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Abstract—Natural hazards such as landslides are triggered
by numerous factors such as ground movements, rock falls,
slope failure, debris flows, slope instability, etc. Changes in
slope stability happen due to human intervention,
anthropogenic activities, change in soil structure, loss or
absence of vegetation (changes in land cover), etc. Loss of
vegetation happens when the forest is fragmented due to
anthropogenic activities. Hence land cover mapping with forest
fragmentation can provide vital information for visualising the
regions that require immediate attention from slope stability
aspects. The main objective of this paper is to understand the
rate of change in forest landscape from 1973 to 2004 through
multi-sensor remote sensing data analysis. The forest
fragmentation index presented here is based on temporal land
use information and forest fragmentation model, in which the
forest pixels are classified as patch, transitional, edge,
perforated, and interior, that give a measure of forest
continuity. The analysis carried out for five prominent
watersheds of Uttara Kannada district—- Aganashini, Bedthi,
Kali, Sharavathi and Venkatpura revealed that interior forest
is continuously decreasing while patch, transitional, edge and
perforated forest show increasing trend. The effect of forest
fragmentation on landslide occurrence was visualised by
overlaying the landslide occurrence points on classified image
and forest fragmentation map. The increasing patch and
transitional forest on hill slopes are the areas prone to
landslides, evident from the field verification, indicating that
deforestation is a major triggering factor for landslides. This
emphasises the need for immediate conservation measures for
sustainable management of the landscape. Quantifying and
describing land use - land cover change and fragmentation is
crucial for assessing the effect of land management policies and
environmental protection decisions.
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I. INTRODUCTION

atural hazards such as landslides involving small to
large ground movements are mainly triggered due to
unstable slopes with scanty green cover. Unstable
sloped are induced due to the removal of vegetation cover,
rock falls, deep failure of slopes, shallow debris flows,
ground water pressure, erosion, soil nutrients, soil structure,
etc. The actual landslide often requires a trigger before
being released and in most cases, a change in land cover
(LC) due to the loss of vegetation is a primary factor that
builds up specific sub-surface conditions for landslide to
occur. The loss in forest cover due to LC change has
increased rapidly in recent times due to increasing mankind
needs. Forest cover is reduced to almost half of the
ecologically desired amount [1] and about 72 percent of
India’s forests have lost their viability for regeneration, with
forest grazing being one of the most important causes [2].
Forest fragmentation apart from affecting the biodiversity
and ecology of the region has a significant influence in the
movement of soil (silt) and debris in undulating terrains
with high intensity rainfall. Forest fragmentation analysis
spatially aids in visualising the regions that require
immediate attention to minimise natural calamities such as
landslides. Spatial fragmentation map depicts the type and
extent of fragmentation derived from land use (LU) data
which are obtained from multi-source, multi-sensor, multi-
temporal, multi-frequency or multi-polarization remote
sensing (RS) data. The objectives of this paper are
i.) Classification of multi-temporal RS data
Maximum Likelihood classifier to obtain LU map.
ii.) Multi-temporal forest fragmentation analysis for five
watersheds in Uttara Kannada to characterise the type
and extent of fragmentation or loss of vegetation cover.
iii.) Visualising the consequences of fragmentation for
landslide susceptibility.

using

II. METHODS

A. Maximum Likelihood classifier (MLC) — Supervised
classification of the image was performed using MLC. MLC
has become popular and widespread in RS because of its
robustness [3—6]. It quantitatively evaluates both the
variance and covariance of the category spectral response
pattern [7] assuming the distribution of data points to be
Gaussian [8] which is described by the mean vector and the
covariance matrix. The statistical probability of a given
pixel value being a member of a particular class is computed
and the pixel is assigned to the most likely class (highest
probability value). If the training data pertaining to different
classes contain #n samples and the samples in each class are



ii.d. (independent and identically distributed) random
variables and further if we assume that the spectral classes
for an image is represented by w, n=1,..., N, where N is the
total number of classes, then probability density p(w,|X)
gives the likelihood that the pixel X belongs to class ®,
where X is a column vector of the observed digital number
of the pixels. It describes the pixel as a point in
multispectral space (M-dimensional space, where M is the
number of spectral bands). The maximum likelihood (ML)
parameters are estimated from representative i.i.d. samples.
Classification is performed according to

x € o, if p(o®, [x)>p(®;[x) Vj#n Q)

i.e., the pixel x belongs to class w, if p(w,|X) is largest. The
ML decision rule is based on a normalised estimate of the
probability density function (p.d.f.)) of each class. The
discriminant function, gj,(X) for @, in MLC is expressed as

2,,(X) = pxjo,)p(w,) 2)

where p(w,) is the prior probability of w,, p(X|w,) is the
p.d.f. for pixel vector X conditioned on w, [6]. Pixel vector
X is assigned to the class for which g, (X) is greatest. In an
operational context, the logarithm form of (2) is used, and
after the constants are eliminated, the discriminant function
for w, is stated as

G () =(x=p,) X, X=p)+In| X, [-2InP(w,) ()

where Zn is the variance-covariance matrix of ®,, W, is the
mean vector of ®,. A pixel is assigned to the class with the
lowest Gln (X) [6, 9-10]. For each LU class (agricultural

land, human settlement / residential / commercial areas,
roads, forest, plantation, waste land / open land and water
bodies) training samples were collected representing
approximately 10% of the study area. With these 10%
known pixel labels from training data, the aim was to assign
labels to all the remaining pixels in the image.

B. Forest fragmentation: Forest fragmentation is the
process whereby a large, continuous area of forest is both
reduced in area and divided into two or more fragments.
The decline in the size of the forest and the increasing
isolation between the two remnant patches of the forest has
been the major cause of declining biodiversity [11-15]. The
primary concern is direct loss of forest area, and all
disturbed forests are subject to “edge effects” of one kind or
another. Forest fragmentation is of additional concern,
insofar as the edge effect is mitigated by the residual spatial
pattern [16-19].

LU map indicate only the location and type of forest, and
further analysis is needed to quantify the forest
fragmentation. Total extent of forest and its occurrence as
adjacent pixels, fixed-area windows surrounding each forest
pixel is used for calculating type of fragmentation. The
result is stored at the location of the centre pixel. Thus, a
pixel value in the derived map refers to between-pixel
fragmentation around the corresponding forest location. As
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an example [20], if Pf is the proportion of pixels in the
window that are forested and Pff is the proportion of all
adjacent (cardinal directions only) pixel pairs that include at
least one forest pixel, for which both pixels are forested. Pff
estimates the conditional probability that, given a pixel of
forest, its neighbour is also forest. The six fragmentation
model that identifies six fragmentation categories are: (1)
interior, for which Pf = 1.0; (2), patch, Pf < 0.4; (3)
transtitional, 0.4 < Pf < 0.6; (4) edge, Pf > 0.6 and Pf-Pff >
0; (5) perforated, Pf > 0.6 and Pf-Pff < 0, and (6)
undetermined, Pf > 0.6 and Pf = Pff. When Pff is larger than
Pf, the implication is that forest is clumped; the probability
that an immediate neighbour is also forest is greater than the
average probability of forest within the window.
Conversely, when Pff is smaller than Pf, the implication is
that whatever is non-forest is clumped. The difference (Pf-
Pff) characterises a gradient from forest clumping (edge) to
non-forest clumping (perforated). When Pff = Pf, the model
cannot distinguish forest or non-forest clumping. The case
of Pf =1 (interior) represents a completely forested window
for which Pff must be 1.

C. Support Vector Machine (SVM): SVM are supervised
learning algorithms based on statistical learning theory,
which are considered to be heuristic algorithms [21]. SVM
map input vectors to a higher dimensional space where a
maximal separating hyper plane is constructed. Two parallel
hyper planes are constructed on each side of the hyper plane
that separates the data. The separating hyper plane
maximises the distance between the two parallel hyper
planes. An assumption is made that the larger the margin or
distance between these parallel hyper planes, the better the
generalisation error of the classifier will be. The model
produced by support vector classification only depends on a
subset of the training data, because the cost function for
building the model does not take into account training
points that lie beyond the margin [21]. When it is not
possible to define the hyper plane by linear equations, the
data can be mapped into a higher dimensional space through
some nonlinear mapping functions.

A free and open source software — openModeller [22] was
used for predicting the probable landslide areas using SVM.
openModeller (http://openmodeller.sourceforge.net/)
includes facilities for reading landslide occurrence and
environmental data, selection of environmental layers on
which the model should be based, creating a fundamental
niche model and projecting the model into an environmental
scenario as shown in Fig. 1.

III. STUDY AREA AND DATA

The Uttara Kannada district lies 74°9" to 75°10" E longitude
and 13°55 to 15°31 N latitude, extending over an area of
10,291 km? in the mid-western part of Karnataka state (Fig.
2). It accounts for 5.37 % of the total area of the state with a
population above 1.2 million [23]. This region has gentle
undulating hills, rising steeply from a narrow coastal strip
bordering the Arabian sea to a plateau at an altitude of 500
m with occasional hills rising above 600-860m.
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Fig. 1. Methodology used for landslide prediction in openModeller.
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Fig. 2. Uttara Kannada district, Karnataka, India.

This district, with 11 taluks, can be broadly categorised into
three distinct regions — coastal lands (Karwar, Ankola,
Kumta, Honnavar and Bhatkal taluks), mostly forested
Sahyadrian interior (Supa, Yellapur, Sirsi and Siddapur
taluks) and the eastern margin where the table land begins
(Haliyal, Yellapur and Mundgod taluks). Climatic
conditions range from arid to humid due to physiographic
conditions ranging from plains, mountains to coast.

Survey of India (SOI) toposheets of 1:50000 and 1:250000
scales were used to generate base layers — district and taluk
boundaries, water bodies, drainage network, etc. Field data
were collected with a handheld GPS. RS data used in the
study were Landsat MSS (1973, spatial resolution — 79m),
Landsat TM (1989, spatial resolution — 30m), Landsat
ETM+ (2000, spatial resolution — 30m) [downloaded from
Global Land Cover Facility, http://www.landcover.org] and

LISS-III Multi-spectral (2004, spatial resolution — 23.5m)
procured from NRSC, Hyderabad, India. Google Earth data
(http://earth.google.com) served in pre and post
classification process and validation of the results.

Environmental data such as precipitation of wettest month
were downloaded from WorldClim — Global Climate Data
[http://www.worldclim.org/bioclim]. Other environmental
layers (Aspect, DEM, Flow accumulation, Flow direction,
Slope, Compound Topographic Index) used for modelling
landslide were obtained from USGS Earth Resources
Observation and Science (EROS) Center based
Hydro1Kdatabase [http://eros.usgs.gov/#/Find_Data/
Products_and Data_Available/gtopo30/hydro/asia]. The
global LC change maps were obtained from Global Land
Cover Facility, Land Cover Change
[http://glcf.umiacs.umd.edu/services/landcoverchange/landc
over.shtml;  http://www.landcover.org/services/landcover
change/landcover.shtml]. The spatial resolution of all the
data were 1 km. 125 landslide occurrence points of low,
medium and high intensity were recorded using handheld
GPS from the field and published reports.

IV. RESULTS AND DISCUSSION

RS data were geometrically corrected on a pixel by pixel
basis and the images were resampled to a common
resolution of 30m with a dimension of 7562 x 6790. LC
mapping (Fig. 3) was done using normalised difference
vegetation index (NDVI) given as

NIR-Red

)
NIR+Red

NDVI values range from -1 to +1; increasing values from 0
indicate presence of vegetation (agriculture, forest and
plantation) and negative values indicate absence of greenery
(builtup, sand, fallow, water) as given in Table 1.
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Fig. 3. NDVI and NDWTI for Uttara Kannada.

TABLE I: NDVI AND WDVI OF UTTARA KANNADA.

INDEX NDVI WDVI

VEGETATION (%) NON-VEGETATION (%0) WATER (%) NON-WATER (%0)
1973 97.82 2.18 1.75 98.25
1989 96.13 3.87 2.20 97.80
2000 94.33 5.67 2.80 97.20
2004 94.00 6.00 2.50 97.50

Mapping of water bodies (Fig. 3) was done using
normalised difference water index (NDWTI) [24] given as

Green-NIR (5)
Green+NIR

NDWI values above 0 indicate presence of water bodies and
values below 0 indicate other classes.

Training pixels were collected from the false colour
composite of the respective bands (for time period 1973,
1989, and 2000) since historical data were unavailable. For
2004 data, training data uniformly distributed over the study
area collected with pre calibrated GPS were used. The class
spectral characteristics for six LU categories (agriculture,
builtup / settlement, forest (evergreen, semi-evergreen,
deciduous), plantation, waste land / fallow / sand, and water
bodies / streams) using RS data were obtained to assess their

inter-class separability. and the images were classified using
MLC. Temporal classified images (into 6 LC classes —
agriculture, built-up, forest, plantation, waste land and water
bodies) are shown in Fig. 4 and the statistics are given in
Table II. This was validated with the representative field
data (covering ~ 10% of the study area) and also using
Google Earth image. Producer’s, user’s, overall accuracy
and Kappa values computed are listed in Table III.

Further, five watersheds were delineated from the classified
images of four time period as shown in Fig. 5 and the
statistics are listed in Table IV. Forest fragmentation model
was used to obtain fragmentation indices as shown in Fig. 6
and the statistics are presented in Table V. Forest was
categorised into patch, transitional, edge, perforated, and
interior types using programs in GRASS GIS
(http://wgbis.ces.iisc.ernet.in/foss).
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Fig. 4. Temporal classified image of Uttara Kannada district.

TABLE II: LU DETAILS OF UTTARA KANNADA DISTRICT

YEAR 1973 1989 2000 2004

AREA AREA AREA AREA
Crass (HA) (%) (Ha) (%) | (Ha) (%) | (Ha) | (%)
AGRICULTURE 25794 2.51 57465 5.59 97749 9.51 115464 11.23
BuiLTUP 4490 0.44 8671 0.84 13674 1.33 27577 2.68
FOREST 897420 87.29 845665 82.25 749877 72.94 627455 61.02
PLANTATION 82439 8.02 85190 8.29 122160 11.88 184340 17.93
WASTE LAND LAND - - 8483 0.83 15884 1.54 23456 2.28
‘WATER BODIES 17995 1.75 22666 2.20 28796 2.80 49924 4.86
ToOTAL 1028151 100 1028151 100 1028151 100 1028151 100

Sharavathi

Venkatpur

1989 2000

l:l Agriculture - Builtup - Forest
- Plantation -Wasteland/Fallow/Sand - Water Bodies

Fig. 5. Temporal LU image of the five rive basins of Uttara Kannada district.



197

TABLE III: ACCURACY ASSESSMENT OF THE CLASSIFIED IMAGES

YEAR CATEGORY USER’S PRODUCER’S OVERALL KAPPA
ACCURACY ACCURACY ACCURACY
AGRICULTURE 74.12 77.97
BuiLTuP
VILTY 68.45 65.42
1973 FOREST 87.23 85.22 76.89 71.92
PLANTATION 8127 7793
WASTELAND 85.62 81.21
‘WATER BODIEE 78.50 74.29
AGRICULTURE 70.43 80.39
BuiLtue 78.78 81.11
FOREST 73.96 73.39 75.78 69.82
1989 PLANTATION 79.62 77.19
WASTELAND 8021 77.78
WATER BODIEE 31.02 64.82
AGRICULTURE 3116 80.47
BuiLTUP 84.29 87.50
2000 FOREST 87.15 82.54 83.21 79.21
PLANTATION 86.51 87.23
WASTELAND 85.22 81.79
WATER BODIEE 86.40 97.56
AGRICULTURE 85.21 84.54
BuiLTuP 86.47 83.11
FOREST 94.73 96.20
2004 87.83 83.11
PLANTATION 92.27 91.73
WASTELAND 88.49 87.88
WATER BODIEE 83.13 81.33

It is to be noted that Supa dam was constructed in late
1970s. Hence this water body is absent in the 1973 Landsat
multi-spectral classified image and prominent in the
classified images of 1989, 2000 and 2004 (Fig. 4). Also,
there was no waste land in 1973 as per the statistics in Table
II. All the rivers are perennial since the catchment areas are
mainly composed of interior forest. However, eventually
there are drastic land cover changes consequent to
unplanned developmental activities. In addition, the dams
of major rivers in the district have inundated large
vegetation areas. These areas have silt deposit at the river
beds and have been classified as sand / waste land.

Forest and plantation were considered as a single class -
forest and all other classes were considered as non-forest as
the extent of LC is a decisive factor in landslides. While the
forest fragmentation map produced valuable information, it
also helped to visualise the state of forest for tracking the
trends and to identify the areas where forest restoration
might prove appropriate to reduce the impact of forest
fragmentation. Forest fragmentation also depends on the
scale of analysis (window size) and various consequences of
increasing the window size are reported in [25]. The
measurements are also sensitive to pixel size. Nepstad et al.,
(1999a, 1999b) [26 and 27] reported higher fragmentation
when using finer grain maps over a fixed extent (window

size) of tropical rain forest. Finer grain maps identify more
non-forest area where forest cover is dominant but not
exclusive.

The criterion for interior forest is more difficult to satisfy
over larger areas. Although knowledge of the feasible
parameter space is not critical, there are geometric
constraints [28]. For example, it is not possible to obtain a
low value of Pff when Pf is large. Percolation theory applies
strictly to maps resulting from random processes; hence, the
critical values of Pf (0.4 and 0.6) are only approximate and
may vary with actual pattern. As a practical matter, when Pf
> 0.6, non-forest types generally appeared as “islands” on a
forest background, and when Pf < 0.4, forests appeared as
“islands” on a non-forest background. Fig. 6 shows the
temporal change in forest patch type, revealing that patch,
transitional and edge forest are increasing due to
deforestation and interior forest is decreasing. The statistics
in Table V shows the decrease in forest patch types from
1973 to 2004. Forest fragmentation is a vital indicator that is
accountable for environmental changes. With the expansion
of human settlement there is higher risk of forest
degradation disturbing the biodiversity, affecting the water
quality, endangering wildlife survival, habitat protection,
etc.
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Fig. 6. Temporal Forest fragmentation change of the five river basins of Uttara Kannada district.
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Fig. 6. Forest fragmentation in five river basins in Uttara Kannada district.



TABLE IV: LU DETAILS OF THE FIVE RIVER BASINS (IN HA AND %)

YEAR CATEGORY AGANASHINI BEDTHI KALI SHARAVATHI VENKATPURA
AGRICULTURE 1886.6 | 14 | 361642 | 13 | 14294 | 3.8 1302 1.6 | 13552 | 5.9
BUILTUP 6276 | 05 | 79983 | 03 | 13187 | 04 | 103976 | 0.1 | 7469 | 03
1973 FOREST 123500 | 90 | 251363 | 92 | 320174 | 86 | 71536 | 88 | 18282 | 8l
PLANTATION 79309 | 5.8 | 163159 | 6 | 31593 | 84 | 2900 | 7.3 | 2289 | 10
WASTELAND - - - - - - - - - -
WATER BODIES | 2662.5 2 1556.7 | 0.6 | 6696.8 | 1.8 2329 | 29 | 6159 | 27
AGRICULTURE 4466 33 | 125509 | 4.6 | 19667 | 53 | 4110 | 5.1 | 1529.7 | 6.8
BUILTUP 8839 | 07 8569 | 03 | 2886.6 | 0.8 784 1.0 | 4044 | 1.8
1989 FOREST 118724 | 87 | 239894 | 87 | 303758 | 81 | 63686 | 78 | 16725 | 74
PLANTATION 82177 | 60 | 17783 | 6.5 | 34152 | 9.1 8807 11 | 31658 | 14
WASTELAND 7849 | 0.6 | 13608 | 05 | 16965 | 0.5 729 1 508 | 23
WATER BODIES | 3531.6 | 2.6 | 12058 | 04 | 11916 | 32 | 3055 | 38 | 284 | 13
AGRICULTURE 61793 | 45 | 29413 11 | 33421 | 89 | 4781 59 | 18813 | 83
BUILTUP 9697 | 07 | 38384 | 14 | 4364 | 12 | 4148 | 05 | 7176 | 32
2000 FOREST 11130 | 81 | 218541 | 80 | 265508 | 71 | 59379 | 73 | 15363 | 68
PLANTATION 12004.6 | 8.8 | 16379 6 | 50542 | 14 | 12936 | 16 | 3519.7 | 16
WASTELAND 1571.8 | 1.1 3978 1.5 | 27886 | 0.8 1258 1.6 | 82265 | 3.7
WATER BODIES | 45805 | 3.4 | 1501.8 | 0.6 | 17453 | 4.7 | 2404 3 | 3129 | 14
AGRICULTURE 13028 | 9.5 | 36414 | 13 | 36575 | 9.8 | 37789 | 4.6 | 14899 | 6.6
BUILTUP 27065 | 1.9 5221 1.9 | 73642 | 1.9 | 17232 | 2.1 | 959.98 | 4.3
2004 FOREST 841278 | 61 | 181674 | 66 | 232097 | 62 | 47020 | 58 | 13048 | 58
PLANTATION 278362 | 20 | 35315 | 13 | 67093 | 18 | 23472 | 29 | 5896 | 26
WASTELAND 18474 | 14 5411 2 | 10332 | 2.8 | 17205 | 2.1 | 38197 | 1.7
WATER BODIES | 70644 | 5.2 9603 35 | 20549 | 5.5 | 34847 | 43 | 83626 | 3.7
TABLE V: FOREST FRGMENTATION DETAILS OF THE FIVE RIVER BASINS (IN HA)
YEAR CATEGORY AGANASHINI BEDTHI KALI SHARAVATHI VENKATPURA
PATCH 0.59 0.16 1.49 - 0.11
TRANSITIONAL 189.17 322.04 1050.52 94.99 85.40
EDGE 1177.55 2398.25 4442.65 729.81 347.26
1973 PERFORATED 787.33 1478.46 3588.78 457.62 293.29
INTERIOR 127895.85 261524.81 337778.54 74929.99 19506.20
PATCH 83.69 217.57 333.17 94.67 38.33
TRANSITIONAL 631.03 1443.65 1995.02 670.22 21523
EDGE 3638.08 6198.87 6753.60 3155.90 889.215
PERFORATED 857.74 1907.86 2526.22 839.13 269.26
INTERIOR 120188.05 246239.30 322328.53 66064.81 18178.51
PATCH 213.07 1326.61 1637.77 198.690 95.52
TRANSITIONAL 1201.70 4622.81 5654.96 919.972 390.37
EDGE 7263.70 18204.16 20319.45 4262.67 1507.74
2000 PERFORATED 1169.60 3506.29 3977.67 770.327 302.99
INTERIOR 112006.30 205359.76 280116.92 64838.71 16249.80
PATCH 363.82 947.32 1117.11 144.83 40.424
TRANSITIONAL 2106.73 4207.65 441424 781.60 243.40
2004 EDGE 11098.47 17250.44 17408.67 4189.86 1274.87
PERFORATED 2199.95 3942.96 3120.97 717.20 275.79
INTERIOR 92213.32 186500.95 267026.02 62076.267 16337.97

199



Precipitations of wettest month along with the seven other
layers (as mentioned in section III) were used to predict
landslides using SVM as shown in Fig. 7. The landslide
occurrence points were overlaid on the probability map to
validate the prediction as shown in Fig. 8.

Low Medum Probisbiity High

a 0.4
I — 1 degrees

Fig. 7. Probability distribution of the landslide prone areas.

ppoe Vecior Machines)

Fig. 8. Validation of the probability distribution of the landslide prone
areas by overlaying landslide occurrence points.

The SVM map was 96% accurate with respect to the ground
and Kappa values 0.8733 and 0.9083 respectively [29].
Most of the predicted landslide areas as probable landslide
prone zones (indicated in red in Fig. 7) reside on terrain that
is highly undulating with steep slopes and are frequently
exposed to landslides induced by rainfall. Maximum
number of landslide points occurring in the undulating
terrain, collected from the ground fell in fragmented areas -
patch, transitional and edge forest. Fig. 9 shows the
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landslide occurrence points obtained from ground using
handheld GPS overlaid on the classified image of the
district (A) and forest fragmentation map (B) based on 2004
RS data. This map indicates that hill slopes with undulating
terrain and less vegetation cover (patch, transitional and
edge forest) are more susceptible to landslides compared to
north-eastern part of the district which has relatively flat
terrain with large area utilised under agricultural practices.

The present study makes an effort to quantify forest cover
by wusing fragmentation index for measuring the
disturbances due to human impact giving a complete picture
of the change that has occurred. The five prominent
watersheds of Uttara Kannada district were assessed for
quantifying  forest fragmentation caused due to
anthropogenic disturbances. Forest fragmentation model is
useful to visualize state of forest fragmentation for an area
and identifying areas where forest restoration might prove
appropriate. If the vegetative areas have been cleared, the
water retaining capacity of the soil has decreased, triggering
landslides in those areas. Hence, there is a immediate need
to restore those vegetative by forestation to ensure that the
soil is retained on the hill slopes and do not activate any
downward movement of the hill tops.

Natural disasters have drastically increased over the last
decades. National, state and local government including
NGOs are concerned with the loss of human life and
damage to property caused by natural disasters. The trend of
increasing incidences of landslides occurrence is expected
to continue in the next decades due to urbanisation,
continued anthropogenic activities, deforestation in the
name of development and increased regional precipitation
in landslide-prone areas due to changing climatic patterns
[30].

V. CONCLUSION

Landslides occur when masses of rock, earth or debris move
down a slope. Mudslides, debris flows or mudflows, are
common type of fast-moving landslides that tend to flow in
channels. These are caused by disturbances in the natural
stability of a slope, which are triggered by high intensity
rains. The primary criteria that influence landslides are
precipitation intensity, slope, soil type, elevation, vegetation
cover and LC type.

In this paper, LU analyses along with forest
fragmentation were carried out for five perennial
watersheds of Uttara Kannada district. SVM was used to
generate probable landslide map. By overlaying the
fragmentation map on the landslide probable map, past and
future occurrences of landslides can be visualised. It is also
evident that degradation of forest and LC change is an
important factor that is not only responsible for triggering
landslides, but also a major contributor to global warming,
climate change, natural resource depletion and consequent
detrimental effect on our environment.
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Fig. 9. Landslide susceptibility points overlaid on the classified image of 2004 (A) and forest fragmentation map (B). Black points represent the
occurrence of landslide points obtained using handheld GPS.
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