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Abstract

Inventorying, mapping and monitoring landscape dynamics is essential for the sustainable management of natural resources 
including land and water. This work uses the temporal remote sensing data (1982, 1989, 2000 and 2007) for understanding 
landscape dynamics of Mandhala watershed in an ecologically fragile Himalayan region. Changes in land use and land cover 
are studied through established change detection techniques such as principal component analysis, correspondence analysis 
and NDVI based image differencing. Changes in forest land use are characterized by developing a forest fragmentation model 
involving various spatial metrics. The forest fragmentation and landscape metrics illustrate an increase in patch forests after 
2000 and decline in the interior dense forest (90.4% to 33.4%) suggesting immediate policy interventions to restore the degraded 
landscape which had telling influence on local ecology, biodiversity and hydrology.
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1. Introduction

Land use and Land cover (LULC) information is a vital input 
for various developmental, environmental and resource 
planning applications at regional as well as global scale 
process models. LULC dynamics are analysed through 
changes in the state of an object or phenomenon by observing 
it at different times (Singh, 1989). Timely and accurate 
change detection of natural resources constitutes the 
foundation for greater understanding of the relationships and 
interactions between human and natural phenomena. It 
enables monitoring temporal dynamics of spatial aspects 
involving diverse ecosystems, forest changes, etc. 
Furthermore, remote sensing data pertaining to LULC 
provide spatio-temporal information of agricultural crops, 
wastelands, seasonal dynamics of wetlands/surface water 

bodies, forest, vegetation etc. which helps in analyzing 
reliably the landscape dynamics (Kandrika and Roy, 2008).  

Land use (LU) change can be obtained from multi satellite 
sensor data (spatio temporal data) using pre-classification or 
post-classification and pattern recognition algorithms (Duda 
et al., 2005). These classification algorithms can be either 
supervised, unsupervised, hybrid of soft classification 
techniques. In addition to the normal routine methods of 
estimating the LULC change in a landscape, landscape 
metrics or spatial metrics are being used in recent times 
particularly in landscape ecology (Gustafson, 1998). Spatial 
metrics are spatially consistent and provide detailed 
information about structures and patterns (Herold et al., 
2005) and are being used to quantify shape and pattern of 
vegetation in natural landscape based on categorical, patch-
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based representation at a landscape, class and patch level 
(McGarigal and Marks, 1995). Computation of spatial 
metrics using multi-scale or temporal datasets, aids in 
assessing the changes in the degree of spatial heterogeneity. 
Thus, the information derived from several change detection 
techniques along with spatial metrics on temporal scales 
help in understanding the change phenomenon that benefits 
the planning and management towards a sustainable use of 
land resources. In this context, the present paper analyses the 
spatio-temporal landscape dynamics of Mandhala, a medium 
altitude, temperate watershed in Himachal Pradesh, India. 
Main objectives are to understand landscape dynamics 
through (i) LULC analysis using temporal remote sensing 
data (1972, 1989, 2000 and 2007) and (ii) computation of 
spatial metrics including forest fragmentation indices.

2. Tools and Techniques

This includes fusion of multi-resolution data (of different 
spectral and spatial resolutions), classification of data to 
derive land use parameters, fragmentation analysis to 
understand the process of fragmentation at the landscape 
level and computation of spatial metrics to capture landscape 
dynamics.

2.1. Image Fusion

Earth observation satellites provide data at different spatial, 
spectral and temporal resolutions. Satellites, such as IRS 
(LISS III) have a high spatial resolution panchromatic (PAN) 
band (5.8 m) and low resolution multispectral (MS) bands 
(G, R, NIR of 23.5 m) in order to support both spectral and 
best spatial resolution while minimising on-board data 
handling needs (Cakir and Khorram, 2008). For many 
applications, the fusion of these data from multiple sensors 
aids in delineating objects with comprehensive information 
due to the integration of spatial information present in the 
PAN image and spectral information present in the low 
resolution MS data. Here we have used the À Trous algorithm 
based wavelet transform (ATW) for image fusion (Nunez et 
al., 1999).

2.2. Image Classification

The extraction of LU information from remote sensing data 
is often difficult since it is closely associated with the human 
intervention for which the data need to be obtained from 
other sources (Kandrika and Roy, 2008). Keeping all the 
requirements and constraints in view, Gaussian Maximum 
Likelihood classifier (GMLC) is a parametric classifier used 
for classifying the satellite data.

2.3. Change Detection

LU change detection is performed by change/no-change 
recognition followed by boundary delineation on images of 
two different time periods (Zhang and Zhang, 2007; Lu et 
al., 2004). Change/no-change recognition extracts changes 

from an unchanged background. The pixel patches marked 
as changed are then checked and the boundaries are 
delineated to extract the changed areas. A variety of change 
detection algorithms such as Principal Component Analysis 
(Zhang and Zhang, 2007), Correspondence Analysis (Cakir 
et al., 2006) and image differencing (Lyon et al., 1998) have 
been tested to recognise LU changes from bi-temporal 
images.

2.4. Forest Fragmentation

Forest fragmentation is the process whereby a large, 
contiguous area of forest is both reduced in area and divided 
into two or more fragments (Meyer and Turner, 1994). The 
primary concern is direct loss of forest area, and all disturbed 
forests are subject to edge effects of one kind or another. 
Forest fragmentation metrics with the total extent of forest 
and its occurrence as adjacent pixels is computed through 
fixed-area windows surrounding each forest pixel. The result 
is stored at the location of the centre pixel. It is computed 
through Pf (the ratio of pixels that are forested to the total 
non-water pixels in the window) and Pff (the proportion of 
all adjacent (cardinal directions only) pixel pairs that include 
at least one forest pixel, for which both pixels are forested). 
Based on the knowledge of Pf and Pff, six fragmentation 
categories were mapped (Riitters et al., 2000): (i) interior, 
for which Pf = 1.0; (ii) patch, Pf < 0.4;  (iii) transitional, 0.4 
< Pf < 0.6; (iv) edge, Pf > 0.6 and Pf – Pff > 0; (v) perforated, 
Pf > 0.6 and Pf – Pff < 0, and (vi) undetermined, Pf > 0.6 and 
Pf = Pff. 

3. Study Area

Mandhala watershed (Figure 1) lies in Solan district, 
Himachal Pradesh, India (76°50'04'' to 76°53'47'' E and 
30°53'40.7'' to 30°56'18.5'' N) and falls in lower Shiwalik 
range in the Himalayas at 400-1100 amsl spread over an area 
of 14.5 sq km, characterized by dry evergreen forests. 
Degradation of forest is evident from the dominant cover of 
invasive exotic species Lantana camera. Trees of Holoptelia 
integrifolia, Dalbergia sisoo, Morus nigra, etc. occur along 
the field bunds and other open lands. 

The Western Himalayan climate is differentiated by the 
effect of altitude, topography and geographical trend causing 
reduced precipitation, extreme temperatures and increasing 
snowfall (Gaston et al., 1983). The forests in the watersheds 
are managed as reserve forest by the state forest department, 
cutting of trees is prohibited, still lopping and collection of 
fallen wood for household and industrial purposes were 
noticed during the field survey.

4. Methods 

The methods adopted in the analysis included image fusion, 
LULC analyses, change detection using temporal data and 
temporal forest fragmentation analysis.
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Figure 1. Study area: Mandhala Watershed.

4.1. Data Preprocessing: 

Base layers like district boundary, drainage network, water 
bodies, etc. were mapped from the Survey of India (SOI) 
toposheets of scale 1:50000. Landsat bands, IRS LISS III 
MS bands were geocorrected with the known ground control 
points (GCP’s) and projected to geographic latitude-
longitude with WGS-84 as the datum, followed by masking 
and cropping of the study region (region of interest – ROI). 
Resampling of the data using nearest neighbourhood 
technique were carried out for (i) bands 1- 4 of Landsat 
(1972) data to 79 m, (ii) bands 1-6 of Landsat TM (1989) to 
30 m, (iii) bands 1-5 and 7 of Landsat ETM (2000) to 30 m 
and band 8 to 15 m, (iv) IRS LISS-III MS (2007) bands 1-3 
to 23.5 m and IRS PAN band to 5.8 m. IRS PAN band of 5.8 
m spatial resolution was merged with the LISS-III MS bands 
of 2007 using Multi-resolution analysis based on the wavelet 
transformation (Nunez et al., 1999). Landsat ETM+ PAN 
band (band 8) of 15 m spatial resolution was fused with 
bands 1, 2, 3, 4, 5 and 7 of the same satellite. Subsequently, 
all bands were resampled to 5.8 m for consistency and easier 
comparison of LU class statistics across the data sets.

4.2. LULC Analysis: 

NDVI was computed to segregate regions under vegetation, 
soil and water. Signature separation corresponding to the LU 
classes was done using Transformed divergence (TD) matrix 
and Bhattacharrya (or Jeffries-Mastusuta) distance. Both the 
TD and Jeffries-Mastusuta measures are real values between 
0 and 2, where ‘0’ indicates complete overlap between the 
signatures of two classes and ‘2’ indicates a complete 

separation between the two classes. Both measures are 
monotonically related to classification accuracies. The larger 
the separability values, the better the final classification 
results (Richards, 1986). Supervised classification using 
MLC with the training sets uniformly distributed representing 
/ covering the study area was performed on the four temporal 
datasets. Accuracy assessment was done using error matrix 
by computing producer’s accuracy, user’s accuracy, overall 
accuracy and Kappa statistics (Campbell, 2002; Lillesand 
and Kiefer, 2002) by overlaying the test data not used in 
classification. Receiver operating characteristic (ROC) 
curves were plotted to assess the accuracy of the classified 
data (Fawcett, 2006). In the absence of historical data, the 
classified images of 1972, 1989 and 2000 were validated by 
visual interpretation using the tone, texture and other 
interpretation keys from the false colour composite images.

4.3. Spatial Change Analysis: 

Pixel to pixel change was mapped for each category from 
1972 to 2007 using PCA - Principal Component Analysis 
(Zhang and Zhang, 2007), CA - Correspondence Analysis 
(Cakir et al., 2006) and NDVI image differencing (Lyon et 
al., 1998). The absolute and relative changes on the original 
bands of the two time periods were also computed. If there is 
a change between the two dates, the pixel had either negative 
or positive values. However, subtle change in brightness 
values between two dates also occur due to atmospheric 
conditions at different dates, sensor differences, etc., even 
after radiometric normalisation. Brightness values of no-
change areas were distributed around the mean value of each 
difference image.
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4.4. Forest Fragmentation Analysis: 

Pf and Pff in a kernel of 3 x 3 were computed (Riitters et al., 
2000) to identify forest fragmentation categories. Based on 
these forest fragmentation indices (Hurd et al., 2002) Total 
forest proportion (TFP: ratio of area under forests to the total 
geographical extent excluding water bodies), weighted forest 
area (WFA) and Forest continuity (FC) were computed. TFP 
provides an extent of forest cover in a region ranging from 0 
to 1. Weighted values for the weighted forest area (WFA) are 
derived from the median Pf value for each fragmentation 
class as given by equation 1 and FC is computed by equation 
2. 
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Six patch level metrics – largest patch index, number of patches, patch density, total edge, 
edge density and landscape shape index were calculated using Fragstats (McGarigal et al., 
2002).  

5. Results and Discussion 

Temporal NDVI analysis shows reduction of region under vegetation by 7.27% from 1972 to 
2000 and a decrease of 4.72% from 1972 to 2007. Histograms were generated to ascertain the 
number of likely LU categories based on the number of distinguishable peaks. Six distinct 
classes: agriculture, settlement, forest, plantation/orchard, barren land and water were the 
dominant categories in the study area. Signatures were assessed using spectral graphs which 
showed that forest and plantation/orchard classes have high peaks in the NIR band and are 
therefore distinguishable from other classes. In band 3 of Landsat MSS settlement and dry 
river bed were not distinguishable, whereas in Landsat ETM+ for the same band, river bed was 
not easily distinguishable from barren land/stony/waste. In LISS III, settlement and barren land 
signatures were not separable in band 3. All other classes were well separable. Supervised 
classification (figure 2) with the percentage statistics are listed in table 1. 

Six patch level metrics – largest patch index, number of 
patches, patch density, total edge, edge density and landscape 
shape index were calculated using Fragstats (McGarigal et 
al., 2002). 

5. Results and Discussion

Temporal NDVI analysis shows reduction of region under 
vegetation by 7.27% from 1972 to 2000 and a decrease of 
4.72% from 1972 to 2007. Histograms were generated to 
ascertain the number of likely LU categories based on the 
number of distinguishable peaks. Six distinct classes: 
agriculture, settlement, forest, plantation/orchard, barren 

land and water were the dominant categories in the study 
area. Signatures were assessed using spectral graphs which 
showed that forest and plantation/orchard classes have high 
peaks in the NIR band and are therefore distinguishable from 
other classes. In band 3 of Landsat MSS settlement and dry 
river bed were not distinguishable, whereas in Landsat 
ETM+ for the same band, river bed was not easily 
distinguishable from barren land/stony/waste. In LISS III, 
settlement and barren land signatures were not separable in 
band 3. All other classes were well separable. Supervised 
classification (Figure 2) with the percentage statistics are 
listed in Table 1. 

Accuracy assessment is listed in Table 2. ROC curves for 
each class for the temporal dataset in Figure 3 show the 
performance of the classifier as the decision threshold is 
varied for each class to obtain the best classified output. At 
any point on the curve is a possible operational point for the 
classifier and so was evaluated in the same manner as 
accuracy. There is a good agreement between results obtained 
from error matrix and ROC curves. 

Results obtained from MLC classification are comparable to 
the ground condition for the 2007 classified image. The 
successful application of MLC is dependent upon having 
delineated correctly the spectral classes in the image data of 
interest. This is necessary since each class is to be modeled 
by a normal probability distribution. If a class happens to be 
multimodal, and this is not resolved, then clearly the 
modelling cannot be very effective. MLC can obtain 
minimum classification error under the assumption that the 

Figure 2. Classification using (A) Landsat MSS, 1972, (B) Landsat TM, 1989, (C) Landsat ETM, 2000 and (D) 
IRS LISS-III, 2007.
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Figure 2: Classification using (A) Landsat MSS, 1972, (B) Landsat TM, 1989, (C) Landsat 
ETM, 2000 and (D) IRS LISS-III, 2007. 

Accuracy assessment is listed in table 2. ROC curves for each class for the temporal dataset in 
figure 3 show the performance of the classifier as the decision threshold is varied for each class 
to obtain the best classified output. At any point on the curve is a possible operational point 
for the classifier and so was evaluated in the same manner as accuracy. There is a good 
agreement between results obtained from error matrix and ROC curves. 

Table 1: Spatio-temporal LU estimates 
 

 Class 
Area ↓ 

Agriculture Built-up Forest Plantation / 
Orchard 

Barren 
land 

Water Total 

1972 Area (Ha) 215.88 - 855.21 204.25 15.02 115.42 1405.8 
Area (%) 15.36 - 60.84 14.53 1.07 8.21 100 

1989 Area (Ha) 559.39 3.26 395.28 267.39 117.17 63.29 1405.8 
Area (%) 39.79 0.23 28.12 19.02 8.33 4.50 100 

2000 Area (Ha) 495.80 104.41 467.76 209.54 13.66 114.62 1405.8 
Area (%) 35.27 7.43 33.27 14.91 0.97 8.15 100 

2007 Area (Ha) 249.81 98.74 318.17 640.45 55.15 43.45 1405.8 
Area (%) 17.77 7.02 22.63 45.66 3.92 3.09 100 

Figure 3. ROC curves for [A] Landsat MSS-1972; [B] Landsat TM – 1989; [C] Landsat ETM+ - 2000; [D] LISS-III - 2007.

Table 1. Spatio-temporal LU estimates.

Table 2. Accuracy assessment for classified images.

spectral data of each class is normally distributed. The 
disadvantage of this technique is that it requires every 
training set to have at least one more pixel than the number 
of bands used in classification.

Forest patches have declined from 61 ha (in 1972) to 23 ha 
(in 2007) with the conversions of forest for agricultural 
activities, which has significantly increased by ~20% from 
1972 to 2000. However, the percentage area pertaining to 
agriculture has decreased to 17% in 2007. One of the reasons 

is that agricultural area and fallow land were invaded by an 
exotic weed – Lantana camera which is an invasive species 
that thrives in warm, high rainfall areas where it forms dense 
thickets that exclude native species through shading and 
allelopathic effects, leading to complete dominance of the 
under storey and eventually overshooting the main canopy. 
The thickets impede access, alter availability of fodder for 
wild animals and reduce regeneration potential displacing 
natural scrub communities. Lantana encroaches agricultural 
land, reduces the carrying capacity of pastures. Its distribution 
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Table 2: Accuracy assessment for classified images 
 

Class 1972 1989 2000 2007 
Accuracy→ PA* UA* PA UA PA UA PA UA 

Agriculture 70 75 80 83 87 84 90 85 
Builtup 60 65 76 71 83 82 86 81 
Forest 86 81 85 80 91 87 90 85 
Plantation/ Orchard 73 78 85 77 87 85 91 87 
Barren 80 82 84 84 80 79 88 86 
Water 83 82 78 75 83 82 83 78 
OA* 78.52 

 

80.78 83.78 86.52 
Kappa 0.7735 0.8066 0.8217 0.8467 

*PA - Producer’s Accuracy, UA - User’s Accuracy, OA - Overall Accuracy 

Results obtained from MLC classification are comparable to the ground condition for the 2007 
classified image. The successful application of MLC is dependent upon having delineated 
correctly the spectral classes in the image data of interest. This is necessary since each class is 
to be modeled by a normal probability distribution. If a class happens to be multimodal, and 
this is not resolved, then clearly the modelling cannot be very effective. MLC can obtain 
minimum classification error under the assumption that the spectral data of each class is 
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has adversely affected not only many species of economic 
and ecological importance but ecosystem also. Plantation 
has increased considerably from ~15% (1972) to ~46% 
(2007). These include Babool, Acacia catechu and shrubs as 
a government measure to retain greenery in the area. Barren 
lands mainly constitute rocks, stones and open lands. Some 
of the barren land pixels show similar reflectance as that of 
dry river bed and the signatures often mix with settlements 
causing confusion during classification. Hence the proportion 
of barren land is less compared to earlier classified images 
(from 1989 to 2007). 

Change detection involved differencing images of two time 
periods between PCs, CA components, NDVI and bands 
(rescaled from -1 to 1) that showed similar results. In both 
the images of the standardised PCA, PC1 had the highest 
information having all bands with unequal variances. CA 
puts less emphasis on bands that have low polarisation. The 
more the pixels are polarised for a band, the higher the 
importance given to that band in the calculation of the 
between-pixel distances (Greenacre, 1984). The first two 
components of CA explained approximately 99% of the total 
inertia in both temporal images (Table 3). Total inertia is a 
measure of how much the individual pixel values are spread 
around the centroid. Inertia is independent of the absolute 
frequencies that constitute the original data, and will be 
identical if the data are multiplied by any constant value 
(Greenacre, 1984). 
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normally distributed. The disadvantage of this technique is that it requires every training set to 
have at least one more pixel than the number of bands used in classification. 
 
Forest patches have declined from 61 ha (in 1972) to 23 ha (in 2007) with the conversions of 
forest for agricultural activities, which has significantly increased by ~20% from 1972 to 2000. 
However, the percentage area pertaining to agriculture has decreased to 17% in 2007. One of 
the reasons is that agricultural area and fallow land were invaded by an exotic weed – Lantana 
camera which is an invasive species that thrives in warm, high rainfall areas where it forms 
dense thickets that exclude native species through shading and allelopathic effects, leading to 
complete dominance of the under storey and eventually overshooting the main canopy. The 
thickets impede access, alter availability of fodder for wild animals and reduce regeneration 
potential displacing natural scrub communities. Lantana encroaches agricultural land, reduces 
the carrying capacity of pastures. Its distribution has adversely affected not only many species 
of economic and ecological importance but ecosystem also. Plantation has increased 
considerably from ~15% (1972) to ~46% (2007). These include Babool, Acacia catechu and 
shrubs as a government measure to retain greenery in the area. Barren lands mainly constitute 
rocks, stones and open lands. Some of the barren land pixels show similar reflectance as that 
of dry river bed and the signatures often mix with settlements causing confusion during 
classification. Hence the proportion of barren land is less compared to earlier classified images 
(from 1989 to 2007).  

 
Table 3: Eigen structure of 1972 and 2007 data after PCA and CA transformation 
 

 

 

PCA 

 Landsat MSS (1972) IRS LISS-III (2007) 
 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 
Band 1 0.66 0.24 0.71 0.62 0.33 0.71 
Band 2 0.66 0.28 -0.70 0.62 0.36 -0.70 
Band 3 0.37 -0.93 -0.02 0.49 -0.87 -0.01 
Eigenvalues 2.14 0.82 0.03 2.44 0.55 0.01 
Proportion 72 27 1 81.25 18.26 0.48 
Cumulative 72 98 100 81.25 99.51 100 

 

 

Correspondence 
Analysis 

 Landsat MSS (1972) IRS LISS-III (2007) 
 Comp1 Comp2 Comp3 Comp1 Comp2 Comp 3 
Band 1 0.62 0.24 0.75 0.58 0.27 0.77 
Band 2 0.60 0.47 -0.65 0.58 0.53 -0.62 
Band 3 0.51 0.85 -0.15 0.57 -0.81 -0.15 
Eigenvalues 2.50 0.50 0.006 2.96 0.037 0.0002 
Proportion 83.23 16.57 0.2 98.76 1.23 0.0066 
Cumulative 83.23 99.80 100 98.76 99.99 100 

 
Detailed change detection tabulation was done between two classified images of 1972 and 
2007 focusing primarily on the initial state classification changes – that is, for each initial state 
class, it identifies the classes into which those pixels changed in the final state image. The total 
class change for agriculture is 135.81 ha. There is a decrease of 537.03 ha in forest class and 

Detailed change detection tabulation was done between two 
classified images of 1972 and 2007 focusing primarily on the 
initial state classification changes – that is, for each initial 
state class, it identifies the classes into which those pixels 
changed in the final state image. The total class change for 
agriculture is 135.81 ha. There is a decrease of 537.03 ha in 
forest class and there has been an increase of 436.22 ha in 
plantation / orchard class. Forest fragmentation maps along 
with associated statistics based on the temporal forest maps 
(LU analysis) are presented in Figure 4 and Table 4. 

Total forest proportion (TFP) and forest continuity (FC) is 
listed in Table 5 and are depicted in Figure 5. The forest 
fragmentation metrics analysis showed that largest forest 
patch is continuously decreasing consequently increasing the 
number of small patches and patch density. Due to increasing 
number of patches, more edges are getting developed with 
increasing edge density and the landscape shape is becoming 
more complex with time. 

The results of this study based on the temporal remote 
sensing data supplemented with the field data indicate that 
Mandhala watershed is degrading due to intense 
anthropogenic activities. When anthropogenic causes of 
fragmentation are considered, forest are more likely to be 
disturbed and fragmented where climate is hospitable, soil is 
productive and access is easy. Mandhala watershed is under 
the severe influence of forest fragmentation, calling for 
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Correspondence 
Analysis 

Band 2 0.60 0.47 -0.65 0.58 0.53 -0.62 
Band 3 0.51 0.85 -0.15 0.57 -0.81 -0.15 
Eigenvalues 2.50 0.50 0.006 2.96 0.037 0.0002 
Proportion 83.23 16.57 0.2 98.76 1.23 0.0066 
Cumulative 83.23 99.80 100 98.76 99.99 100 

 
Detailed change detection tabulation was done between two classified images of 1972 and 
2007 focusing primarily on the initial state classification changes – that is, for each initial state 
class, it identifies the classes into which those pixels changed in the final state image. The total 
class change for agriculture is 135.81 ha. There is a decrease of 537.03 ha in forest class and 
there has been an increase of 436.22 ha in plantation / orchard class. Forest fragmentation 
maps along with associated statistics based on the temporal forest maps (LU analysis) are 
presented in figure 4 and table 4. 

Table 4: Forest fragmentation types details 
 

 1972 1989 2000 2007 

 Ha % Ha % Ha  % Ha % 
Interior 751.89 90.36 337.83 86.45 336.83 75.24 106.06 33.35 

Perforated 48.00 5.77 38.96 9.97 73.85 16.50 20.98 6.60 
Edge 25.58 3.07 9.53 2.44 24.02 5.37 122.07 38.39 

Transitional 6.66 0.80 4.45 1.14 12.97 2.90 46.01 14.47 
Patch - - - - 0.01 0.00 22.85 7.19 
Total 832.15 100 390.78 100 447.68 100 318.01 100 

 

Table 3. Eigen structure of 1972 and 2007 data after PCA and CA transformation.

Table 4. Forest fragmentation types details.
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Figure 4. Forest fragmentation maps for 1972, 1989, 2000 and 2007.

Figure 5. Six forest fragmentation conditions based on the values for TFP and FC.
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Table 5: Total forest area and weighted forest area 
 

    1972 1989 2000 2007 
TFP 0.82 0.49 0.53 0.70 
FC 0.88 0.84 0.71 0.26 

 
The results of this study based on the temporal remote sensing data supplemented with the 
field data indicate that Mandhala watershed is degrading due to intense anthropogenic 
activities. When anthropogenic causes of fragmentation are considered, forest are more likely 
to be disturbed and fragmented where climate is hospitable, soil is productive and access is 
easy. Mandhala watershed is under the severe influence of forest fragmentation, calling for 
immediate protection measures from the concerned authorities. 

5. Conclusions 

Temporal remote sensing data showed reduction of vegetation by 7% from 1972 to 2000 and 
a decrease of 4.72% from 1972 to 2007. The reason for increase in vegetation from 2000 to 
2007 is the spread of invasive species Lantana camera in and around the watershed. Change 
detection methods revealed a declining trend of forest patches (38%) during the last three 
decades due to increase in plantation and settlement area which was absent in 1972 and has 
significantly increased to ~7% (99 ha) in 2007. Forest fragmentation model showed that 
interior forest has declined by 57% (from 752 ha in 1972 to 106 ha in 2007). Patch forest 
which was absent till 2000, has increased up to 23 ha in 2007. Patches comes from many 
sources, ranging from our abilities to visualise and delineate what they represent, to their 
usage as conceptual units and patch dynamics models and to societal biases such as land 
ownership and anthropogenic activities. However, forest fragmentation which is degrading the 
ecosystem of the watershed requires immediate protection measures from the concerned 
authorities. 
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