 1.1.

P recovery from wastewaters have been carried out through adsorption based 
processes, precipitation and bacterial process in enhanced biological phosphorus 
removal (EBPR) and have been explained in earlier studies (Pratt et al. 2012; Yuan 
et al. 2012). Algae owing to high ubiquity tolerance, faster growth rates and adapta-
tions (Christenson and Sims 2011) have been recently witnessed as a most attractive 
biological agent for capturing nutrients as phosphates provides a huge scope for 
sustainable technology development for harnessing nutrients.

1.2  Microbial Phosphorus Immobilization

Microbiota in soil systems as cyanobacteria, bacteria and fungi with other soil 
organisms help in efficient nutrient cycling of P through mineralization and P 
immobilization (Barea and Richardson 2015). P mobilization from organic and 
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Fig. 1.1 Various mechanisms of P recovery from wastewater with emphasis on algal route
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inorganic P pools are carried out through enzymatic mineralization and insoluble P 
solubilisation respectively through various mechanisms i.e. carboxylates, phospha-
tases; exuding protons to release inorganic labile phosphates (Sharma et al. 2013) 
as provided in Fig. 1.2. PSM are groups of microbes comprising of bacterial mem-
bers as Agrobacterium sp., Bacillus sp., Erwinia sp., Flavobacterium sp., 
Micrococcus sp., Pseudomonas sp., Rhizobium sp. and fungal members as 
Aspergillus sp., Penicillium sp. and Trichoderma sp. (Sharma et al. 2013; Srinivasan 
et  al. 2012). In some cases the available P in soil systems are uptaken by soil 
microbes and becomes a part on microbial biomass phosphorus. Such conditions 
facilitates rapid organic C uptake of root exudates for meeting the energy require-
ments (Wu et al. 2007). Phosphorus that is trapped in the microbial biomass often 
gets released back into the soil available P pool during microbial genesis and is 
dependent on the environmental conditions as soil nutrient pool, seasonality and 
soil moisture (Butterly et al. 2009). Estimates have shown that influx of P from 
microbial biomass P pools can range from 18 to 36 kg P/ha/season especially dur-
ing summer and fall (Liebisch et al. 2014).

The P availability is dependent on the relative concentration of P pools in soil 
systems and the microbial biomass P. In highly bioavailable soil P conditions, usu-
ally the microbial biomass P have been found to be low (Marschner 2008). These 
dynamics are governed largely by a number of factors as the soil carbon to phospho-
rus ratio (Spohn and Widdig 2017). At squat C:P levels, microbial P pools are low 
(Kouno et al. 2002); attributed to C limitations and moreover, the microbial P pools 
increase with increase in C:P ratio (Cleveland and Liptzin 2007). Over the years 
with applications of enriched P based fertilizers, there has been a decline in the C:P 

Fig. 1.2 Schematics of P transfer routes in agricultural soil systems through mineralization and 
solubilisation
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ratio, that demands an increase in the C:P ratio so that substantial amount of P can 
be immobilized back into the microbial biomass P pools (Xu et  al. 2015). 
Investigations on sol P dynamics have witnessed a lower microbial biomass P pool 
in intensive agricultural zones (Oberholzer et  al. 2014) compared to forest and 
grassland ecosystems (lower C:P ratio) attributed to removal of C rich above ground 
biomass (Bender et al. 2016). Thus, provisions for additional C supplementation 
into the soil would help in better P immobilization in such systems. Addition of C 
rich plant residue or organic amendments can increase the microbially fixed bio-
mass P phenomenally.

One of the major measures for enhancing the C content of the soil is by the appli-
cation of wastewater grown algal biomass that not only provides nutrients as P to the 
soil systems but also improves the soil C that is required for higher microbial diver-
sity and P pools (Mahapatra et al. 2017). Such algal biomass can be grown from a 
variety of wastewaters as diary, municipal or agricultural i.e. nursery wastewaters. 
Our recent studies on alga grown on leachate (Naveen et al. 2016; Karthik et al. 
2018); high strength flushed manure wastewater and municipal wastewaters (unpub-
lished data) have shown higher algal productivity with enhanced nutrients capture. 
This algal biomass can be utilized both as biofertilizer as well as for improving the 
C:P ratio in the soil for ensuring higher microbial biomass P pools, that helps in the 
improving the nutrients status of the soils and its long term sustainability in agricul-
tural food production. Moreover, the algal biomass can be also mixed with other 
agricultural residues for a resilient and vibrant phosphorus economy and biorefin-
ery. This approach helps in developing circular bio economy and dramatically 
reduces the nutrient loads on the environment. However, it will be interesting to 
note the mechanisms of C mobilization after its land applications and potential min-
eralization and associated emissions from the soil and its implications on the avail-
ability of other essential minerals to the plants. Moreover, any possible changes in 
the soil microbiota can also be beneficial for the complex agricultural systems and 
over a period might enhance the diversity of microbes for a green and sustainable 
agricultural future.

1.2.1  Algae Mediated P Immobilization and Channelization

Algae are cosmopolitan and have been now largely known for its effectiveness in 
treating wastewaters of various strengths and from diverse sources globally (Park 
et al. 2011). Mostly, they have been used through conventional facultative ponds, 
high rate algal ponds (HRAP) and tubular photobioreactors (Abis and Mara 2003; 
Craggs et al. 2014). However, in such systems phosphorus removal and recovery 
have not been specifically undertaken (Garcia et al. 2000). The conventional facul-
tative ponds/lagoons are highly effective in reducing the nutrient loads through effi-
cient nutrient capture and have resulted in substantial pathogen reduction. These 
facultative ponds systems have not been capitalized for targeting nutrient rich bio-
mass cultivation and subsequent harvest. On, the other hand HRAP’s are being used 
for mass scale production of algal biomass and thus can be optimized for higher 
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productivities and bioproducts yields (Craggs et al. 2011). This is performed through 
various manipulations in (a) micro-environmental and physico-chemical factors 
(inorganic C additions, low pH conditions) (b) reactor design and configuration 
(provisions for effective mixing, enhancing mass transfer, shallow reactor depths 
and shorter residence times). More often it has been observed that the P content of 
wastewater algae are comparatively high due to the phenomenon of luxury P uptake 
(Shilton et  al. 2012). The P content in wastewater algae can be as high as 3.3% 
(Powell et al. 2008) compared to ~0.5 to 1%, typically observed in algal biomass. 
These observations have been also confirmed through our earlier studies with mixo-
trophic algal unialgal and co-cultures (Mahapatra et  al. 2013a, 2014; Mahapatra 
2015) cultivated with municipal wastewaters and have been witnessed in other stud-
ies as well (Powell et al. 2008).

It has been shown that the luxury P uptake in case of these algal communities 
directly depends upon, the temperature, light intensity and inorganic P concentra-
tions in the growth media (Fanta et al. 2010; Cade-Menun and Paytan 2010; Sforza 
et al. 2018). Possibilities of concentrating phosphorus in P rich (~3% of the bio-
mass by weight) algal biomass are in progress, and can potentially reduce the area 
requirements in P recovery via HRAP to 5.5 m2/capita (Fig. 1.3). This dramatically 
reduces the costs for harvesting, conveying and spreading it on agricultural land as 
biofertilizer by factor of 0.6 as compared to usual algae/organic substrates with P 
content <1%. On one hand, the facultative ponds have their own advantages in 
treatment and harbor beneficial motile flagellate algal communities i.e. Euglena 
spp. and Chlamydomonas (Mahapatra 2015) and non-motile algae as Chlorella and 
Chlorococcum (Mahapatra et al. 2013b, 2018; Mahapatra and Ramachandra 2013). 
On the other hand, ongoing innovations in multimodal algal bioprocess design 
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have been targeting various strategies for efficient harvesting i.e. gravity based, 
flocculants, and other polymer-mediated methods (unpublished data). There have 
been studies that have proved efficient harvest with the help algal cells immobi-
lized as beads made up of alginate, carrageenan and chitosan, (De-Bashan and 
Bashan 2004) for efficient P recovery. The immobilization media also facilities P 
retention through adsorption and precipitation (De-Bashan et  al. 2004). Studies 
have revealed >90% P removal with chitosan immobilized Scenedesmus (Fierro 
et  al. 2008). Recently algal turf scrubbers with the immobilized attached algal 
community’s grown as biofilm communities over various kinds of surface are 
being used for treatment of dairy (Pizarro et al. 2006; Mulbry et al. 2008; Prabakar 
et al. 2018), agricultural (Kangas and Mulbry 2014) and swine facility wastewater 
(Kebede-Westhead et al. 2006).

Algal derived phosphorus can be highly valued resource under today’s regime of 
nutrient scarcity. Globally voluminous wastewater discharge enriches large surface 
water resources. These water resources can be filtered from nutrient through algal 
technologies and can be directly applied as slow release fertilizers into the agricul-
tural areas that ensures a biorefinery approach thereby completely closing the nutri-
ent cycles. The typical architecture of a facultative ponds and lagoons especially in 
tropical waters have multi-tier algal communities that help in efficient nutrient 
remediation, and wastewater purification (Mahapatra et al. 2011a, b, c; Chanakya 
et  al. 2012, 2013; Mahapatra 2015; Mahapatra et  al. 2017). The experiments on 
algal cultivation with high strength wastewater i.e. municipal wastewaters have 
demonstrated higher nutrient recovery and biomass productivity with high P con-
centrations in unialgal and polycultures especially with the mixotrophic community 
(Mahapatra et al. 2013a, b, c, d, e, f, 2014, 2017). Wastewater treatment systems 
involving facultative ponds have shown a higher techno-economic feasibility for 
algal single cell proteins i.e. euglenoides (Mahapatra et al. 2016) and as biofertilizer 
as Spirulina sp. (Mahapatra et  al. 2018) with a lower environmental impact 
(Ramachandra and Mahapatra 2015; Ramachandra et  al. 2015). A modular algal 
bioprocess designed at the Indian Institute of Science (IISc), Bangalore, have been 
successfully working for nutrient capture and recovery at the Jakkur Lake in 
Bangalore City (Ramachandra et al. 2014; Mahapatra 2015).

1.3  Future Scope and Conclusion

Widespread application of phosphorus rich fertilizers aiming higher agricultural 
productivities have resulted in higher P loses and subsequent enrichment in surface 
and ground waters. This necessitates for an efficient alternative to P rich inorganic 
fertilizers and at the same time, facilitate provisions for the greater immobilization 
of P in soil systems to abate such loses and evade the resulting environmental exter-
nalities. Algal cultivations through pond systems are becoming prevalent for both 
nutrient remediation and biomass production. Use of wastewater-grown algae and 
algal biomass addition for improvement of soil nutrient conditions coupled with 
facilitating higher soil carbon amendments is an attractive option and ensures 
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greater fertilization with minimal losses linked with leaching and runoff. The har-
vested algal biomass takes less than one-tenth of the area to capture P compared to 
agricultural crops and grass species. With the help of algal species having high cel-
lular P content, the area required for capturing P can be even further reduced. More 
research efforts on ground with full-flagged algal bio-refineries can aid in better 
understanding of phosphorus dynamics and identify crucial pathways for capturing 
P. Focus on (a) maximize algal P content (b) increase algal productivity (c) newer 
and cheaper methods of harvesting algae and (d) understanding algal phosphorus 
mobilization, mineralization and consequent assimilations by agricultural crops 
will pave path for sustainable agricultural economy.
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