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Abstract—The widely used Bayesian classifier is based on the
assumption of equal prior probabilities for all the classes. How-
ever, inclusion of equal prior probabilities may not guarantee high
classification accuracy for the individual classes. Here, we propose
a novel technique—Hybrid Bayesian Classifier (HBC)—where the
class prior probabilities are determined by unmixing a supplemen-
tal low spatial–high spectral resolution multispectral (MS) data
that are assigned to every pixel in a high spatial–low spectral
resolution MS data in Bayesian classification. This is demon-
strated with two separate experiments—first, class abundances
are estimated per pixel by unmixing Moderate Resolution Imag-
ing Spectroradiometer data to be used as prior probabilities,
while posterior probabilities are determined from the training
data obtained from ground. These have been used for classifying
the Indian Remote Sensing Satellite LISS-III MS data through
Bayesian classifier. In the second experiment, abundances ob-
tained by unmixing Landsat Enhanced Thematic Mapper Plus are
used as priors, and posterior probabilities are determined from
the ground data to classify IKONOS MS images through Bayesian
classifier. The results indicated that HBC systematically exploited
the information from two image sources, improving the overall
accuracy of LISS-III MS classification by 6% and IKONOS MS
classification by 9%. Inclusion of prior probabilities increased
the average producer’s and user’s accuracies by 5.5% and 6.5%
in case of LISS-III MS with six classes and 12.5% and 5.4% in
IKONOS MS for five classes considered.

Index Terms—Bayesian classifier, prior probability, unmixing.

I. INTRODUCTION

IMAGE classification using conventional Bayesian classifier
is a supervised method based on prior probabilities [1].

Prior probability resolves confusions among classes that are
not well separable [2] and is therefore effective in improving
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classification accuracy. Bayesian classifier is generally used
with the assumption that prior probabilities are equal, as reliable
prior probabilities are not easily available. However, with the
use of equal prior probabilities, the performance of the classifier
is not optimal [3], which is evident from the misclassified pixels
primarily due to spectral confusion between classes, apart from
the increased computing and sampling requirements [4]. The
theoretical analysis of the effect of prior probability has been
discussed in detail by Mingguo et al. [5]. Earlier works used
prior probabilities based on previous year crop statistics [6],
geographical data [7], elevation data [8], and spatial charac-
teristics specified through a Markov random field model at
reference resolution [9], improving the overall accuracy and
kappa coefficient. Therefore, it is desirable to obtain reliable
prior probabilities for each spectral class and use them to
classify the pixels that are likely to misclassify [1], even though
they are difficult to determine within the same time period and
for the same spectral classes.

In this context, a new classification method—Hybrid
Bayesian Classifier (HBC)—based on linear unmixing and
Bayesian classifier is proposed to assign a class label to each
pixel in a high spatial–low spectral resolution (HS-LSR) multi-
spectral (MS) data. The prior probabilities of the different
classes in the Bayesian classifier to classify each pixel in the
HS-LSR data, such as the Indian Remote Sensing Satellite Lin-
ear Imaging Self Scanner-III (IRS LISS-III) MS and IKONOS
MS, are obtained from abundance estimates by unmixing low
spatial–high spectral resolution (LS-HSR) MS data, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) and
Landsat ETM+, respectively. The terms HS-LSR and LS-HSR
have been used in a relative sense here, depending upon the
spatial resolution of the images. For example, in the first exper-
iment, MODIS bands are referred as LS-HSR and the Indian
Remote Sensing Satellite (IRS) LISS-III MS bands are HS-LSR
data, while in the second experiment, Landsat ETM+ bands are
LS-HSR, and IKONOS MS bands are HS-LSR data. The reason
for selecting MODIS and Landsat Enhanced Thematic Mapper
Plus (ETM+) images as LS-HSR supplement data is because
of their economic viability and high temporal resolution that
enables their procurement for any part of the globe, throughout
the year, corresponding to any HS-LSR data. However, the
technique, in general, can be applied on any other LS-HSR
(such as hyperspectral bands) and HS-LSR (such as MS bands)
data classification. The novelty of this approach lies in the fact
that LS-HSR and HS-LSR MS data are combined to improve
the classification results, which can be thought of as a fusion
process, in the sense that information from two different sources
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Fig. 1. HBC.

(sensors) are combined to arrive at an improved classified image
by systematically exploiting the relevant information from both
sources, as shown in Fig. 1. Zhukov et al. [10] attempted a
similar multisensor multiresolution image fusion based on low
spatial resolution (LSR) unmixing and high spatial resolution
(HSR) classification. However, the end product was not a
classified image but a set of MS fused images equivalent to
the number of LSR bands at the HSR image dimension. In the
following section, linear unmixing using orthogonal subspace
projection (OSP) and Bayesian classifier are reviewed. The
proposed HBC is discussed in Section III, while Section IV
demonstrates the experimental results and validation followed
by conclusion in Section V.

II. REVIEW OF METHODS

A. Linear Unmixing

With K spectral bands and M classes (C1, . . . , CM ), each
pixel has an associated K-dimensional pixel vector y =
(y1, . . . , yK)′ whose components are the gray values cor-
responding to the K spectral bands. Let E = [e1, . . . , eM ],
where, for m = 1, . . . ,M , em is a K × 1 column vector rep-
resenting the endmember spectral signature of the mth target
material. For a pixel, let αm denote the fraction of the mth
target-material signature and α = (α1, . . . , αM )′ denote the
M -dimensional abundance column vector. The linear mixture
model for y is given by

y = Eα+ η (1)

where η = (η1, . . . , ηK)′ are independent identically dis-
tributed N(0, σ2) [11]. Equation (1) represents a standard
signal-detection model where Eα is a desired signal vector to
be detected. Since, OSP detects one signal (target) at a time,
we divide a set of M targets into desired (Cm) and undesired
(C1, . . . , Cm−1, Cm+1, . . . CM ) targets. A logical approach is
to eliminate the effects of the undesired targets that are consid-
ered as “interferers” to Cm before the detection of Cm takes
place. Now, in order to find αm, the desired target material is
em. The term Eα in (1) can be rewritten to separate the desired
spectral signature em

y = emαm +Rr + η (2)

where r = (α1, . . . αm−1, αm+1, . . . , αM ) and R = [e1, . . . ,
em−1, em+1, . . . , eM ]. Thus the interfering signatures in R can
be removed by the operator

P =
(
I −R(RTR)−1RT

)
(3)

which is used to project y into a space orthogonal to the space
spanned by the interfering spectral signatures, where I is a K ×
K identity matrix [12]. Operating on y with P and noting that
PR = 0

Py = Pemαm + Pη. (4)

After maximizing the signal-to-noise ratio, an optimal estimate
of αm is

α̂m =
yTP TPy

eTmP TPem
. (5)

Note that 1 ≥ αm ≥ 0, and thus, (α1, . . . , αM ) can be taken as
proportional probabilities of the M classes, i.e., P (Cm) ∝ αm.

B. Bayesian Classifier

Associated with any pixel, there is an observation y
∼

. With

M classes (C1, . . . , CM ), Bayesian classifier calculates the
posterior probability of each class conditioned on y [13]

P (Cm| y
∼
) =

P (y
∼
|Cm)P (Cm)

P (y
∼
)

. (6)

In (6), since P (y
∼
) is constant for all classes, only

P (y
∼
|Cm)P (Cm) is considered. P (y

∼
|Cm) is computed as-

suming class conditional independence; therefore, P (y
∼
|Cm) is

given by

P (y
∼
|Cm) =

K∏
k=1

P (yk|Cm). (7)

III. NEW HBC

HBC uses the abundance of each class obtained from
LS-HSR data by linear unmixing as prior probability while
classifying the HS-LSR data using Bayesian classifier of the
same geographical area and time frame. That is, given the
observation vector y

∼
for a pixel, it is classified to fall in class l

if l = ArgMaxmP (y
∼
|Cm)P (Cm), where P (y

∼
|Cm) is as that

in (7), calculated using the HS-LSR data, and P (Cm) ∝ αm,
calculated using the LS-HSR data. The assumptions in this
method are the following: 1) If there are r HS-LSR pixels
contained in one LS-HSR pixel, i.e., the resolution ratio is
(r : 1), the prior probabilities for all the r HS-LSR pixels are
equal corresponding to the same LS-HSR pixel and 2) the two
data types have a common origin or upper left corner, i.e., the
edges of the r×r HS-LSR pixels overlaps exactly with the
corresponding LS-HSR pixel. The limitations are as follows:
1) (K-1) should be ≥M in the LS-HSR data and 2) M in
HS-LSR should be ≤M in the LS-HSR data.

IV. EXPERIMENTAL RESULTS

Two separate experiments were carried out. In the first case,
LISS-III MS data (three bands of 23.5 m × 23.5 m spatial
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Fig. 2. LISS-III MS classified images: (a) Bayesian classifier. (b) HBC.

TABLE I
CLASS STATISTICS FROM BAYESIAN AND HBC FOR LISS-III DATA

resolution resampled to 25 m, acquired on December 25, 2002)
of 5320 × 5460 size and MODIS eight-day composite data
(seven bands of 250 m × 250 m, acquired in December 19–26,
2002) of 532 × 546 dimension, were coregistered with known
ground-control points (rmse − 0.11). Training data were col-
lected from the ground representing approximately 10% of the
study area covering the entire spectral gradient of the classes.
Separate test data were collected for validation. An LISS-III
MS classified image using conventional Bayesian classifier is
shown in Fig. 2(a). Assuming that there are six (fixed) numbers
of representative endmembers (pure pixels), the entire image
was modeled in terms of those spectral components, extracted
using N-FINDR algorithm [14] from the MODIS images. In the
absence of pure pixels, alternative algorithms [15] can be used
for endmember extraction, which is a limitation of N-FINDR.
It may be noted that some objects (for example, buildings with
concrete roofs, tiled roofs, asphalt, etc.) exhibit high degrees
of spectral heterogeneity representing variable endmembers.
This intraclass spectral variation with variable endmembers can
be addressed through techniques discussed in [16]–[18] and is
beyond the scope of this paper.

Abundance values were estimated for each pixel through
unmixing and used as prior probabilities in HBC to classify
LISS-III MS data [Fig. 2(b)]. Table I is the class statistics,
and Table II indicates the producer’s and user’s accuracies.
The overall accuracy and kappa for HBC (93.54% and 0.91)
is higher than the Bayesian classifier (87.55% and 0.85). For
any particular class, if the reference data has more pixels with
correct label, the producer’s accuracy is higher, and if the pixels
with the incorrect label in classification result are less, the user’s

TABLE II
ACCURACY ASSESSMENT FOR LISS-III DATA

accuracy is higher [5]. The Bayesian classifier wrongly clas-
sified many pixels belonging to waste/barren/fallow as built-
up. The forest class was overestimated, and the plantation was
underestimated by the Bayesian classifier. The only minority
class in the study area is water bodies. Classified image using
conventional Bayesian classifier had 1.08% (8854 ha) of water
bodies in the study area. After the ground visit, we found
that there are not many water bodies, and the extents of most
individuals were < 2000 m2. Therefore, only a few water
bodies that had spatial extent ≥ 62 500 m2 could be used as
endmembers. The minimum detected water class was 5% using
unmixing of LS-HSR data. It may have happened that the
prior probability was unlikely for this class while classifying
the LISS-III MS data using HBC. The classified image ob-
tained from HBC showed 0.81% (66.20 ha) of water bodies.
A few pixels were wrongly classified using HBC; therefore, the
producer’s accuracy decreased from 90.91% (in conventional
Bayesian classifier) to 88.18% (in HBC). However, given the
same set of training pixels for classification, the user’s accuracy
has increased from 88.89% to 97%. The producer’s accuracy
increased for agriculture (2.6%), built-up (4.3%), forest (7%),
plantation (11.5%), and wasteland (10.6%), and the user’s ac-
curacy increased for agriculture (8%), built-up (16.6%), forest
(7.6%), and water bodies (8%) in the HBC output. On the other
hand, the producer’s accuracy decreased (2.7%) for water bod-
ies, and the user’s accuracy decreased (∼0.7%) for plantation
and wasteland classes, in agreement with similar observations
reported in [5]. HBC was intended to improve classification
accuracies by correctly classifying pixels which were likely
to be misclassified by Bayesian classifier. Therefore, a cross
comparison of the two classified images located the pixels that
were assigned different class labels at the same location. These
wrongly classified pixels, when validated with ground data, re-
vealed a 6% (∼1 742 832 pixels) improvement in classification
by HBC.

In the second experiment, IKONOS MS data (four bands of
4 m, acquired on November 24, 2004) of 700 × 700 size and
Landsat ETM+ data (six bands, excluding thermal and panchro-
matic, of 30 m, acquired on November 22, 2004) of 100 ×
100 dimension were coregistered (rmse−0.09). The Landsat
pixels were resampled to 28 m so that 49 IKONOS pixels
would fit in one Landsat pixel. The scenes correspond to
Bangalore City, India, near the central business district, having
race course, bus stand, railway lines, parks, built-up with con-
crete roofs, asbestos roofs, blue plastic roofs, coal tarred roads
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Fig. 3. IKONOS classified images: (a) Bayesian classifier. (b) HBC.

TABLE III
ACCURACY ASSESSMENT FOR IKONOS DATA

TABLE IV
CLASS STATISTICS FOR IKONOS DATA

with flyovers, and a few open areas (playground, walkways,
vacant land, etc.). Class proportions from Landsat image pixels
were used as prior probabilities to classify the IKONOS MS
images using HBC [Fig. 3(b)]. The overall accuracy and kappa
for HBC (89.53% and 0.87) is higher than the Bayesian classi-
fier (80.46% and 0.69). The producer’s accuracy increased by
17% for concrete, asbestos, blue plastic roof, and open area and
decreased by 7% for vegetation in HBC (Table III). The user’s
accuracy increased by ∼5.5% for all the classes in HBC. The
Bayesian classifier wrongly classified and overestimated many
pixels belonging to the open area as asbestos roof (Table IV).
Vegetation was overestimated by 9% using the Bayesian classi-
fier, and open area was underestimated by ∼15%. A cross com-
parison of the two classified images showed that 95 733 pixels
(0.33% of the study area) were differently classified by the
two classifiers. Validation of these pixels showed an improve-
ment of 9% by HBC, higher than the accuracies reported
in [6]–[8].

V. CONCLUSION

The major contribution of this technique lies in the fact
that abundance estimates from LS-HSR data were utilized as
prior probabilities to classify HS-LSR data using a Bayesian
classifier, improving the overall accuracy by 6% and 9% with
IRS LISS-III MS and IKONOS MS data, respectively, as com-
pared with conventional Bayesian classifier, demonstrating the
robustness of the approach.
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