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 Abstract—Natural hazards such as landslides are triggered 
by numerous factors such as ground movements, rock falls, 
slope failure, debris flows, slope instability, etc. Changes in 
slope stability happen due to human intervention, 
anthropogenic activities, change in soil structure, loss or 
absence of vegetation (changes in land cover), etc. Loss of 
vegetation happens when the forest is fragmented due to 
anthropogenic activities. Hence land cover mapping with forest 
fragmentation can provide vital information for visualising the 
regions that require immediate attention from slope stability 
aspects. The main objective of this paper is to understand the 
rate of change in forest landscape from 1973 to 2004 through 
multi-sensor remote sensing data analysis. The forest 
fragmentation index presented here is based on temporal land 
use information and forest fragmentation model, in which the 
forest pixels are classified as patch, transitional, edge, 
perforated, and interior, that give a measure of forest 
continuity. The analysis carried out for five prominent 
watersheds of Uttara Kannada district– Aganashini, Bedthi, 
Kali, Sharavathi and Venkatpura revealed that interior forest 
is continuously decreasing while patch, transitional, edge and 
perforated forest show increasing trend. The effect of forest 
fragmentation on landslide occurrence was visualised by 
overlaying the landslide occurrence points on classified image 
and forest fragmentation map. The increasing patch and 
transitional forest on hill slopes are the areas prone to 
landslides, evident from the field verification, indicating that 
deforestation is a major triggering factor for landslides. This 
emphasises the need for immediate conservation measures for 
sustainable management of the landscape. Quantifying and 
describing land use - land cover change and fragmentation is 
crucial for assessing the effect of land management policies and 
environmental protection decisions. 
   Index Terms—Forest fragmentation, landslide, SVM, MLC 
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I. INTRODUCTION 

atural hazards such as landslides involving small to 
large ground movements are mainly triggered due to 
unstable slopes with scanty green cover. Unstable 

sloped are induced due to the removal of vegetation cover, 
rock falls, deep failure of slopes, shallow debris flows, 
ground water pressure, erosion, soil nutrients, soil structure, 
etc. The actual landslide often requires a trigger before 
being released and in most cases, a change in land cover 
(LC) due to the loss of vegetation is a primary factor that 
builds up specific sub-surface conditions for landslide to 
occur. The loss in forest cover due to LC change has 
increased rapidly in recent times due to increasing mankind 
needs. Forest cover is reduced to almost half of the 
ecologically desired amount [1] and about 72 percent of 
India’s forests have lost their viability for regeneration, with 
forest grazing being one of the most important causes [2]. 
Forest fragmentation apart from affecting the biodiversity 
and ecology of the region has a significant influence in the 
movement of soil (silt) and debris in undulating terrains 
with high intensity rainfall. Forest fragmentation analysis 
spatially aids in visualising the regions that require 
immediate attention to minimise natural calamities such as 
landslides. Spatial fragmentation map depicts the type and 
extent of fragmentation derived from land use (LU) data 
which are obtained from multi-source, multi-sensor, multi-
temporal, multi-frequency or multi-polarization remote 
sensing (RS) data. The objectives of this paper are 
i.) Classification of multi-temporal RS data using 

Maximum Likelihood classifier to obtain LU map. 
ii.) Multi-temporal forest fragmentation analysis for five 

watersheds in Uttara Kannada to characterise the type 
and extent of fragmentation or loss of vegetation cover. 

iii.) Visualising the consequences of fragmentation for 
landslide susceptibility.   

II. METHODS 

A.   Maximum Likelihood classifier (MLC) – Supervised 
classification of the image was performed using MLC. MLC 
has become popular and widespread in RS because of its 
robustness [3–6]. It quantitatively evaluates both the 
variance and covariance of the category spectral response 
pattern [7] assuming the distribution of data points to be 
Gaussian [8] which is described by the mean vector and the 
covariance matrix. The statistical probability of a given 
pixel value being a member of a particular class is computed 
and the pixel is assigned to the most likely class (highest 
probability value). If the training data pertaining to different 
classes contain n samples and the samples in each class are 
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i.i.d. (independent and identically distributed) random 
variables and further if we assume that the spectral classes 
for an image is represented by ωn, n=1,…, N, where N is the 
total number of classes, then probability density p(ωn|x) 
gives the likelihood that the pixel x belongs to class ωn 
where x is a column vector of the observed digital number 
of the pixels. It describes the pixel as a point in 
multispectral space (M-dimensional space, where M is the 
number of spectral bands). The maximum likelihood (ML) 
parameters are estimated from representative i.i.d. samples. 
Classification is performed according to 

n n jx ω  if p( | x) p( | x)  j n∈ ω > ω ∀ ≠      (1) 

 
i.e., the pixel x belongs to class ωn if p(ωn|x) is largest. The 
ML decision rule is based on a normalised estimate of the 
probability density function (p.d.f.) of each class. The 
discriminant function, gln(x) for ωn in MLC is expressed as 
 

ln n ng ( ) = p(x|ω )p(ω )x              (2)
  
where p(ωn) is the prior probability of ωn, p(x|ωn) is the 
p.d.f. for pixel vector x conditioned on ωn  [6]. Pixel vector 
x is assigned to the class for which gln(x) is greatest. In an 
operational context, the logarithm form of (2) is used, and 
after the constants are eliminated, the discriminant function 
for ωn is stated as  
 

1
lnG ( ) ( ) ( ) ln | | 2 ln ( )−= − ∑ − + −∑T

n n n n nPμ μ ωx x x   (3) 
 
where ∑n  is the variance-covariance matrix of ωn, μn is the 
mean vector of ωn. A pixel is assigned to the class with the 
lowest lnG ( )x  [6, 9-10]. For each LU class (agricultural 
land, human settlement / residential / commercial areas, 
roads, forest, plantation, waste land / open land and water 
bodies) training samples were collected representing 
approximately 10% of the study area. With these 10% 
known pixel labels from training data, the aim was to assign 
labels to all the remaining pixels in the image. 
 

B.   Forest fragmentation: Forest fragmentation is the 
process whereby a large, continuous area of forest is both 
reduced in area and divided into two or more fragments. 
The decline in the size of the forest and the increasing 
isolation between the two remnant patches of the forest has 
been the major cause of declining biodiversity [11-15]. The 
primary concern is direct loss of forest area, and all 
disturbed forests are subject to “edge effects” of one kind or 
another. Forest fragmentation is of additional concern, 
insofar as the edge effect is mitigated by the residual spatial 
pattern [16-19].  

LU map indicate only the location and type of forest, and 
further analysis is needed to quantify the forest 
fragmentation. Total extent of forest and its occurrence as 
adjacent pixels, fixed-area windows surrounding each forest 
pixel is used for calculating type of fragmentation. The 
result is stored at the location of the centre pixel. Thus, a 
pixel value in the derived map refers to between-pixel 
fragmentation around the corresponding forest location. As 

an example [20], if Pf is the proportion of pixels in the 
window that are forested and Pff is the proportion of all 
adjacent (cardinal directions only) pixel pairs that include at 
least one forest pixel, for which both pixels are forested. Pff 
estimates the conditional probability that, given a pixel of 
forest, its neighbour is also forest. The six fragmentation 
model that identifies six fragmentation categories are: (1) 
interior, for which Pf = 1.0; (2), patch, Pf < 0.4; (3) 
transtitional, 0.4 < Pf < 0.6; (4) edge, Pf > 0.6 and Pf-Pff > 
0; (5) perforated, Pf > 0.6 and Pf-Pff < 0, and (6) 
undetermined, Pf > 0.6 and Pf = Pff. When Pff is larger than 
Pf, the implication is that forest is clumped; the probability 
that an immediate neighbour is also forest is greater than the 
average probability of forest within the window. 
Conversely, when Pff is smaller than Pf, the implication is 
that whatever is non-forest is clumped. The difference (Pf-
Pff) characterises a gradient from forest clumping (edge) to 
non-forest clumping (perforated). When Pff = Pf, the model 
cannot distinguish forest or non-forest clumping. The case 
of Pf = 1 (interior) represents a completely forested window 
for which Pff must be 1. 
 

C.   Support Vector Machine (SVM): SVM are supervised 
learning algorithms based on statistical learning theory, 
which are considered to be heuristic algorithms [21]. SVM 
map input vectors to a higher dimensional space where a 
maximal separating hyper plane is constructed. Two parallel 
hyper planes are constructed on each side of the hyper plane 
that separates the data. The separating hyper plane 
maximises the distance between the two parallel hyper 
planes. An assumption is made that the larger the margin or 
distance between these parallel hyper planes, the better the 
generalisation error of the classifier will be. The model 
produced by support vector classification only depends on a 
subset of the training data, because the cost function for 
building the model does not take into account training 
points that lie beyond the margin [21]. When it is not 
possible to define the hyper plane by linear equations, the 
data can be mapped into a higher dimensional space through 
some nonlinear mapping functions. 
 
A free and open source software – openModeller [22] was 
used for predicting the probable landslide areas using SVM. 
openModeller (http://openmodeller.sourceforge.net/) 
includes facilities for reading landslide occurrence and 
environmental data, selection of environmental layers on 
which the model should be based, creating a fundamental 
niche model and projecting the model into an environmental 
scenario as shown in Fig. 1. 

III. STUDY AREA AND DATA 
 
The Uttara Kannada district lies 74°9' to 75°10' E longitude 
and 13°55' to 15°31' N latitude, extending over an area of 
10,291 km2 in the mid-western part of Karnataka state (Fig. 
2). It accounts for 5.37 % of the total area of the state with a 
population above 1.2 million [23]. This region has gentle 
undulating hills, rising steeply from a narrow coastal strip 
bordering the Arabian sea to a plateau at an altitude of 500 
m with occasional hills rising above 600–860m.   
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Fig. 1. Methodology used for landslide prediction in openModeller. 
 

 

 
Fig. 2. Uttara Kannada district, Karnataka, India. 

 
This district, with 11 taluks, can be broadly categorised into 
three distinct regions –– coastal lands (Karwar, Ankola, 
Kumta, Honnavar and Bhatkal taluks), mostly forested 
Sahyadrian interior (Supa, Yellapur, Sirsi and Siddapur 
taluks) and the eastern margin where the table land begins 
(Haliyal, Yellapur and Mundgod taluks). Climatic 
conditions range from arid to humid due to physiographic 
conditions ranging from plains, mountains to coast. 
 
Survey of India (SOI) toposheets of 1:50000 and 1:250000 
scales were used to generate base layers – district and taluk 
boundaries, water bodies, drainage network, etc. Field data 
were collected with a handheld GPS. RS data used in the 
study were Landsat MSS (1973, spatial resolution – 79m), 
Landsat TM (1989, spatial resolution – 30m), Landsat 
ETM+ (2000, spatial resolution – 30m) [downloaded from 
Global Land Cover Facility, http://www.landcover.org] and 

LISS-III Multi-spectral (2004, spatial resolution – 23.5m) 
procured from NRSC, Hyderabad, India. Google Earth data 
(http://earth.google.com) served in pre and post 
classification process and validation of the results.  
 
Environmental data such as precipitation of wettest month 
were downloaded from WorldClim – Global Climate Data 
[http://www.worldclim.org/bioclim]. Other environmental 
layers (Aspect, DEM, Flow accumulation, Flow direction, 
Slope, Compound Topographic Index) used for modelling 
landslide were obtained from USGS Earth Resources 
Observation and Science (EROS) Center based 
Hydro1Kdatabase [http://eros.usgs.gov/#/Find_Data/ 
Products_and_Data_Available/gtopo30/hydro/asia]. The 
global LC change maps were obtained from Global Land 
Cover Facility, Land Cover Change 
[http://glcf.umiacs.umd.edu/services/landcoverchange/landc
over.shtml; http://www.landcover.org/services/landcover 
change/landcover.shtml]. The spatial resolution of all the 
data were 1 km. 125 landslide occurrence points of low, 
medium and high intensity were recorded using handheld 
GPS from the field and published reports. 

IV. RESULTS AND DISCUSSION 
 
RS data were geometrically corrected on a pixel by pixel 

basis and the images were resampled to a common 
resolution of 30m with a dimension of 7562 x 6790. LC 
mapping (Fig. 3) was done using normalised difference 
vegetation index (NDVI) given as 
 
NIR-Red
NIR+Red

                (4) 

 
NDVI values range from -1 to +1; increasing values from 0 
indicate presence of vegetation (agriculture, forest and 
plantation) and negative values indicate absence of greenery 
(builtup, sand, fallow, water) as given in Table I.  
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Fig. 3. NDVI and NDWI for Uttara Kannada.
 

TABLE  I: NDVI AND WDVI  OF UTTARA KANNADA. 
 

INDEX NDVI WDVI 

 VEGETATION (%) NON-VEGETATION (%) WATER (%) NON-WATER (%) 

1973 97.82 2.18 1.75 98.25 

1989 96.13 3.87 2.20 97.80 
2000 94.33 5.67 2.80 97.20 

2004 94.00 6.00 2.50 97.50 

 
Mapping of water bodies (Fig. 3) was done using 
normalised difference water index (NDWI) [24] given as 
 
Green-NIR
Green+NIR

               (5) 

 
NDWI values above 0 indicate presence of water bodies and 
values below 0 indicate other classes. 
 

Training pixels were collected from the false colour 
composite of the respective bands (for time period 1973, 
1989, and 2000) since historical data were unavailable. For 
2004 data, training data uniformly distributed over the study 
area collected with pre calibrated GPS were used. The class 
spectral characteristics for six LU categories (agriculture, 
builtup / settlement, forest (evergreen, semi-evergreen, 
deciduous), plantation, waste land / fallow / sand, and water 
bodies / streams) using RS data were obtained to assess their 

inter-class separability. and the images were classified using 
MLC. Temporal classified images (into 6 LC classes – 
agriculture, built-up, forest, plantation, waste land and water 
bodies) are shown in Fig. 4 and the statistics are given in 
Table II. This was validated with the representative field 
data (covering ~ 10% of the study area) and also using 
Google Earth image. Producer’s, user’s, overall accuracy 
and Kappa values computed are listed in Table III. 
 
Further, five watersheds were delineated from the classified 
images of four time period as shown in Fig. 5 and the 
statistics are listed in Table IV. Forest fragmentation model 
was used to obtain fragmentation indices as shown in Fig. 6 
and the statistics are presented in Table V. Forest was 
categorised into patch, transitional, edge, perforated, and 
interior types using programs in GRASS GIS 
(http://wgbis.ces.iisc.ernet.in/foss). 



 196

 
Fig. 4. Temporal classified image of Uttara Kannada district. 

 
TABLE  II: LU DETAILS OF UTTARA KANNADA DISTRICT 

 
YEAR 1973 1989 2000 2004 

 
CLASS 

AREA AREA AREA AREA   
(HA) (%) (Ha) (%) (Ha) (%) (Ha) (%) 

AGRICULTURE 25794 2.51 57465 5.59 97749 9.51 115464 11.23 
BUILTUP 4490 0.44 8671 0.84 13674 1.33 27577 2.68 
FOREST 897420 87.29 845665 82.25 749877 72.94 627455 61.02 

PLANTATION 82439 8.02 85190 8.29 122160 11.88 184340 17.93 
WASTE LAND LAND - - 8483 0.83 15884 1.54 23456 2.28 

WATER BODIES 17995 1.75 22666 2.20 28796 2.80 49924 4.86 
TOTAL 1028151 100 1028151 100 1028151 100 1028151 100 

 

 
 

Fig. 5. Temporal LU image of the five rive basins of Uttara Kannada district.
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TABLE  III: ACCURACY ASSESSMENT OF THE CLASSIFIED IMAGES 

 
YEAR CATEGORY USER’S 

ACCURACY 
PRODUCER’S 
ACCURACY 

OVERALL 
ACCURACY 

KAPPA 

 
 
 

1973 

AGRICULTURE 74.12 77.97  
 
 

76.89 

 
 
 

71.92 

BUILTUP 
68.45 65.42 

FOREST 87.23 85.22 
PLANTATION 

81.27 77.23 
WASTELAND 85.62 81.21 

WATER BODIEE 78.50 74.29 
 

 
 
 
 

1989 

AGRICULTURE 70.43 80.39  
 
 

75.78 

 
 
 

69.82 

BUILTUP 
78.78 81.11 

FOREST 73.96 73.39 
PLANTATION 79.62 77.19 
WASTELAND 80.21 77.78 

WATER BODIEE 31.02 64.82 
 

 
 
 

2000 

AGRICULTURE 81.16 80.47  
 
 

83.21 

 
 
 

79.21 
 

BUILTUP 84.29 87.50 
FOREST 

87.15 82.54 
PLANTATION 86.51 87.23 
WASTELAND 85.22 81.79 

WATER BODIEE 86.40 97.56 
 

 
 
 

2004 

AGRICULTURE 85.21 84.54  
 
 

87.83 
 

 
 
 

83.11 

BUILTUP 86.47 83.11 
FOREST 94.73 96.20 

PLANTATION 92.27 91.73 

WASTELAND 88.49 87.88 
WATER BODIEE 83.13 81.33 

 
It is to be noted that Supa dam was constructed in late 
1970s. Hence this water body is absent in the 1973 Landsat 
multi-spectral classified image and prominent in the 
classified images of 1989, 2000 and 2004 (Fig. 4). Also, 
there was no waste land in 1973 as per the statistics in Table 
II. All the rivers are perennial since the catchment areas are 
mainly composed of interior forest. However, eventually 
there are drastic land cover changes consequent to 
unplanned developmental activities.  In addition, the dams 
of major rivers in the district have inundated large 
vegetation areas. These areas have silt deposit at the river 
beds and have been classified as sand / waste land. 
 
Forest and plantation were considered as a single class - 
forest and all other classes were considered as non-forest as 
the extent of LC is a decisive factor in landslides. While the 
forest fragmentation map produced valuable information, it 
also helped to visualise the state of forest for tracking the 
trends and to identify the areas where forest restoration 
might prove appropriate to reduce the impact of forest 
fragmentation. Forest fragmentation also depends on the 
scale of analysis (window size) and various consequences of 
increasing the window size are reported in [25]. The 
measurements are also sensitive to pixel size. Nepstad et al., 
(1999a, 1999b) [26 and 27] reported higher fragmentation 
when using finer grain maps over a fixed extent (window 

size) of tropical rain forest. Finer grain maps identify more 
non-forest area where forest cover is dominant but not 
exclusive.  
 
The criterion for interior forest is more difficult to satisfy 
over larger areas. Although knowledge of the feasible 
parameter space is not critical, there are geometric 
constraints [28]. For example, it is not possible to obtain a 
low value of Pff when Pf is large. Percolation theory applies 
strictly to maps resulting from random processes; hence, the 
critical values of Pf (0.4 and 0.6) are only approximate and 
may vary with actual pattern. As a practical matter, when Pf 
> 0.6, non-forest types generally appeared as “islands” on a 
forest background, and when Pf < 0.4, forests appeared as 
“islands” on a non-forest background. Fig. 6 shows the 
temporal change in forest patch type, revealing that patch, 
transitional and edge forest are increasing due to 
deforestation and interior forest is decreasing. The statistics 
in Table V shows the decrease in forest patch types from 
1973 to 2004. Forest fragmentation is a vital indicator that is 
accountable for environmental changes. With the expansion 
of human settlement there is higher risk of forest 
degradation disturbing the biodiversity, affecting the water 
quality, endangering wildlife survival, habitat protection, 
etc.    
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Fig. 6. Temporal Forest fragmentation change of the five river basins of Uttara Kannada district. 

 

Fig. 6. Forest fragmentation in five river basins in Uttara Kannada district. 
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TABLE  IV: LU DETAILS OF THE FIVE RIVER BASINS (IN HA AND %)  

 
YEAR CATEGORY AGANASHINI BEDTHI KALI SHARAVATHI VENKATPURA 

 
 
 

1973 

AGRICULTURE 1886.6 1.4 3616.42 1.3 14294 3.8 1302 1.6 1355.2 5.9 

BUILTUP 627.6 0.5 799.83 0.3 1318.7 0.4 103.976 0.1 74.69 0.3 

FOREST 123500 90 251363 92 320174 86 71536 88 18282 81 

PLANTATION 7930.9 5.8 16315.9 6 31593 8.4 2900 7.3 2289 10 

WASTELAND - - - - - - - - - - 

WATER BODIES 2662.5 2 1556.7 0.6 6696.8 1.8 2329 2.9 615.9 2.7 
      

 
 
 

1989 

AGRICULTURE 4466 3.3 12550.9 4.6 19667 5.3 4110 5.1 1529.7 6.8 

BUILTUP 883.9 0.7 856.9 0.3 2886.6 0.8 784 1.0 404.4 1.8 

FOREST 118724 87 239894 87 303758 81 63686 78 16725 74 

PLANTATION 8217.7 6.0 17783 6.5 34152 9.1 8807 11 3165.8 14 

WASTELAND 784.9 0.6 1360.8 0.5 1696.5 0.5 729 1 508 2.3 

WATER BODIES 3531.6 2.6 1205.8 0.4 11916 3.2 3055 3.8 284 1.3 
            

 
 
 

2000 

AGRICULTURE 6179.3 4.5 29413 11 33421 8.9 4781 5.9 1881.3 8.3 

BUILTUP 969.7 0.7 3838.4 1.4 4364 1.2 414.8 0.5 717.6 3.2 

FOREST 11130 81 218541 80 265508 71 59379 73 15363 68 

PLANTATION 12004.6 8.8 16379 6 50542 14 12936 16 3519.7 16 

WASTELAND 1571.8 1.1 3978 1.5 2788.6 0.8 1258 1.6 822.65 3.7 

WATER BODIES 4580.5 3.4 1501.8 0.6 17453 4.7 2404 3 312.9 1.4 
            

 
 
 

2004 
 

AGRICULTURE 13028 9.5 36414 13 36575 9.8 3778.9 4.6 1489.9 6.6 

BUILTUP 2706.5 1.9 5221 1.9 7364.2 1.9 1723.2 2.1 959.98 4.3 

FOREST 84127.8 61 181674 66 232097 62 47020 58 13048 58 

PLANTATION 27836.2 20 35315 13 67093 18 23472 29 5896 26 

WASTELAND 1847.4 1.4 5411 2 10332 2.8 1720.5 2.1 381.97 1.7 

WATER BODIES 7064.4 5.2 9603 3.5 20549 5.5 3484.7 4.3 836.26 3.7 

 
TABLE  V: FOREST FRGMENTATION DETAILS OF THE FIVE RIVER BASINS (IN HA)  

 
YEAR CATEGORY AGANASHINI BEDTHI KALI SHARAVATHI VENKATPURA 

 
 
 

1973 

PATCH 0.59 0.16 1.49 - 0.11 

TRANSITIONAL 189.17 322.04 1050.52 94.99 85.40 
EDGE 1177.55 2398.25 4442.65 729.81 347.26 

PERFORATED 787.33 1478.46 3588.78 457.62 293.29 
INTERIOR 127895.85 261524.81 337778.54 74929.99 19506.20 

       

 PATCH 83.69 217.57 333.17 94.67 38.33 
TRANSITIONAL 631.03 1443.65 1995.02 670.22 215.23 

EDGE 3638.08 6198.87 6753.60 3155.90 889.215 
PERFORATED 857.74 1907.86 2526.22 839.13 269.26 

INTERIOR 120188.05 246239.30 322328.53 66064.81 18178.51 
       

 
 
 

2000 

PATCH 213.07 1326.61 1637.77 198.690 95.52 
TRANSITIONAL 1201.70 4622.81 5654.96 919.972 390.37 

EDGE 7263.70 18204.16 20319.45 4262.67 1507.74 
PERFORATED 1169.60 3506.29 3977.67 770.327 302.99 

INTERIOR 112006.30 205359.76 280116.92 64838.71 16249.80 
       

 
 
 

2004 
 

PATCH 363.82 947.32 1117.11 144.83 40.424 

TRANSITIONAL 2106.73 4207.65 4414.24 781.60 243.40 
EDGE 11098.47 17250.44 17408.67 4189.86 1274.87 

PERFORATED 2199.95 3942.96 3120.97 717.20 275.79 
INTERIOR 92213.32 186500.95 267026.02 62076.267 16337.97 
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Precipitations of wettest month along with the seven other 
layers (as mentioned in section III) were used to predict 
landslides using SVM as shown in Fig. 7. The landslide 
occurrence points were overlaid on the probability map to 
validate the prediction as shown in Fig. 8.  
 

 
Fig. 7. Probability distribution of the landslide prone areas. 

 
 

 
 
Fig. 8. Validation of the probability distribution of the landslide prone 

areas by overlaying landslide occurrence points. 
 

The SVM map was 96% accurate with respect to the ground 
and Kappa values 0.8733 and 0.9083 respectively [29]. 
Most of the predicted landslide areas as probable landslide 
prone zones (indicated in red in Fig. 7) reside on terrain that 
is highly undulating with steep slopes and are frequently 
exposed to landslides induced by rainfall. Maximum 
number of landslide points occurring in the undulating 
terrain, collected from the ground fell in fragmented areas - 
patch, transitional and edge forest. Fig. 9 shows the 

landslide occurrence points obtained from ground using 
handheld GPS overlaid on the classified image of the 
district (A) and forest fragmentation map (B) based on 2004 
RS data. This map indicates that hill slopes with undulating 
terrain and less vegetation cover (patch, transitional and 
edge forest) are more susceptible to landslides compared to 
north-eastern part of the district which has relatively flat 
terrain with large area utilised under agricultural practices.  
 
The present study makes an effort to quantify forest cover 
by using fragmentation index for measuring the 
disturbances due to human impact giving a complete picture 
of the change that has occurred. The five prominent 
watersheds of Uttara Kannada district were assessed for 
quantifying forest fragmentation caused due to 
anthropogenic disturbances. Forest fragmentation model is 
useful to visualize state of forest fragmentation for an area 
and identifying areas where forest restoration might prove 
appropriate. If the vegetative areas have been cleared, the 
water retaining capacity of the soil has decreased, triggering 
landslides in those areas. Hence, there is a immediate need 
to restore those vegetative by forestation to ensure that the 
soil is retained on the hill slopes and do not activate any 
downward movement of the hill tops. 
 
Natural disasters have drastically increased over the last 
decades. National, state and local government including 
NGOs are concerned with the loss of human life and 
damage to property caused by natural disasters. The trend of 
increasing incidences of landslides occurrence is expected 
to continue in the next decades due to urbanisation, 
continued anthropogenic activities, deforestation in the 
name of development and increased regional precipitation 
in landslide-prone areas due to changing climatic patterns 
[30].  

V.  CONCLUSION 
 
Landslides occur when masses of rock, earth or debris move 
down a slope.  Mudslides, debris flows or mudflows, are 
common type of fast-moving landslides that tend to flow in 
channels. These are caused by disturbances in the natural 
stability of a slope, which are triggered by high intensity 
rains. The primary criteria that influence landslides are 
precipitation intensity, slope, soil type, elevation, vegetation 
cover and LC type.  
 

In this paper, LU analyses along with forest 
fragmentation were carried out for five perennial 
watersheds of Uttara Kannada district. SVM was used to 
generate probable landslide map. By overlaying the 
fragmentation map on the landslide probable map, past and 
future occurrences of landslides can be visualised. It is also 
evident that degradation of forest and LC change is an 
important factor that is not only responsible for triggering 
landslides, but also a major contributor to global warming, 
climate change, natural resource depletion and consequent 
detrimental effect on our environment.  
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Fig. 9. Landslide susceptibility points overlaid on the classified image of 2004 (A) and forest fragmentation map (B). Black points represent the 
occurrence of landslide points obtained using handheld GPS. 
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