Back |
• Ammerlhan, H. R., Goldsby, M. E., Johnson, M. M., and Nicol, D. M., 2000. A geographically distributed enterprise simulation system, Future Generation Computer Systems, 17, pp. 135–146.
• Anuj Kumar Singh, 2003. Modelling land use land cover changes using cellular automata in a geo-spatial environment. M Sc Thesis, ITC Netherlands. Available Online: http://www.itc.nl/library/Academic_output/2003/MSc_theses_2003.asp Last Accessed: 7:00 (GMT), 27th November 2004.)
• Banks, J., and Carson II, J. S., 1984. Discrete-event system simulation. Prentice-Hall Inc, New Jersey, USA.
• Barnes, K. B., Morgan III, J.M., Roberge, M.C., Lowe, S., 2001. Sprawl development: its patterns, consequences and measurement. Towson University, Towson. (Available Online: http://chesapeake.towson.edu/landscape/urbansprawl/download/Sprawl_white_paper.pdf – Last Accessed: 7:00 (GMT), 27th November 2004.)
• Batty M., Xie Y., Sun Z., 1999. The dynamics of urban sprawl. Working Paper Series, Paper 15, Centre for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23rd March 2004)
• Batty, M., and Jiang, B., 1999. Multi-agent simulation: new approaches to exploring space-time dynamics within GIS. Working Paper Series, Paper 10, Centre for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23 rd March 2004)
• Batty, M., and Jiang, B., 2000. Multi-agent simulation: computational dynamics within GIS. In: P. Atkinson and D. Martin (Eds.), Innovations in GIS 7: GIS and Geocomputation, GIS Research in UK Conference Series, Taylor and Francis, London, United Kingdom, pp. 55-72.
• Batty, M., and Xie, Y., 1994. From cells to cities. Environment and Planning B, Volume 21, pp. S31 - S48.
• Batty, M., and Xie, Y., 1997. Possible urban automata. Environment and Planning B. Volume 24, pp. 175–192.
• Batty, M., 1998. Urban evolution on the desktop: simulation with the use of extended cellular automata. Environment and Planning A, Volume 30, pp. 1943 – 1967.
• Batty, M., 2003. Agents, cells and cities: new representational models for simulating multi-scale urban dynamics. Working Paper Series, Paper 65, Center for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23 rd March 2004)
• Batty, M., Desyllas, J., and Duxbury, E., 2003. The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. International Journal of Geographical Information Science, Volume 17 (7), pp. 673 – 697.
• Benenson, I., Aronovich, S., and Noam, S., 2004. Let's talk objects: generic methodology for urban high-resolution simulation. Computers, Environment and Urban Systems, In Press, Corrected Proof, Available online 9 April 2004. (http://www.sciencedirect.com/science/article/B6V9K-4BRSCRD-1/2/ab00a430146d8372194c086b72456ec8 – Last Accessed: 7:00 (GMT), 27th November 2004.)
• Benenson, I., 1998. Multi-agent simulations of residential dynamics in the city. Computer, Environment and Urban Systems, Volume 22, No.1, pp. 25-42.
• Benenson, I., and Torrens, P.M., 2003. Geographic Automata Systems: a new paradigm for integrating GIS and geographic simulations. Geocomputation 2003, September 2003, Southampton, UK.
• Borshchev, A., Karpov, Y., and Kharitonov, V., 2002. Distributed simulation of hybrid systems with AnyLogic and HLA, Future Generation Computer Systems, 18, pp. 829–839.
• Carothers, C. D., Fujimoto, R. M., Weatherly, R. M., and Wilson, A. L., 1997. Design and implementation of hla time management in the rti version F.0, Proceedings of the 1997 Winter Simulation Conference.
• Cellier, F., 1991. Qualitative modelling and simulation: promise or illusion. Proceedings of the 1991Winter Simulation Conference, pp 1086-1090.
• Census of India, 1981. District Census Handbook – Dakshin Kannada District. Series 9. Directorate of Census Operations, Karnataka.
• Cheng, J., and Masser, I., 2003. Urban growth pattern modelling: a case study of Wuhan City, PR China. Landscape Urban Plan. 62, pp. 199–217.
• Claramunt, C., and Jiang, B., 2001. An integrated representation of spatial and temporal relationships between evolving regions. J. Geograph. Syst. 3, 411–428.
• Clarke, K. C., and Gaydos, L., 1998. Loose coupling a cellular automaton model and GIS: long term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, Vol. 12(7), pp. 699-714.
• Clarke, K. C., Hoppen, S., and Gaydos, L., 1996. Methods and techniques for rigorous calibration of a cellular automation model of urban growth. Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico, January 21-25, 1996.
• Couclelis, H., 1997. From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B: Planning and Design, I, pp. 165 – 174.
• Dahmann, J. S., Fujimoto, R. M., and Weatherly, R. M., 1998. The DoD High Level Architecture: An Update, Proceedings of the Second International Workshop on Distributed Interactive Simulation and Real-Time Applications.
• Dowers, S., Gittings, B. M., and Mineter, M. J., 2000. Towards a framework for high-performance geocomputation: handling vector-topology within a distributed service environment, Computers, Environment and Urban Systems, Volume 24, pp. 471 – 486.
• Eastman, J.R., 1999. Idrisi32: Guide to GIS and Image Processing, Vols. 1 and 2, Clark Labs, Clark University, USA.
• Epstein, J., and Axtell, R., 1996. Growing Artificial Societies: Social Science from the Bottomup, Bradford Books, MIT Press, Cambridge, MA.
• Epstein, J., Payne, K., Kramer, E., 2002. Techniques for mapping suburban sprawl. Photogrammetr. Eng. Remote Sens. Volume 63 (9), pp. 913–918.
• Foundation of Intelligent Physical Agents (FIPA), 2002. FIPA Abstract Architecture Specification. (Available Online: http://www.fipa.org/ - Last Accessed: 8:30 (GMT) 30th November 2004.)
• Fujimoto, R. M., 2003. Distributed Simulation Systems, Proceedings of the 2003 Winter Simulation Conference.
• Goodchild, M., 2001. Metrics of scale in remote sensing and GIS. International Journal of Applied Earth Observation and Geo-information, Volume 3, Issue 2, pp. 114-120.
• Grubler A., 1994. Technology. In: William B. Meyer and B.L. Turner II (Eds.), Changes in land use and land cover: a global perspective. Cambridge University Press, Cambridge, U.K.
• Hurd, J.D., Wilson, E.H., Lammey, S.G., Civco, D.L., 2001. Characterisation of forest fragmentation and urban sprawl using time sequential Landsat Imagery. In: Proceedings of the ASPRS Annual Convention, St. Louis, MO, April 23–27, 2001. (Available Online: http://resac.uconn.edu/publications/tech_papers/index.html – Last Accessed: 7:00 (GMT), 27th November 2004.)
• IEEE, 2000. IEEE standard for modeling and simulation (M&S) high level architecture (HLA) - framework and rules, IEEE Std 1516-2000.
• Jennings, N. R., 2000. On agent-based software engineering, Artificial Intelligence, Vol. 117, pp. 277 – 296.
• Jennings, N. R., and Wooldridge, M., 1996. Software agents. IEE Review, pp. 17-20.
• Jianquan, C. and Masser, I., 2002. Cellular automata based temporal process: understanding or urban growth. In: Bandini, S., Chopard, B., and Tomassini, M., (Eds.), Cellular Automata, Proceedings of the 5th International Conference on Cellular Automata for Research and Industry ACRI 2002, Geneva, Switzerland, October 9-11, 2002, Springer, pp. 325-336.
• Jothimani, P., 1997. Operational urban sprawl monitoring using satellite remote sensing: excerpts from the studies of Ahmedabad, Vadodara and Surat, India. Paper presented at 18th Asian Conference on Remote Sensing held during October 20–24, 1997, Malaysia.
• Lata, K.M., Sankar Rao, C.H., Krishna Prasad, V., Badrinath, K.V.S., and Raghavaswamy, 2001. Measuring urban sprawl: a case study of Hyderabad. GIS Development, Volume 5 (12).
• Li, X. and Yeh, A. G. O., 2000. Modelling sustainable urban development by the integration of constrained cellular automata. International Journal of Geographical Information Science, Vol. 14 (2), pp. 131 – 152.
• Lindenschmidt, K. E., Hesser, F. B., and Rode, M., 2004. Integrating water quality models in the High Level Architecture (HLA) environment, Proceedings of International Conference of International Environmental Modeling and Software Society (iEMSs) 2004, University of Osnabrück, Germany. (http://www.iemss.org/iemss2004/pdf/integratedmodelling/lindinte.pdf - Last Accessed: 14:30 (GMT), 30th July 2004.)
• Liu, X. H., and Andersson, C., 2004. Assessing the impact of temporal dynamics on a land use change modeling. Computers, Environment and Urban Systems, Volume 28, pp. 107 – 124.
• Nwana, H., 1996. Software agents: an overview. Journal of Knowledge Engineering Review, Volume 11, No. 3.
• OGC, 2003. Open GIS reference model. Kurt Buehler (Ed.), Version 0.1.2, Open Geospatial Consortium Inc.
• O'Sullivans, D. and Torrens, P. M., 2000. Cellular models of urban systems. Working Paper Series, Paper 22, Center for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23 rd March 2004.)
• Patterson, B., and Gittings, B., 1996, GIS Dictionary. The University of Edinburgh and Association for Geographic Information. (Available online: http://www.geo.ed.ac.uk/agidict/welcome.html - Last Accessed: 7:00 (GMT) 28th November 2004.)
• Peuquet, D. J., 1999. Time in GIS and geographical databases. In: P. Longley, M. Goodchild, D. M. Maguire and D. Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and Applications. J. Wiley and Sons, New York, pp. 91-103.
• Portugali, J., I. Benenson, and I. Omer, 1997. Spatial cognitive dissonance and socio-spatial emergence in a self-organizing city. Environment and Planning B, Volume 24 (2), pp. 263 – 285.
• Sanders, L., Pumain, D. and Mathian, H., 1997. SIMPOP: a multi-agent system for the study of urbanism. Environment and Planning B, Volume 24, pp. 287 –305.
• Schelhorn, T., O'Sullivan, D., Haklay, and M., Thurstain-Goodwin, M., 1999. Streets: an agent-based pedestrian model. Working Paper Series, Paper 9, Centre for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23 rd March 2004.)
• Schulze, Th., Wytzisk, A., Simonis, I., Raape U., 2002. Distributed spatio-temporal modeling and simulation. Paper presented at the Winter Simulation Conference 2002, San Diego, CA, USA. (http://ifgi.uni-muenster.de/~simonis/download/WSC2002.pdf - Last Accessed: 12:30 (GMT) 29 th July 2004.)
• Semboloni, F., Assfalg, J., Armeni J., Gianassi, R. and Marsoni, F., 2004. CityDev, an interactive multi-agents urban model on the web. Computers, Environment and Urban Systems, Volume 28, pp. 45 – 64.
• Sierra Club, 1998. The Dark Side of the American Dream: The Costs and Consequences of Suburban Sprawl. (Available Online: http://www.sierraclub.org/sprawl/report98/ – Last Accessed: 7:00 (GMT), 27th November 2004.)
• Simonis, I., Wytzisk, A., Streit, U., 2003. Integrating simulation models into SDI's, 6th AGILE Conference on Geographic Information Science, 24.-26. April 2003. Lyon.
• Straatman, B., White, R., and Engelen, G., 2004. Towards an automatic calibration procedure for constrained cellular automata. Computers, Environment and Urban Systems, Volume 28, pp. 149 – 170.
• Subudhi, A. P., and Maithani S., 2001. Modeling urban sprawl and future population prediction using remote sensing and geographical information system techniques. In: Subudhi, A. P., Sokhi, B. S., and Roy, P. S. (Eds.), Remote sensing and GIS application in urban and regional studies, Human Settlement and Analysis Group, Indian Institute of Remote Sensing, Dehradun, India.
• Sudhira, H. S., Ramachandra, T. V., and Jagadish, K. S., 2003. Urban growth analyses using spatial and temporal data. Photonirvachak , Journal of Indian Society of Remote Sensing, Volume 31 Issue 4, pp.299-311.
• Sudhira, H. S., Ramachandra, T. V., and Jagadish, K. S., 2004a. Urban Sprawl: Metrics, Dynamics and Modeling using GIS. International Journal of Applied Earth Observation and Geo-information, Volume 5, Issue 1, pp 29-39.
• Sudhira, H. S., Ramachandra, T. V., and Jagadish, K. S., 2004b. Urban Sprawl dynamics modeling using remote sensing and GIS. Paper presented at ‘3rd Annual Workshop on Transportation, Land Use and the Environment: Integrated Urban Transport Policy', Harvard University Center for Environment and Administrative Staff College of India, Hyderabad, India held during 29th – 31st January 2004.
• Tacic, I., and Fujimoto, R. M., 1998. Synchronized data distribution management in distributed simulations, In: Proceedings of Twelfth Workshop on Parallel and Distributed Simulation (PADS98), pp. 108 – 115.
• Tan, G., Xu, L., Moradi, F., Taylor, S., 2001. An agent-based DDM for High Level Architecture. Proceedings of 15 th Workshop on ‘Parallel and Distributed Simulations', pp. 75 – 82.
• Theobald, D. M., 2001, Quantifying urban and rural sprawl using the sprawl index. Paper presented at the annual conference of the Association of American Geographers in New York, on March 2nd, 2001.
• Torrens, P. M., 2000. How cellular models of urban systems work. Working Paper Series, Paper 28, Centre for Advanced Spatial Analysis, University College London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23 rd March 2004.)
• Torrens, P.M., and Alberti, M., 2000. Measuring sprawl. Working Paper Series, Paper 27, Centre for Advanced Spatial Analysis, University College, London. (Available Online: http://www.casa.ucl.ac.uk/publications/full_list.htm - Last Accessed: 18:45 (GMT) 23rd March 2004.)
• Wegener, M., 1994. Operational urban models: state of the art. Journal of the American Planning Association, Volume 60, pp. 17–29.
• White, R., and Engelen, G., 1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, Volume 25, 1175 – 1199.
• White, R., Engelen, G., and Uljee, I., 1997. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B, V olume 24, pp. 323 – 343.
• Wilcox, P. A., Burger, A. G., and Hoare, P., 2000. Advanced distributed simulation: a review of developments and their implication for data collection and analysis, Simulation Practice and Theory, Volume 8, pp. 201-231.
• Wilensky, U., 1999. NetLogo. http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL.
• Wolfram, S., 2002. A New Kind of Science, Champaign, IL: Wolfram Media.
• Wooldridge, M., and Jennings, N. R., 1995. Intelligent agents: theory and practice, Journal of Knowledge Engineering Review, Volume 10, No. 5, pp. 115 – 152.
• Yang, X., and Lo, C. P., 2003. Modelling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, Volume 17 (5), pp. 463-488.
• Yeh, A. G. O., and Xia Li, 1996. Urban growth management in the Pearl river delta: an integrated remote sensing and GIS approach. ITC Journal, Special Habitat-II issue, 1996 - 1: pp. 77-86.
• Yeh, A.G.O., and Li, X., 2001. Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetr. Eng. Remote Sens. Volume 67 (1), pp. 83.
• Zhongwei Sun, 2003. Simulating urban growth using cellular automata: a case study in Zhongshan city, China. M Sc Thesis, ITC Netherlands. (Available Online: http://www.itc.nl/library/Academic_output/2003/MSc_theses_2003.asp Last Accessed: 7:00 (GMT), 27th November 2004.)