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Abstract 
Genetic Algorithm for Rule-set Prediction (GARP) 
and Support Vector Machine (SVM) with free and 
open source software (FOSS) – Open Modeller were 
used to model the probable landslide occurrence 
points. Environmental layers such as aspect, digital 
elevation, flow accumulation, flow direction, slope, 
land cover, compound topographic index and 
precipitation have been used in modeling. Simulated 
output of these techniques is validated with the actual 
landslide occurrence points, which showed 92% 
(GARP) and 96% (SVM) accuracy considering 
precipitation in the wettest month and 91% and 94% 
accuracy considering precipitation in the wettest 
quarter of the year. 
 
Keywords: Landslide, Genetic algorithm, Support Vector 
Machine. 

 
Introduction 
Landslides occur due to various triggering factors such as 
heavy rainfall, earthquakes, changes in land cover etc.  
These hydro-geomorphic events depend on the combination 
of  i) predisposing factors (e.g. lithology and  morphology), 
ii) triggering factors (e.g. excessive and intense 
precipitations) and iii) accelerating (e.g. human activities 
altering natural slope stability) factors36 along with 
gravitational forces. Most common one is shallow 
landslide, occurring in steep, soil mantled landscapes in 
different climatic zones.4,26,28,53 This event has a significant 
role in an ability to change surface erosion patterns on a hill 
slope and sediment yields to nearby streams, triggered due 
to changes in topography, land cover and soil properties. 
The occurrence time and locations where landslides are 
likely to occur should thus be identified and modeled in 
advance in order to avoid or reduce the casualties. 
Casualties due to landslides caused by slope failures are 
significantly higher in the undulating terrains, resulting in 
huge economic losses due to higher value of endangered 
structures and the greater number of property and human 
casualties. 
   
Landslides in mountainous terrain often occur during or 
after heavy rainfall, resulting in the loss of life and 
properties. Mapping or delineating areas susceptible to 
landslides is essential for moderating land use activities and 
implementing appropriate mitigation measures with 

management options in mountainous areas.16 Prediction of 
rainfall triggered hill slope disasters relied mostly on the 
valley slope8,20, rainfall intensity and duration that can 
cause hill slope failure.7,9 During the last decade, theoretical 
models have been developed to predict landslide 
susceptibility based on topographic, geologic and 
hydrological variables as well as changes in watershed’s 
land use using various parameters such as neural, fuzzy, 
object oriented, knowledge based etc.15,24,30,37,38,40,49,50,63  
 
The availability of relatively detailed digital elevation data, 
coupled with simple slope-instability understanding and hill 
slope hydrological models, has led to refinements in 
physically-based modeling of shallow landslide 
hazards.22,62 Daia and Leeb16 illustrated slope instability 
modeling using Geographical Information Systems (GIS). 
Casadei et al12 predict the time and location of landslides 
through a landslide warning system using a slope-instability 
analysis and  hydrological models, which was validated by 
using historical data of landslide events for the period 
1953–199829.  
 
The failure depth prediction model13 is based on 
geotechnical properties (cohesion, angle of internal friction 
and density) of the soil and the local slope topography. 
Combination of failures and the consequent transportation 
of the failed materials lead to the evolution of a new hill-
slope. These changes are due to the slope gradient, 
depending on the location of landslides, quantity and their 
run-out distances. There are numerous studies pertaining to 
shallow landslides across the globe41,58,59 and  on landslide 
hazard zonation and modeling3,24,51,52.   
 
Most of the hazard appraisal techniques make use of 
Geographical Information Systems (GIS) along with 
temporal Remote Sensing data (RS) considering the 
complex spatial dynamics of the landslide process. Digital 
elevation models (DEMs) coupled with precipitation data at 
higher spatial and temporal resolution36 aid in the shallow 
landslide hazard modeling.5,6,38,48,49,54,62 Methods based on 
the infinite slope stability parameters31 along with 
hydrological models37,49,62, have been used for the 
estimation of soil wetness spatially.2,11,18,37 

 
Modelling these dynamic processes with appropriate 
methods require incorporation of all mechanisms acting at 
different spatial and temporal scale levels. However there 
are difficulties in the context of models of longer term 
landscape such as work on rapid mass movements has 
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concentrated on stability analysis, so that forecasting of 
destinations for slide debris is very inexact, even for an 
individual slide28, which has been addressed through 
various deterministic, heuristic and statistical based models 
to assess landslide incidence potential1,10,17,43. Deterministic 
methods deal with the estimation of quantitative values of 
stability variables namely soil strength, depth below the 
terrain surface, soil layer thickness, slope angle and water 
pressure, etc. of the landslide region with homogeneous 
intrinsic properties57,60 and are applicable at large scale over 
small areas. However, the drawback of these deterministic 
model techniques is high degree of simplification due to 
paucity of data and at times it is prohibitive to acquire the 
required data. 
 

Methods 
Openmodeller, a free and opensource software was used to 
model landslide occurrence locations. The model utilizes 
major contributors for landslides like precipitation and six 
site factors including aspect, DEM, flow accumulation, 
flow direction, slope, land cover, compound topographic 
index and historical landslide occurrence points. 
Precipitation in the wettest month and precipitation in the 
wettest quarter of the year were considered separately to 
analyse the effect of rainfall on hill slope failure for 
generating scenarios to predict landslides. 
 
Genetic Algorithm for Rule-set Prediction (GARP): This 
is based on genetic algorithms23,25 and has been widely used 
for predicting biological species55,56. GARP develops 
predictive models consisting of a set of conditional rules in 
the form of ‘if–then’ statements that describe the ‘niches’ of 
landslide occurrence points.  
 
GARP uses a set of point localities where the landslide is 
known to have occurred along with a set of geographic 
layers representing the environmental parameters that might 
limit the landslide existence. Genetic Algorithms (GAs) are 
suitable for solving complex optimization problems and for 
applications that require adaptive problem-solving 
strategies. It maps strings of numbers to each potential 
solution and then each string becomes a representation of 
individual locations. Then the most promising in its search 
is manipulated for improved solution45. The GARP model 
is composed of a set of rules developed through 
evolutionary refinement, testing and selecting rules on 
random subsets of training data sets. Application of a rule 
set is more complicated as the prediction system must 
choose appropriate rule among a number of applicable 
rules. GARP maximizes the significance and predictive 
accuracy of rules without over-fitting.  
 
Significance is established through a χ2 test on the 
difference in the probability of the predicted value before 
and after application of the rule. GARP uses envelope rules, 
GARP rules, atomic and logit rules. In envelope rule, the 
conjunction of ranges for all of the variables is a climatic 
envelope or profile, indicating geographical regions where 

the climate is suitable for that entity, enclosing values for 
each parameter. A GARP rule is similar to an envelope 
rule, except that variables can be irrelevant. An irrelevant 
variable is one where points may fall within the whole 
range. An atomic rule is a conjunction of categories or 
single values of some variables. Logit rules are an 
adaptation of logistic regression models to rules. A logistic 
regression is a form of regression equation where the output 
is transformed into a probability.56 
 
Support Vector Machine (SVM): SVM are supervised 
learning algorithms based on heuristic algorithms of 
statistical learning theory27. SVM map input vectors to a 
higher dimensional space with maximal separating hyper 
plane. Two parallel hyper planes are constructed on each 
side of the hyper plane that separates the data. The 
separating hyper plane maximizes the distance between the 
two parallel hyper planes. An assumption is made that the 
larger is the margin or distance between these parallel hyper 
planes, better will be the accuracy of the classifier. The 
model produced by support vector classification depends 
only on a subset of the training data, because the cost 
function for building the model does not take into account 
training points that lie beyond the margin.27 
 
In order to classify n-dimensional data sets, n-1 
dimensional hyper plane is produced with SVMs. Fig. 1 
illustrates various hyper planes separating two classes of 
data and there is only one hyper plane that provides 
maximum margin between the two classes as given in fig. 2 
indicating the optimum hyper plane27 and the points that 
constrain the width of the margin are the support vectors. 
SVMs locate a hyper plane that maximizes the distance 
from the members of each class to the optimal hyper plane 
in the binary case.  
 
If there is a training data set containing m number of 
samples represented by {xi, yi} where (i =1, ... , m) x ε RN, 
N-dimensional space and    y ε {-1, +1} class label and the 
optimum hyper plane maximizes the margin between the 
classes. The hyper plane is defined as (w.xi + b = 0) given 
in fig. 3, where x is a point lying on the hyper plane, 
parameter w determines the orientation of the hyper plane 
in space, b is the bias that the distance of hyper plane from 
the origin. A separating hyper plane can be defined for two 
classes for the linearly separable case as: 
 
w . xi + b ≥ +1 for all y = +1                                    (1) 
 
w. xi + b ≤  -1 for all y = -1                                               (2) 
 
These inequalities can be combined into a single inequality: 
 
yi (w. xi + b ) – 1 ≥ 0              (3) 
 
The training data points defined by the functions w. xi + b = 
±1, are the support vectors and lie on these two hyper 
planes, which are parallel to the optimum hyper plane34. 



Disaster Advances                                                                                                                        Vol. 6 (1) January 2013 
 

(55) 

 

The classes are linearly separable, if a hyper plane exists 
and satisfies inequality constraints as in (3), with the 
margin between these planes is equal to 2/||w||34. Thus, the 
distance to the closest point is 2/||w|| and the optimum 
separating hyper plane can be found by minimizing ||w||2 

under the constraint (3). 
 

 
Fig.1: (a) Hyper planes for linearly separable data, (b) 

Optimum hyper plane and support vectors35 

 
Fig. 2: Support vectors and optimum hyper plane for 

the binary case of linearly separable data sets35 

 
Fig. 3: (a) Separation of nonlinear data sets  

(b) Generalization of the solution by introducing slack 
variable for nonlinear data35 

Determination of optimum hyper plane requires solving 
optimization function is given by: 
 
Min (0.5*||w||2 )              (4) 
subject to the constraints,  
 
yi (w. xi + b ) ≥ -1   and yi  ε {+1, -1}                     (5) 
 
Fig. 3 (a) illustrates that nonlinearly separable data is the 
case in various classification problems27 as in the 
classification of remotely sensed images using pixel 
samples. In such cases, data sets cannot be classified into 
two classes with a linear function in input space. The 
technique can be extended to allow for nonlinear decision 
surfaces, when it is not possible to have a hyper plane 
defined by linear equations on the training data.14,44 
Considering this, the optimization problem is replaced by 
introducing   slack variable [Fig. 3(b)]. 

2 r

i
i 1

|| w ||
min C

2 

 
  

 
                           (6) 

 
subject to constraints,  
 

i i i iy (w.x b) 1 , 0,i 1,..., N                  (7) 

where C is a penalty parameter or regularization constant . 
This parameter allows striking a balance between the two 
competing criteria of margin maximization and error 
minimization, whereas the slack variables 

i  indicates the 

distance of the incorrectly classified points from the 
optimal hyper plane. The larger is the C value, the higher is 
the penalty associated to misclassified samples.35  
 
Data mapped into a higher dimensional space (H) through 
nonlinear mapping functions (Ф). An input data point x is 
represented as Ф(x) in the high-dimensional space. The 
computation of [Ф(x).Ф(xi)] is reduced by using a kernel 
function and  the classification decision function would be:    

r

i i i
i

f (x) sign y K(x,x ) b
 

   
 
              (8) 

where for each of r training cases there is a vector (xi) 
representing the respective spectral response together with a 
class membership (yi). αi (i = 1,….., r) are Lagrange 
multipliers and K(x, xi) is the kernel function. The 
magnitude of αi is determined by the parameter34 and the 
kernel function enables the data points to spread in such a 
way that a linear hyper plane can be fitted19. The 
performance of SVMs varies depending on the choice of 
the kernel function and its parameters. Kernel functions 
used in SVMs are generally aggregated into four groups 
namely, linear, polynomial, radial basis function and 
sigmoid kernels.   
 
OpenModeller39 - a free and open source software was used 
for predicting the probable landslide areas. OpenModeller 
(http://openmodeller.sourceforge.net/) is a flexible, user 
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friendly, cross-platform environment and it includes 
facilities for reading landslide occurrence and 
environmental data, selection of environmental layers, 
creating a fundamental landslide prediction model and 
prediction with various environmental scenarios as shown 
in fig. 4. 

 
Fig. 4: Methodology used for landslide prediction in 

openModeller 
 

 
Figure 5: Uttara Kannada district, Karnataka, India 

 

Study area and data 
The Uttara Kannada district lies 74°9' to 75°10' east 
longitude and 13°55' to 15°31' north latitude, extending 
over an area of 10, 291 km2 in the mid-western part of 
Karnataka state (Fig. 5). It accounts for 5.37 % of the total 
area of the state with a population above 1.2 million46. This 
region has gentle undulating hills, rising steeply from a 
narrow coastal strip bordering the Arabian Sea to a plateau 
at an altitude of 500 m with occasional hills rising above 
600–860 m. This district with 11 taluks, can be broadly 

categorised into three distinct regions –– coastal lands 
(Karwar, Ankola, Kumta, Honnavar and Bhatkal taluks), 
mostly forested Sahyadrian interior (Supa, Yellapur, Sirsi 
and Siddapur taluks) and the eastern margin where the table 
land begins (Haliyal, Yellapur and Mundgod taluks). 
Climatic conditions range from arid to humid due to 
physiographic conditions ranging from plains, mountains to 
coast. 
 
Survey of India (SOI) topo sheets of 1:50000 and 1:250000 
scales were used to generate base layers – district and taluk 
boundaries, water bodies, drainage network etc. Field data 
were collected with a handheld GPS. Environmental data 
such as precipitation (rainfall) of wettest month and 
precipitation in the wettest quarter were downloaded from 
World Clim – Global Climate Data [http://www.worldcli-
m.org/bioclim].  
 
Other environmental layers used in the model were 
obtained from USGS Earth Resources Observation and 
Science (EROS) Center based Hydro1Kdatabase - 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Avail
able/ gtopo30/hydro/asia] which are as follows: 
 
i. Aspect describes the direction of maximum rate of 
change in the elevations or the slope direction. It is 
measured in positive integer degrees from 0 to 360, 
clockwise from north. Aspects of cells (pixels) of zero 
slope (flat areas) are assigned values of -1.  
 
ii. DEM is a digital representation of ground surface 
topography or terrain represented as a raster (a grid of 
squares) or as a triangular irregular network. DEMs are 
commonly built using remote sensing techniques or from 
land surveying. 
 
iii. Flow accumulation (FA) defines the number of pixels 
which flow into each downslope pixel. Since the pixel size 
of the HYDRO1k data set is 1 km, the flow accumulation 
value translates directly into upstream drainage areas in 
square kilometers. Values range from 0 at topographic 
highs to very large numbers (on the order of millions of 
square kilometers) at the mouths of large rivers. 
 
iv. Flow direction (FD) defines the direction of flow from 
each cell to its steepest down-slope neighbor derived from 
the hydrologically correct DEM. Values of flow direction 
vary from 1 to 255.  
 
v. Slope describes the maximum change in the elevations 
between each pixel and its eight neighbors expressed in 
integer degrees of slope between 0 and 90.  
 
vi. Compound Topographic Index (CTI) commonly referred 
to as the Wetness Index, is a function of the upstream 
contributing area and the slope of the landscape. It is 
calculated using the flow accumulation (FA) layer along 
with the slope as: 
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FA
CTI = ln

tan(slope)

 
 
 

            (9) 

In areas of no slope, a CTI value is obtained by substituting 
a slope of 0.001. This value is smaller than the smallest 
slope obtainable from a 1000 m data set with a 1 m vertical 
resolution. 
 
The global land cover change maps were obtained from 
Global Land Cover Facility, Land Cover Change 
http://glcf.umiacs.umd.edu/services/landcoverchange/landc
over.shtml; or http://www.landcover.org/services/land 
coverchange/landcover.shtml]. The spatial resolution of all 
the data were 1 km. Google Earth data 
(http://earth.google.com) served in pre and post 
classification process and validation of the results. 125 
landslide occurrence points of low, medium and high 
intensity were recorded using GPS from the field and 
published reports. 

 
Fig. 6: Probability distribution of the landslide prone 

areas 

Results and Discussion 
Precipitation of wettest month and wettest quarter of the 
year were used as different layers along with a set of seven 
other layers as mentioned earlier. Fig. 6 (a) and (b) indicate 
the landslide probability maps using GARP and SVM on 
precipitation of wettest month. The landslide occurrence 
points were overlaid on the probability maps to validate the 
prediction as shown in fig. 7. The GARP map had an 
accuracy of 92% and SVM map was 96% accurate with 
respect to the ground and Kappa values 0.8733 and 0.9083 
respectively. The corresponding ROC curves are shown in 
fig. 7 (a) and (b). Total area under curve (AUC) for fig. 8 

(a) is 0.87 and for fig. 8 (b) is 0.93. Figure 6 (c) and (d) are 
the landslide probability maps using GARP and SVM on 
precipitation of wettest quarter with accuracy of 91% and 
94% and Kappa values of 0.9014 and 0.9387 respectively. 
ROC curves in figure 8 (c) and (d) show AUC as 0.90 and 
0.94.  
 
Various measures of accuracy were used as per Fielding 
and Bell to assess the outputs. Table I presents the 
confusion matrix structure indicating true positives, false 
positives, false negatives and true negatives. Confusion 
matrices were generated for each of the 4 outputs (Table II) 
and different measures of accuracy such as prevalence, 
global diagnostic power, correct classification rate, 
sensitivity, specificity omission and commission error 
computed and listed as in table III.  

 
Fig. 7: Validation of the probability distribution of the 

landslide prone areas by overlaying landslide 
occurrence points 

 
Fig. 8: ROC curves for landslide prone maps (a) GARP 
(b) SVM on precipitation of wettest month; (c) GARP 

and (d) SVM on 
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Table 1 
Confusion Matrix 

 True 

Presence 

True 

Absence 

Predicted Presence A B 

Predicted Absence C D 

Key: A – True Positive, B – False Positive, C – False 
Negative, D – True Negative 
 
The results indicate that the output obtained from SVM 
using precipitation of the wettest month was best among the 
4 scenarios. It may be noted that the outputs from GARP 
for both the wettest precipitation month and quarter are 
close to the SVM in term of accuracy. One reason is that 
most of the areas have been predicted as probable landslide 
prone zones [indicated in red in fig. 6 (a) and (c)] with the 
highly undulating terrain consisting of steep slopes 
frequently exposed to landslides induced by rainfall. This 
was validated with the data collected from the field that 
showed overlap with the maximum number of landslide 
points occurring in the undulating terrain. This indicates 
that the region is more susceptible to landslides compared 
to north-eastern part of the district which has relatively flat 
terrain.  
 

 
Fig. 9: Landslide occurrence points in Kerala 

 
The exercise was repeated for another undulating terrain in 
the Western Ghats - Kerala state, India with the 
environmental layers along with 10 landslide occurrence 
field points as shown in fig. 9. The predicted output for 
precipitation in the wettest month is shown in fig. 10 and 
precipitation in the wettest quarter is shown in fig. 11 with 
an overall accuracy of 60%. The Kappa values for two 
cases were 0.966 and 0.965. The ROC curves are shown in 
fig. 12 (a) and (b) with 0.97 AUC for both the cases 
respectively. The confusion matrix and statistics are 
presented in table IV and V. The reason for low accuracy is 
due to lower field data collection (10 occurrence points) 

throughout the state. Also, the coarse resolution of the pixel 
has contributed for poor accuracy.  
 
However, the Kappa value and the AUC are high which 
indicate that the probability distribution of the predicted 
points falls well within the occurrence points.  The intensity 
of these landslide points may vary from low to medium to 
high. One potential limitation of the above data is their 
spatial resolution – 1 km. It is highly unlikely that landsli-
des of this magnitude can occur in the study area. However, 
given the environmental layers along with the occurrence 
points, the probable areas of occurrence can be mapped 
with great certainty. 

 
Fig. 10: Probability distribution of the landslide prone 

areas in Kerala using precipitation in the wettest month 
data 

 
Fig. 11: Probability distribution of the landslide prone 

areas in Kerala using precipitation in the wettest 
quarter data 
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Fig. 12: ROC curves for the predicted landslide prone 

maps of Kerala 
(a)using precipitation of the wettest month, (b) using 

precipitation of the wettest quarter 
 
The movement of a slope is complex and is induced or 
perturbed by many other factors besides rainfall such as 
groundwater table, soil moisture etc. which were not used 
in the prediction. It is known that there are accelerations of 
slope movements after intense rainfall, however, to what 
extent rainfall affects the slope movement remains 
unknown and the correlation between rainfall and the slope 
movement could be ambiguous in absence of detailed 
observations. Timely rainfall, soil moisture, grain-size, 
lithology, geological structure, seismological observations 
and the longer time intervals for which data are available 
can improve the accuracy of the model.  
 
Beyond their key role in identifying and mapping the 
landslides, the choice of the variables (environmental 
layers) used for the prediction is also closely involved. 
Results can be improved with additional supplementary 
data such as hydrological field data etc.  However, the 
results obtained in the current study are significant as most 
influential variables of landslide were used. 
 
Natural disasters have drastically increased over the last 
decades. National, state and local government including 
NGOs are concerned with the loss of human life and 
damage to property caused by natural disasters. The trend 
of increasing incidences of landslides occurrence is 
expected to continue in the next decades due to unplanned 
anthropogenic activities leading to large scale land cover 
changes, deforestation and increased regional precipitation 
in landslide-prone areas due to changing climatic patterns47. 
Modern technologies with prediction ability help to 
mitigate the effects of natural hazards including landslides. 
In fact, to ensure hazard free in mountainous regions, the 
development of urban facilities such as homes and new 
roads must consider geological and geotechnical factors. 
Therefore, it is desired to have a notion about the main 
factors controlling the slope instability, assessing its seve-
rity, discriminating areas with presence/absence of 
landslides, updating and interpreting landslide data and 
determining areas that are prone to landslides.  

 

Conclusion 
Landslides occur when masses of rock, earth or debris 
move down a slope.  Mudslides, debris flows or mudflows, 
are common type of fast-moving landslides that tend to 
flow in channels. These are caused by disturbances in the 
natural stability of a slope which is triggered by high 
intensity rains. Mudslides usually begin on steep slopes and 
develop when water rapidly collects in the ground and 
results in a surge of water-soaked rock, earth and 
debris. Causal factors may be either preparatory or 
triggering. Preparatory causes are factors which have made 
the slope potentially unstable. The triggering cause is the 
single event that finally initiated the landslide. Thus, causes 
combine to make a slope vulnerable to failure and the 
trigger finally initiates the movement. Thus a landslide is a 
complex dynamic system. This characteristically involves 
many different processes operating together, often with 
differing intensity during successive years. 
 
The primary criteria that influence landslides are 
precipitation intensity, slope, soil type, elevation, 
vegetation and temporal changes in land cover. The present 
study demonstrated the effectiveness of two pattern 
recognition techniques: Genetic Algorithm for Rule-set 
Prediction and Support Vector Machine. The landslide 
hazard prediction study conducted in Uttara Kannada and 
Kerala has shown that these techniques with small datasets 
can yield landslide susceptibility maps of significant 
predictive power. The efficiency of the model has been 
demonstrated by the successful validation. However, when 
the predicted features may have different immediate causes, 
one should carefully avoid including triggering factors 
among the predictor variables since they restrict the scope 
of the prediction map and convey often a poorly 
constrained time dimensions.  
 
The reliability of the susceptibility map fundamentally 
depends on the quality of the data and sample size apart 
from appropriately validation. The analysis showed that 
SVM applied on precipitation data of the wettest month 
with 96% accuracy was close to reality for Uttara Kannada 
district and GARP applied on precipitation data of the 
wettest quarter was more successful in identifying the 
landslide prone areas in Kerala. 
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Table 2 
Confusion matrix for GARP and SVM Outputs for Uttara Kannada 

 
Table 3 

Statistics of GARP and SVM Outputs for Uttara Kannada 
 

UTTARA 

KANNADA 

PREVALENCE 
(A+C)/N 

GLOBAL 

DIAGNOSTIC 

POWER 
(B+D)/N 

CORRECT 

CLASSIFICATION 

RATE 
(A+D)/N 

SENSITIVITY 
A/(A+C) 

 

SPECIFICITY 
D/(B+D) 

OMISSION 

ERROR 
C/(A+C) 

COMMISION 

ERROR 
B/(B+D) 

GARP WITH 

PRECIPITATION 

OF WETTEST 

MONTH   

 
- 

 
- 

 
0.96 

 
0.96 

 
- 

 
0.04 

 
- 

SVM WITH 

PRECIPITATION 

OF WETTEST 

MONTH   

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

GARP WITH 

PRECIPITATION 

OF WETTEST 

QUARTER 

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

SVM WITH 

PRECIPITATION 

OF WETTEST 

QUARTER 

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

* Key: A – True Positive, B – False Positive, C – False Negative, D – True Negative, N – Number of Samples. 

 
Table 4 

Confusion matrix for GARP Outputs for Kerala 
Kerala True 

presence 
True 

absence 
Number of 

usable presence 
Number of 

usable absence 
GARP with precipitation 
of wettest month   

Predicted 
Presence  

6 0  
10 

 
0 

Predicted 
Absence 

4 0 

GARP with precipitation 
of wettest Quarter 

Predicted 
Presence 

6 0  
 
10 

 
 
0 Predicted 

Presence 
4 0 

Table 5 

Uttara kannada True 
presence 

True absence Number of 
usable presence 

Number of 
usable absence 

GARP WITH 

PRECIPITATION OF 

WETTEST MONTH   

Predicted 
Presence  

120 0  
125 

 
0 

Predicted 
Absence 

5 0 

SVM WITH 

PRECIPITATION OF 

WETTEST MONTH   

Predicted 
Presence 

118 0  
125 

 
0 

Predicted 
Presence 

7 0 

GARP WITH 

PRECIPITATION OF 

WETTEST QUARTER 

Predicted 
Presence 

118 0  
125 

 
0 

Predicted 
Presence 

7 0 

SVM WITH 

PRECIPITATION OF 

WETTEST QUARTER 

Predicted 
Presence 

117 0  
125 

 
0 

Predicted 
Presence 

8 0 
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STATISTICS of GARP Outputs for Kerala 
Kerala Prevalence 

(A+C)/N 
Global 
diagnostic 
Power 
(B+D)/N 

Correct 
Classification 
Rate 
(A+D)/N 

Sensitivity 
A/(A+C) 
 

Specificity 
D/(B+D) 

Omission 
Error 
C/(A+C) 

Commision 
Error 
B/(B+D) 

GARP with 
precipitation of 
wettest month   

 
- 

 
- 

 
0.6 

 
0.6 

 
- 

 
0.4 

 
- 

GARP with 
precipitation of 
wettest Quarter 

 
- 

 
- 

 
0.6 

 
0.6 

 
- 

 
0.4 

 
- 

     * Key: A – True Positive, B – False Positive, C – False Negative, D – True Negative, N – Number of Samples. 
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