

Fusion of Multi Resolution Remote Sensing Data for Urban Sprawl Analysis

**Bharath H Aithal [CST@IISc],
Uttam Kumar [CST, MS@IISc] &
T V Ramachandra [CES,CST,C/STUP@IISc]**

E mail: cestvr@cistup.iisc.ernet.in

Today's Presentation

- Introduction
- Study area and Data
- Method
- Results and Discussion
- Conclusion

Urbanisation: Overview

- The urban population in India is growing at around 2.3% per annum.
- An increased urban population in response to the growth in urban areas is mainly due to migration.
- There are 35 urban cities having a population of more than one million in India (in 2001).

Urbanisation

Urbanisation is the growth in response to many factors –

- Economic,
- Social,
- Political,
- Physical geography of an area, etc.

Urbanisation types

There are two forms of urbanisation:

- Planned in the form of townships.
- Unplanned or organic [Outskirts, Peri urban]
 - leads to sprawl
- Happens when two towns are connected through roads, infrastructure improvements, etc.,

Urban sprawl: Characteristics

- ❖ Dispersed development in the outskirts.
- ❖ Leads to land use and land cover change.
- ❖ Devoid of any infrastructure.
- ❖ Left out in Government surveys [e.g. national population census].
- ❖ Understanding this kind of growth is very crucial for regional planning .
 - ❖ Requires temporal and spatial data to understand the urban dynamics
 - ❖ Remote sensing data - provides spatial data on temporal scale (since 1970's)

Urban sprawl: Quantification and Mapping

- Remote sensing data (IKONOS, IRS, Landsat, MODIS) provides spatial data (on temporal scale).
- These data are in multi-resolution
 - Spatial (1m, 4m, 5.8m, 23.5 m, 30m , 250,m.....1Km)
 - Spectral [B, G, R, NIR, Superspectral (MODIS), Hyperspectral (Hyperion)]
 - Temporal (1 day, 8 days, 21 days, 24 days)
- Analysis of these data (multi resolution) help in capturing urban dynamics.
- Mapping landscapes on temporal scale provide an opportunity to inventory and also to understand changes.

Greater Bangalore, India-Study area

- Area - 741 sq. km.
- Grown spatially more than 10 times since 1949 to 2006 (from $69 \text{ km}^2 \approx 700 \text{ km}^2$).
- Fifth largest metropolis in India.

Growth of Bangalore – Consequent land use changes (1973 - 2006)

Year ↓	Class →	Built up	Vegetation	Water	Others
1973	Ha	5448	46639	2324	13903
	%	7.97	68.27	3.40	20.35
2006	Ha	29535	19696	1073	18017
	%	43.23	28.83	1.57	26.37

- 466% increase in built up area from 1973 to 2006.
- 54% decline in area of water bodies.
- 65% decline in vegetation.

1973 – 2006 Land use change

Multi-resolution data

- High Spatial resolution with low Spectral resolution (very expensive).
- Low Spatial resolution with high Spectral resolution (not expensive, some are in public domain as at GLCF website).
- Fusion of these data provide high spatial with high spectral resolution - economical.

Fusion

- Fusion permits identification of objects on the Earth's surface,
 - especially useful in urban areas because the characteristic of urban objects are determined not only by their spectra but also by their structure.
- Objective: to optimise multi-resolution data through fusion
 - to analyse and understand landscape dynamics in Greater Bangalore.

Data used

- Low spatial with Multispectral Data (4m)
(MSS - IKONOS)
- High Spatial with Single Spectral Data (1m)
(PANCHROMATIC - IKONOS)
- Ancillary Data
 - Landsat and IRS MSS bands
 - Google Earth images
 - Survey of India Toposheets

Method

- Adoption of SFIM (Smoothing Filter-based Intensity Modulation) for fusion of co-registered multi-resolution images.
- SFIM (Liu, 2000) is a general spectral preserve image fusion technique applicable to co-registered multi -resolution images .
 - based on a simplified solar radiation and land surface reflection model.

Liu, J. U., (2000), Smoothing Filter-based Intensity Modulation: a spectral preserve image fusion technique for improving spatial details, International Journal of Remote Sensing, 21 (18):3461-3472.

Solar radiation and land surface reflection model

$$DN(\lambda) = r(\lambda) E(\lambda) \dots \dots \dots (1)$$

where DN is digital number, λ – Band, $E(\lambda)$ - irradiance, $r(\lambda)$ - spectral reflectance .

Let

$DN(\lambda)_{low}$ - DN value in a lower resolution image of spectral band λ ,

$DN(\gamma)_{high}$ - DN value of the corresponding pixel in a higher resolution image of spectral band γ

and the two images are taken in similar solar illumination conditions,

$$DN(\lambda)_{low} = r(\lambda)_{low} E(\lambda)_{low} \dots \dots \dots (2)$$

$$DN(\gamma)_{high} = r(\gamma)_{high} E(\gamma)_{high} \dots \dots \dots (3)$$

Technique - SFIM

Defined as,

$$DN(\lambda)_{sfim} = DN(\lambda)_{low} \frac{DN(\gamma)_{high}}{DN(\gamma)_{mean}}$$

$$= \frac{r(\lambda)_{low} E(\lambda)_{low} r(\gamma)_{high} E(\gamma)_{high}}{r(\gamma)_{low} E(\gamma)_{low}}$$

If the two images are quantified to the same DN range and with no significant spectral variation within the neighbourhood, we can presume $E(\lambda)_{low} \approx E(\gamma)_{low}$ $r(\gamma)_{low} = r(\gamma)_{high}$, for any given resolution because the both vary with topography in the same way.

$$= r(\lambda)_{low} E(\gamma)_{high} \quad \dots \dots \dots \quad (4)$$

- In General SFIM can be written as

$$IMAGE_{SFIM} = \frac{IMAGE_{low}IMAGE_{high}}{IMAGE_{mean}}$$

where,

- $IMAGE_{low}$ is a pixel of a lower resolution image co- registered to a higher resolution image of $IMAGE_{high}$
- $IMAGE_{mean}$ a smoothed pixel of $IMAGE_{high}$ using averaging filter over a neighbourhood equivalent to the actual resolution of $IMAGE_{low}$

Technique – RGB-HIS

- RGB bands are transformed to HIS (Carper et al., 1990)

(hue – dominant or average wavelength of light contributing to a colour,
intensity – total brightness of the colour,
saturation – purity of colour relative to gray)

$$\begin{pmatrix} DN_{PAN}^l \\ V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} DN_{MS1}^l \\ DN_{MS2}^l \\ DN_{MS3}^l \end{pmatrix}$$

where $DN_{MS1}^l, DN_{MS2}^l, DN_{MS3}^l$ are the low resolution bands
 V_1, V_2 are the intermediate variables.

Carper, W. J., Lillesand, T. M., and Kieffer, R. W., 1990, The use of Intensity-Hue-Saturation transformations for merging SPOT Panchromatic and multispectral image data. *Photogrammetric Engineering and Remote Sensing*, 56, 459-467.

Technique – RGB-HIS

$$I = DN_{PAN}^l \quad H = \tan^{-1} \left(\frac{V_2}{V_1} \right) \quad S = \sqrt{V_1^2 + V_2^2}$$

- *I is replaced with high spatial resolution image – $DN_{PAN}^{h'}$ (contrast stretched to I) which is to be integrated.*

$$DN_{new_image} = \frac{\sigma_{ref}}{\sigma_{old}} (DN_{old} - \mu_{old}) + \mu_{ref}$$

$$\begin{pmatrix} DN_{MS1}^h \\ DN_{MS2}^h \\ DN_{MS3}^h \end{pmatrix} = \begin{pmatrix} 1 & \frac{-1}{\sqrt{6}} & \frac{3}{\sqrt{6}} \\ 1 & \frac{-1}{\sqrt{6}} & \frac{-3}{\sqrt{6}} \\ 1 & \frac{2}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} DN_{PAN}^{h'} \\ V_1 \\ V_2 \end{pmatrix}$$

where DN_{MS1}^h , DN_{MS2}^h , DN_{MS3}^h are the fused high resolution multispectral bands.

Technique – Brovey Transform

(Pohl, 1996)

$$\begin{pmatrix} DN_{MS1}^h \\ DN_{MS2}^h \\ DN_{MS3}^h \end{pmatrix} = \begin{pmatrix} DN_{MS1}^l \\ DN_{MS2}^l \\ DN_{MS3}^l \end{pmatrix} + (DN_{PAN}^h - DN_{PAN}^l) \begin{pmatrix} \frac{DN_{MS1}^l}{DN_{PAN}^l} \\ \frac{DN_{MS2}^l}{DN_{PAN}^l} \\ \frac{DN_{MS3}^l}{DN_{PAN}^l} \end{pmatrix}$$

where

$$DN_{PAN}^l = (1/3)(DN_{MS1}^l + DN_{MS2}^l + DN_{MS3}^l)$$

$DN_{MS1}^l, DN_{MS2}^l, DN_{MS3}^l$ are the low resolution bands

$DN_{MS1}^h, DN_{MS2}^h, DN_{MS3}^h$ are the fused high resolution multispectral bands

Pohl, C., 1996, Geometric aspects of multisensor image fusion for topographic map updating in the humid Tropics. *ITC publication No. 39* (Enschede: ITC), ISBN 90 6164 121 7.

Results and Discussion

- SFIM, RGB-HIS, Brovey Output -
 - Based on the fusion of IKONOS MSS and PAN data

IKONOS PAN 1m

Original bands at 4m

Fused bands at 1m

SFIM

RGB-HIS

Brovey

Performance analysis

- Quantitatively - Correlation Coefficient.

Fusion techniques	Original Band 2	Original Band 3	Original Band 4
HIS	0.22	0.32	0.17
Brovey	0.99	0.98	0.67
SFIM	0.96	0.98	0.97

- Universal Image Quality Index (UIQI) (Wang et al., 2005)

$$Q = \frac{\sigma_{AB}}{\sigma_A \sigma_B} \cdot \frac{2 \mu_A \mu_B}{\mu_A^2 + \mu_B^2} \cdot \frac{2 \sigma_A \sigma_B}{\sigma_A^2 + \sigma_B^2}$$

The 1st component is the CC for A (original band) and B (fused).
The 2nd component measures how close the mean DN of A and B is.
The 3rd measures the similarity between A and B.
Range is [-1, 1]. If two images are identical, Q = 1.

Fusion techniques	Original Band 2	Original Band 3	Original Band 4
HIS	0.17	0.27	0.11
Brovey	1.00	0.97	0.63
SFIM	0.97	0.97	0.97

Wang, Z., Ziou, D., Armenakis, C., Li, D., and Li, Q., (2005), A Comparative Analysis of Image Fusion Methods. IEEE Transactions of Geoscience and Remote Sensing, vol. 43 (6), pp. 1391-1402.

Conclusion

- SFIM compared to HIS and Brovey transform fusion techniques - Improves spatial details with the fidelity to the image spectral properties and contrast.
- This technique can be used to perform Image fusion for better visualisation of sprawl regions.
- However, the SFIM is not applicable for fusing images that are fundamentally different in illumination conditions or physical properties (optical and radar images).

Acknowledgement

- Grateful to Geoeye Foundation, USA for providing the IKONOS spatial data.
- ISRO-IISc Space Technology Cell, Indian Institute of Science for the financial support.
- Department of Electrical Engineering, University Visvesvaraya College of Engineering, Bangalore facilitated this study.

E-version of this presentation and paper at
<http://ces.iisc.ernet.in/energy>

Open source GIS
<http://ces.iisc.ernet.in/foss>
<http://ces.iisc.ernet.in/grass>

