References
- R. O. Duda, P. E. Hart and D. G. Stork, “Pattern Classi-fication,” 2nd Edition, A Wiley-Interscience Publication, Hoboken, 2000.
- M. K. Arora and S. Mathur, “Multi-Source Classification Using Artificial Neural Network in Rugged Terrain,” Geocarto International, Vol. 16, No. 3, 2001, pp. 37-44. doi:10.1080/10106040108542202
- R. M. Rao and M. K. Arora, “Overview of Image Proc-essing,” In: P. K. Varshney and M. K. Arora, Ed., Ad-vanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, Springer-Verlag, Berlin, 2004, pp. 51-85.
- G. Simone, A. Farina, F. C. Morabito, S. B. Serpico and L. Bruzzone, “Image Fusion Techniques for Remote Sensing Applications,” Information Fusion, Vol. 3, No. 1 2002, pp. 3-15. doi:10.1016/S1566-2535(01)00056-2
- J. D. Hurd, E. H. Wilson, S. G. Lammey and D. L. Civco, “Characterization of Forest Fragmentation and Urban Sprawl Using Time Sequential Landsat Imagery,” ASPRS 2001 Annual Convention, St. Louis, 23-27 April 2001.
- M. G. Turner, “Landscape Ecology: The Effect of Pattern on Process,” Annual Review of Ecology and Systematics, Vol. 20, 1989, pp. 171-197. doi:10.1109/TGRS.2005.846874
- Z. Wang, D. Ziou, C. Armenakis, D. Li and Q. Li, “A Comparative Analysis of Image Fusion Methods,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 6, 2005, pp. 1391-1402. doi:10.1109/TGRS.2005.846874
- T. M. Lillesand and R. W. Kiefer, “Remote Sensing and Image Interpretation,” 4th Edition, John Wiley and Sons, New York, 2002.
- M, E. Hodgson, “Reducing the Computational Require-ments of the Minimum-Distance Classifier,” Remote Sensing of Environment, Vol. 25, No. 1, 1998, pp. 117-128. doi:10.1016/0034-4257(88)90045-4
- M. Wölfel and H. K. Ekenel, “Feature Weighted Maha-lanobis Distance: Improved Robustness for Gaussian Classifiers,” 13th European Signal Processing Confer-ence, September 2005, Turkey. http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr1853.pdf.
- C.-C. Hung and B.-C. Kuo, “Multispectral Image Classi-fication Using Rough Set Theory and the Comparison with Parallelepiped Classifier,” IEEE International Geo-science and Remote Sensing Symposium, 6-11 July 2008, Boston, pp. 2052-2055
- R. A. Schowengerdt, “Remote Sensing: Models and Methods for Image Processing,” 2nd Edition, Academic Press, San Diego, 1997.
- A. S. Mazer, M. Martin, M. Lee and J. E. Solomon, “Im-age Processing Software for Imaging Spectrometry Data Analysis,” Remote Sensing of Environment, Vol. 24, No. 1, 1988, pp. 201-210. doi:10.1016/0034-4257(88)90012-0
- D. R. Scott, “Effects of Binary Encoding on Pattern Rec-ognition and Library Matching of Spectral Data, Che- mometrics and Intelligent Laboratory Systems, Vol. 4, No. 1, 1998, pp. 47-63. doi:10.1016/0169-7439(88)80012-1
- D. Lu, P. Mausel, E. Brondizio and E. Moran, “Change Detection Techniques,” International Journal of Remote Sensing, Vol. 25, No. 12, 2004, pp. 2365-2407. doi:10.1080/0143116031000139863
- T. Fung and E. LeDrew, “Application of Principal Com-ponent Analysis for Change Detection,” Photogrammet-ric Engineering and Remote Sensing, Vol. 53, No. 12, 1987, pp. 1649-1658
- R. D. Macleod and R. G. Congalton, “A Quantitative Comparison of Change-Detection Algorithms for Moni-toring Eelgrass from Remotely Sensed Data,” Photo-grammetric Engineering and Remote Sensing, Vol. 64,
- H. I. Cakir, K. Khorram, S. A. C. Nelson, “Correspon-dence Analysis for Detecting Land Cover Change,” Re-mote Sensing of Environment, Vol. 102, No. 3-4, 2006, pp. 306-317. doi:10.1016/j.rse.2006.02.023
- J. G. Lyon, D. Yuan, R. S. Lunetta and C. D. Elvidge, “A Change Detection Experiment Using Vegetation Indices,” Photogrammetric Engineering and Remote Sensing, Vol. 64, No. 2, 1998, pp. 143-150.
- J. R. Jensen, “Introductory Digital Image Processing: A Remote Sensing Perspective,” Prentice-Hall, Upper Sad-dle River, 2004, pp. 467-494
- K. J. Riitters, R. O’ Neill, J. D. Wickham, B. Jones and E. Smith, “Global-Scale Patterns of Forest Fragmentation,” Conservation Ecology, Vol. 4, No. 2, 2000.
- J. E. Vogelmann, “Assessment of Forest Fragmentation in Southern New England Using Remote Sensing and Geographic Information System Technology,” Conserva-tion Biology, Vol. 9, No. 2, pp. 439-449. doi:10.1046/j.1523-1739.1995.9020439.x
- J. D. Wickham and K. B. Jones, K. H. Ritters, T. G. Wade and R. V. O’Neill, “Transition in Forest Fragmen-tation: Implications for Restoration Opportunities at Re-gional Scales,” Landscape Ecology, Vol. 14, No. 2, 1999, pp. 137-145. doi:10.1023/A:1008026129712
- A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data,” Prentice Hall, Englewood Cliffs, 1988.
- PCI Geomatics Corporation, ISOCLUS-Isodata Cluster-ing Program. http://www. pcigeomatics.com/cgi-bin/pcihlp/ISOCLUS
- J. A. Richards, “Remote Sensing Digital Image Analysis,” Springer-Verlag, Berlin, 1986, pp. 206-225
- J. B. Campbell, “Introduction to Remote Sensing,” Taylor and Francis, New York, 2002
- T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition Letters, Vol. 27, No. 8, 2006, pp. 861-874. doi:10.1016/j.patrec.2005.10.010
- A. P. Bradley, “The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algo-rithms,” Pattern Recognition, Vol. 30, No. 7, 1997, pp. 1145-1159. doi:10.1016/S0031-3203(96)00142-2
- J. Gao, H. F. Chen, Y. Zhang and Y. Zha, “Knowl-edge-Based Approaches to Accurate Mapping of Man-groves from Satellite Data,” Photogrammetric Engineer-ing & Remote Sensing, Vol. 70, No. 12, 2004, pp. 1241-1248
- D. B. Hester, H. I. Cakir, S. A. C. Nelson and S. Khorram, “Per-pixel Classification of High Spatial Resolution Sat-ellite Imagery for Urban Land-cover Mapping,” Photo-grammetric Engineering & Remote Sensing, Vol. 74, No. 4, 2008, pp. 463-471
- M. Song, D. L. Civco and J. D. Hurd, “A Competitive Pixel-Object Approach for Land Cover Classification,” International Journal of Remote Sensing, Vol. 26, No. 22, 2005, pp. 4981-4997. doi:10.1080/01431160500213912
- K. McGarigal, S. A. Cushman, M. C. Neel and E. Ene, “FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps,” 2002
.
|