

Bharath H Aithal [CST@IISc], Uttam Kumar [CST, MS@IISc] & T V Ramachandra [CES,CST,CiSTUP@IISc]

E mail: cestvr@cistup.iisc.ernet.in

Today's Presentation

Introduction

- Study area and Data
- Method
- Results and Discussion
- Conclusion

Urbanisation: Overview

- The urban population in India is growing at around 2.3% per annum.
- An increased urban population in response to the growth in urban areas is mainly due to migration.
- There are 35 urban cities having a population of more than one million in India (in 2001).

Urbanisation

Urbanisation is the growth in response to many factors –

- Economic,
- Social,
- Political,
- Physical geography of an area, etc.

Urbanisation types

There are two forms of urbanisation:

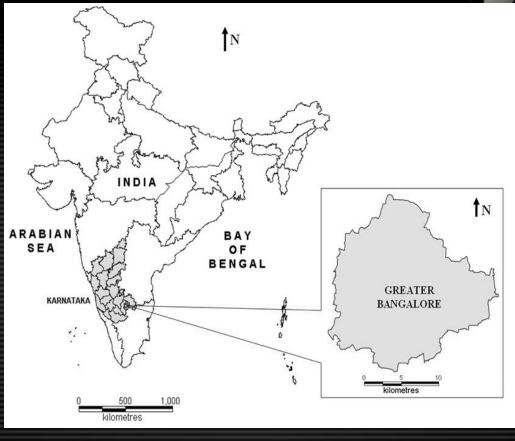
- Planned in the form of townships. Unplanned or organic [Outskirts, Peri urban]
- leads to sprawl
- Happens when two towns are connected through roads, infrastructure improvements, etc.,

Urban sprawl: Characteristics

- Dispersed development in the outskirts.
- Leads to land use and land cover change.
- Devoid of any infrastructure.
- Left out in Government surveys [e.g. national population census].
- Understanding this kind of growth is very crucial for regional planning.
 - Requires temporal and spatial data to understand the urban dynamics
 - Remote sensing data provides spatial data on temporal scale (since 1970's)

Urban sprawl: Quantification and Mapping

➢ Remote sensing data (IKONOS, IRS, Landsat, MODIS) provides spatial data (on temporal scale).


These data are in multi-resolution

Spatial (1m, 4m, 5.8m, 23.5 m, 30m , 250,m....1Km)
Spectral [B, G, R, NIR, Superspectral (MODIS), Hyperspectral (Hyperion)]
Temporal (1 day, 8 days, 21 days, 24 days)

Analysis of these data (multi resolution) help in capturing urban dynamics.

➢ Mapping landscapes on temporal scale provide an opportunity to inventory and also to understand changes.

Greater Bangalore, India-Study area

• Area - 741 sq. km.

8

- Grown spatially more than 10 times since 1949 to 2006 (from 69 km² \approx 700 km²).
- Fifth largest metropolis in India.

Year ↓	Class →	Built up	Vegetation	Water	Others
1973	На	5448	46639	2324	13903
	%	7.97	68.27	3.40	20.35
2006	На	29535	19696	1073	18017
	%	43.23	28.83	1.57	26.37

466% increase in built up area from 1973 to 2006.

54% decline in area of water bodies.

8 65% decline in vegetation.

1973 – 2006 Land use change 13°08'20" 770 27' 50'' Ν ¹⁰46, 49, 1973 2006 12° 49' 59.75 Built up Vegetation Water Bodies Others 10

Multi-resolution data

- High Spatial resolution with low Spectral resolution (very expensive).
- Low Spatial resolution with high Spectral resolution (not expensive, some are in public domain as at GLCF website).
- Fusion of these data provide high spatial with high spectral resolution – economical.

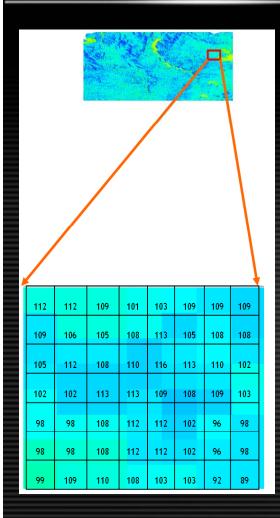
- Fusion permits identification of objects on the Earth's surface,
 - especially useful in urban areas because the characteristic of urban objects are determined not only by their spectra but also by their structure.
- <u>Objective</u>: to optimise multi-resolution data through fusion
 - to analyse and understand landscape dynamics in Greater Bangalore.

Data used

- Low spatial with Multispectral Data (4m)
 - (MSS IKONOS)
- High Spatial with Single Spectral Data (1m)

(PANCHROMATIC - IKONOS)

- Ancillary Data
 - Landsat and IRS MSS bands
 - Google Earth images
 - Survey of India Toposheets


Method

- Adoption of SFIM (Smoothing Filter-based Intensity Modulation) for fusion of co-registered multi-resolution images.
- SFIM (Liu, 2000) is a general spectral preserve image fusion technique applicable to co-registered multi -resolution images .
 - based on a simplified solar radiation and land surface reflection model.

Liu, J. U., (2000), Smoothing Filter-based Intensity Modulation: a spectral preserve image fusion technique for improving spatial details, International Journal of Remote Sensing, 21 (18):3461-3472.

Solar radiation and land surface reflection model

DN(λ)=r(λ) E(λ)(1)

where DN is digital number, λ – Band, E(λ) - irradiance, r(λ) - spectral reflectance .

Let

 $DN(\lambda)_{low}$ - DN value in a lower resolution image of spectral band λ ,

 $DN(\gamma)_{high}$ - DN value of the corresponding pixel in a higher resolution image of spectral band γ

and the two images are taken in similar solar illumination conditions,

$$DN(\lambda)_{\text{low}} = r(\lambda)_{\text{low}} E(\lambda)_{\text{low}} \dots (2)$$

$$DN(\gamma)_{\text{high}} = r(\gamma)_{\text{high}} E(\gamma)_{\text{high}} \dots (3)$$

Technique - SFIM

Defined as,

$$DN(\lambda)_{sfim} = DN(\lambda)_{low} DN(\gamma)_{high} / DN(\gamma)_{mean}$$

 $r(\lambda)_{low} E(\lambda)_{low} r(\gamma)_{high} E(\gamma)_{high}$

 $r(\gamma)_{low} E(\gamma)_{low}$

If the two images are quantified to the same DN range and with no significant spectral variation within the neighbourhood, we can presume $E(\lambda)_{low} \approx E(\gamma)_{low}$ $r(\gamma)_{low} = r(\gamma)_{high}$, for any given resolution because the both vary with topography in the same way.

=
$$r(\lambda)_{low} E(\gamma)_{high}$$

In General SFIM can be written as

$$IMAGE_{\rm SFIM} = \frac{IMAGE_{\rm low}IMAGE_{\rm high}}{IMAGE_{\rm mean}}$$

where,

- IMAGE $_{low}$ is a pixel of a lower resolution image co- registered to a higher resolution image of IMAGE $_{high}$
- IMAGE $_{mean}$ a smoothed pixel of IMAGE $_{high}$ using averaging filter over a neighbourhood equivalent to the actual resolution of IMAGE $_{low}$

Technique – RGB-HIS

RGB bands are transformed to HIS (Carper et al., 1990)

(hue – dominant or average wavelength of light contributing to a colour, intensity – total brightness of the colour, saturation – purity of colour relative to gray)

$$\begin{pmatrix}
DN_{PAN}^{l} \\
V_{1} \\
V_{2}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & 0
\end{pmatrix} \begin{pmatrix}
DN_{MS1}^{l} \\
DN_{MS2}^{l} \\
DN_{MS3}^{l}
\end{pmatrix}$$

where DN'_{MS1} , DN'_{MS2} , DN'_{MS3} are the low resolution bands

 V_1 , V_2 are the intermediate variables.

Carper, W. J., Lillesand, T. M., and Kieffer, R. W., 1990, The use of Intensity-Hue-Saturation transformations for merging SPOT Panchromatic and multispectral image data. *Photogrammetric Engineering and Remote Sensing*, *56*, *459-467*.

Technique – RGB-HIS

$$I = DN_{PAN}^{l} \quad H = \tan^{-1}\left(\frac{V_2}{V_1}\right) \quad S = \sqrt{V_1^2 + V_2^2}$$
• Is replaced with high spatial resolution image – DN^t_{PAN} (contrast stretched to 1) which is to be integrated.

$$DN_{new_image} = \frac{\sigma_{ref}}{\sigma_{odd}} (DN_{old} - \mu_{old}) + \mu_{ref}$$

$$\left(\begin{array}{c} DN_{MS1}^{h} \\ DN_{MS2}^{h} \\ DN_{MS3}^{h} \end{array} \right) = \left(\begin{array}{c} 1 & -\frac{1}{\sqrt{6}} & \frac{3}{\sqrt{6}} \\ 1 & -\frac{1}{\sqrt{6}} & -\frac{3}{\sqrt{6}} \\ 1 & \frac{2}{\sqrt{6}} & 0 \end{array} \right) \left(\begin{array}{c} DN_{PAN}^{h} \\ V_2 \end{array} \right)$$
where DN^{h}_{MS1} , DN^{h}_{MS2} , DN^{h}_{MS3} are the fused high resolution multispectral bands.

Technique – Brovey Transform (Pohl, 1996)

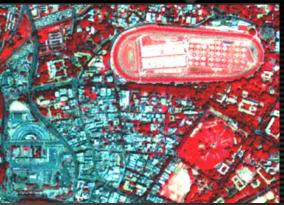
$$\begin{pmatrix} DN_{MS1}^{h} \\ DN_{MS2}^{h} \\ DN_{MS3}^{h} \end{pmatrix} = \begin{pmatrix} DN_{MS1}^{l} \\ DN_{MS2}^{l} \\ DN_{MS3}^{l} \end{pmatrix} + \begin{pmatrix} DN_{PAN}^{h} - DN_{PAN}^{l} \end{pmatrix} \begin{pmatrix} \frac{DN_{MS1}^{l}}{DN_{PAN}^{l}} \\ \frac{DN_{MS2}^{l}}{DN_{PAN}^{l}} \\ \frac{DN_{MS3}^{l}}{DN_{PAN}^{l}} \end{pmatrix}$$

where

$$DN_{PAN}^{l} = (1/3)(DN_{MS1}^{l} + DN_{MS2}^{l} + DN_{MS3}^{l})$$

 DN'_{MS1} , DN'_{MS2} , DN'_{MS3} are the low resolution bands DN^{h}_{MS1} , DN^{h}_{MS2} , DN^{h}_{MS3} are the fused high resolution multispectral bands

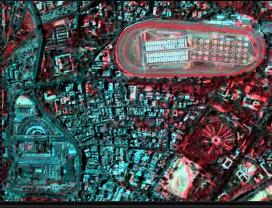
Pohl, C., 1996, Geometric aspects of multisensor image fusion for topographic map updating in the humid Tropics. *ITC publication No. 39 (Enschede: ITC), ISBN 90 6164 121 7.*


Results and Discussion

SFIM, RGB-HIS, Brovey Output -

Based on the fusion of IKONOS MSS and PAN data

IKONOS PAN 1m



Original bands at 4m

Fused bands at 1m

SFIM

Brovey

Performance analysis

Quantitatively - Correlation Coefficient.

Fusion techniques	Original Band 2	Original Band 3	Original Band 4
HIS	0.22	0.32	0.17
Brovey	0.99	0.98	0.67
SFIM	0.96	0.98	0.97

Universal Image Quality Index (UIQI) (Wang et al., 2005)

$$Q = \frac{\sigma_{AB}}{\sigma_A \sigma_B} \cdot \frac{2\mu_A \mu_B}{\mu_A^2 + \mu_B^2} \cdot \frac{2\sigma_A \sigma_B}{\sigma_A^2 + \sigma_B^2}$$

22

The 1st component is the CC for A (original band) and B (fused). The 2nd component measures how close the mean DN of A and B is. The 3rd measures the similarity between A and B. Range is [-1, 1]. If two images are identical, Q = 1.

Fusion techniques	Original Band 2	Original Band 3	Original Band 4
HIS	0.17	0.27	0.11
Brovey	1.00	0.97	0.63
SFIM	0.97	0.97	0.97

Wang, Z., Ziou, D., Armenakis, C., Li, D., and Li, Q., (2005), A Comparative Analysis of Image Fusion Methods. IEEE Transactions of Geoscience and Remote Sensing, vol. 43 (6), pp. 1391-1402.

Conclusion

- SFIM compared to HIS and Brovey transform fusion techniques - Improves spatial details with the fidelity to the image spectral properties and contrast.
- This technique can be used to perform Image fusion for better visualisation of sprawl regions.
- However, the SFIM is not applicable for fusing images that are fundamentally different in illumination conditions or physical properties (optical and radar images).

Acknowledgement

- Grateful to Geoeye Foundation, USA for providing the IKONOS spatial data.
- ISRO-IISc Space Technology Cell, Indian Institute of Science for the financial support.
- Department of Electrical Engineering, University Visvesvaraya
 College of Engineering, Bangalore facilitated this study.

E-version of this presentation and paper at http://ces.iisc.ernet.in/energy

Open source GIS

http://ces.iisc.ernet.in/foss http://ces.iisc.ernet.in/grass

