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Spatial data acquired from multi resolution remote sensing sensors (in raster formar)
have been used to provide insights to landscape dynamics through comprehensive
understanding of land use and land cover (LULC) pattern of a region. Detailed and accu-
rate inventorying, mapping and monitoring of LULC at a local/regional scale have been
possible with the availability of various medium to high spatial resolution sensors (such
as Landsat, IRS LISS-III/IV, SPOT, IKONOS, etc.). The land use (LU) information are
derived using image processing techniques based on the spectral properties of objects in the
bands to assign them into a user defined class label.

Successful classification of spatial data into thematic information requires efficient
and optimal image processing. Appropriate classification techniques and feature selection
would enhance the classification accuracy. In this context, this chapter presents various
advanced supervised pattern classification algorithms such as Maximum Likelihood
Classifier, Decision Tree, K-Nearest Neighbor, Neural Network, Random Forest, and
Contextual Classification using sequential maximum a posteriori estimation, and Support
Vector Machine, apart from their implementation on multi-resolution data acquired from
different remote sensing satellites along with an assessment of the classifiers’ performance.
Hybrid Bayesian Classifier a novel classification technique is presented with case studies
in the last section of the chapter.

Keywords: Bayesian classifier, classification, machine learning, multi-resolution data,
remote sensing, spatial data mining

1. INTRODUCTION

Advances in data acquisition, storage and database technology have generated
enormous amount of data, necessitating efficient information extraction, which
has led to an emerging area of data mining or KDD (knowledge discovery in
databases). Data mining integrates several domains such as machine learning,
database management, data visualization, statistics and information theory.
Although numerous studies have been carried out on data mining of relational and
transaction databases (Agarwal and Srikant, 1994; Fayyad et al., 1996; Han and
Fu, 1996; Piatetsky-Shapiro and Frawley, 1991), data mining of spatio-temporal
databases, object oriented databases, multimedia databases, etc. still remain largely
unexplored. Thus spatial data mining or KDSD (knowledge discovery in spatial
databases) is an active field of research. In this chapter, the focus is on spatial data
mining i.e., discovery of interesting knowledge from geospatial data. Spatial data
obtained from remote sensing (RS) provides land use and land cover (LULC)
patterns of the area under imaging that permit frequent updation of maps nearly
on a real-time basis.

Diverse LULC features of the Earth’s surface based on their inherent spectral
reflectance and emittance properties will have different combination of digital
numbers (DNs) (pixel’s intensity or grey value) in the image. Radiance/reflectance
measurements obtained in various wavelength bands for each pixel provide spectral
patterns (referred to as the data henceforth) that can be classified and correlated to
different LULC classes on the ground using statistical learning. Recent advances
in statistical learning theories have generated promising tools and techniques in
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the field of pattern recognition applicable to RS data for deriving the information
on land use (LU) classes like urban areas, agricultural land, water bodies, etc.
(Kwan et al., 1994; Fukushima et al., 1998; Gori et al., 1998; Lee, et al., 2006).
Spectral pattern recognition in LULC classification utilizes spectral information
of multiple bands of remote sensors as the basis for automated image classification
and, indeed, the spectral pattern present within the data for each pixel is used as
the numerical basis for categorization (Lillesand and Kiefer, 2002). Performance
of spectral classification depends on parameters such as definition and represen-
tation of classes, selection of appropriate features, classifier design, selection of
training and test samples, and evaluation of classification accuracy. The overall
idea of per-pixel classification (hard classification) procedure is to categorize all
pixels in an image into LULC classes or themes automatically using either
unsupervised classification (such as ISODATA clustering) or supervised spectral
classification techniques (such as Maximum Likelihood Classifier).

Unsupervised classification techniques do not require training data and form
clusters based on inherent properties of the pixels such as spectral distance to class
means, etc. K-Means and ISODATA (Iterative Self-Organizing Data) clustering,
for example, begin with arbitrary cluster means and each time clustering repeats,
the means of these clusters are shifted. The new cluster means are used for the
next iteration. The ISODATA utility repeats clustering of the image until either
(a) 2 maximum number of jterations have been performed, or (b) a maximum
percentage of unchanged pixels have been reached between two iterations (Tou
and Gonzalez, 1974; Jain and Dubes, 1998; PCI Geomatics Corp; Memarsadeghi
et al., 2003).

Supervised classifiers need reference class samples (training data, usually
obtained from ground) to predict or classify the unknown pixels in the image. The
pixel categorization is done by specifying the numerical descriptors of the various
LU types and involves three stages — (i) training stage: identifying representative
training areas and developing a numerical description of the spectral attributes
of each LU class type in the image, known as training set, (ii) classification stage:
each pixel in the image dataset is categorized into the LU class that it resembles
most closely, and (iii) output stage: the process consists of a matrix of interpreted
LU category types (Lillesand and Kiefer, 2002). However, with heterogeneous
and highly fragmented complex landscapes, selecting sufficient training samples
becomes rather difficult and the problem worsens with the medium or coarse
resolution data due to the presence of mixed pixels. Selection of training samples
must take into account the spatial resolution of the RS data considering the
complexity of landscape along with the appropriate data mining (classification)
technique or scheme. In this context, performance evaluation of different classifi-
cation algorithms on varying resolution data would be desirable as different classi-
fication methods have their own genesis and merits. Although many classification
approaches have evolved over time, appropriateness of the approach suitable for
features of interest in a given study area is not yet fully understood (Lu and Weng,
2007), necessitating qualitative and quantitative evaluation of the performance of
classifiers with multi-resolution data.
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The objective of this chapter is to discuss various advanced data mining
techniques (such as Maximum Likelihood Classifier, Decision Tree, K-Nearest
Neighbour, Neural Network, Random Forest, Contextual Classification using
sequential maximum a posteriori estimation, and Support Vector Machine) and
select the best classifier for varying spatial resolution data such as high resolution-
IKONOS (4 m), medium spatial resolution sensor data-IRS LISS-III MS (23.5 m),
Landsat TM (30 m) and low resolution data-MODIS (250 m). Understanding
the strengths and weaknesses of variants of multi resolution data of RS sensors
are essential for the selection of suitable RS image classification method (Lu and
Weng, 2007). This requires prior knowledge of factors such as scale, characteristics of
the study area, the availability of data and their characteristics, economic viability,
time constraints, etc. The application at the user’s end must also take the scale and
image resolution into account.

The chapter is organized as follows: section 2 discusses the advanced classifiers
and section 3 details the data used in the classification experiments. Section 4
(4.1 to 4.4) presents the algorithm’s implementation considering different sensor’s
data and assessment of their comparative performance with changing spatial and
spectral resolutions, followed by discussion in section 5. A new Hybrid Bayesian
Classifier is presented in section 6 with concluding remarks in section 7.

2. DATA MINING ALGORITHMS

Seven advanced data mining algorithms such as Maximum Likelihood Classifier,
Decision Tree, K-Nearest Neighbor, Neural Network, Random Forest, Contextual
classification using sequential maximum a posteriori estimation and Support
Vector Machine are presented in this section.

At the outset, let the spectral classes in the data be represented by w , n=1, ..., N,
where /V is the total number of classes, and (x | w ) : Ny, Z). Let ifXxX, ..., X,
denote the (7 X 1) grey scale values across the M spectral bands of 7z sampled
pixels (observations or training samples which are independent and identically

distributed (i.i.d.) random variables), belonging to the nth spatial class, then

/an:—-l—zxi (]')
mn
zn:—-ﬂ;—‘z(xi_/[ln)(xi_/[ln) (2)

n

2.1 Maximum Likelihood Classifier (MLC)

Bayes’ decision theory forms the basis of statistical pattern recognition based on
the assumption that the decision problem can be specified in probabilistic terms
(Whalfel and Ekenel, 2005). MLC considers variance and covariance of the category’s
spectral response pattern (Lillesand and Kiefer, 2002) through the mean vector
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and the covariance matrix based on the assumption that data points follow
Gaussian distribution. The statistical probability of a given pixel value being a
member of a particular class is computed and the pixel is assigned to the most
likely class (highest probability value).

plw, | x) gives the probability that the pixel with observed column vector of
DN (digital numbers) x, belongs to class . It describes the pixel as a point
in multispectral (MS) space (M-dimensional space, where M is the number of
spectral bands). The maximum likelihood (ML) parameters are estimated from
representative i.i.d. samples. Classification is performed according to

x € conifp(wﬂ|x)>p(coj|x)‘v’j¢n (3)

i.e., the pixel vector x belongs to class @, if p(w, | x) is largest. The ML decision
rule is based on a normalized estimate of the probability density function (p.d.f.)
of each class. MLC uses Bayes decision theory where the discriminant function,
g, (x) for w is expressed as

2.0 =px|w) plw,) (4)

where p(w,) is the prior probability of w,, p(x | ®,) is the p.d.f. (assumed to
have a Gaussian distribution for each class @ ) for pixel vector x conditioned on
w, (Zheng et al., 2005). Pixel vector x is assigned to the class for which g _(x) is
greatest. In an operational context, the logarithm form of (4) is used, and after the
constants are eliminated, the discriminant function for &, is stated as

g (0 =(x ~2) X (x = p,) +In|Z,| -21n p(@,) 5)

where X is the variance-covariance matrix of @, u,, is the mean vector of .
Equation (5) is a special case of the general linear discriminant function in
multivariate statistics (Johnson and Wichern, 2005) and used in this cutrent form
in the RS digital image processing community. A pixel is assigned to the class with
the lowest g (x) in equation (5) (Duda et al., 2000; Zheng et al., 2005; Richards
and Jia, 2006).

2.2 Decision Tree (DT)

DT is a non-parametric classifier involving a recursive partitioning of the
feature space, based on a set of rules learned by an analysis of the training set.
It is constructed based on specific rule for each branch involving single or multi-
attributes. A new input vector then travels from the root node to a leaf node till
it is placed in a specific class (Piramuthu, 2006). Thresholds used for each class
decision are chosen using minimum entropy or minimum error measures. It is
based on using the minimum number of bits to describe each decision at a node
in the tree structure based on the occurrence of each class. DT is terminated with
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minimum entropy based on the amount of information gain (i.e. the gain ratio).

DT algorithm is stated briefly:

1. If there are N classes denoted {C,, C,,....C,}, and a training set, 7, then

2. If T contains one or more objects which all belong to a single class C, then the
decision tree is a leaf identifying class C.

3. If T contains no objects, the decision tree is a leaf determined from information
other than 7.

4. If T contains objects that belong to a mixture of classes, then a test is chosen
based on a single attribute that has one or more mutually exclusive outcomes
{0,, O,, ..., O,}. Tis portioned into subsets 1, T, ..., T, where T contains
all the objects in 7 that have outcome O, of the chosen test.

This is done recursively to each subset of training objects to build DT.

2.3 K-Nearest Neighbour (KNN)

Two of the main challenges in RS data interpretation using parametric techniques
are high dimensional class data modeling and the associated parameter estimates.
Even though the Gaussian normal distribution model has been adopted widely,
the need to estimate a large number of covariance terms demand higher number
of training samples required for each class of interest. In addition, multimode class
data cannot be handled properly with a unimodal Gaussian description. There-
fore, non-parametric methods, such as K-Nearest Neighbour (KNN), Neural
Network, Random Forest, etc. have the advantage of not needing class density
function estimation thereby obviating the training set size problem and the need
to resolve multimodality (Han and Kamber, 2003; Venkatesh and Kumar Raja,
2003). The KNN algorithm (Dasarathy, 1990) assumes that pixels close to each
other in feature space are likely to belong to the same class. The decision rule is
reached directly circumventing the density function estimation. Several decision
rules have been developed including a direct majority vote from the nearest £
neighbors in the feature space among the training samples, a distance-weighted
result and a Bayesian version (Hardin, 1994).

If x is an unknown pixel vector and suppose there are £, neighbors labeled as
class @, out of % nearest neighbours.

N
Z k, = k (N is the number of classes defined). The basic KNN rule is

n=1
X€ w, if m(x)> mj(x) for all j # n where m, (x) = £, (6)

If the training data of each class is not in proportion to its respective population, p( )
in RS data, a Bayesian Nearest-neighbor rule is suggested based on Bayes’ theorem
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m0 = LR AB) 2 )
Y pxl@,) plw,) Y kp(w)

The basic rule does not take the distance of each neighbor to the current pixel
vector into account and may lead to tied results every now and then. Weighted-
distance rule is used to improve upon this as

m(x) = =L ——— (8)

where 4, is Buclidean distance. With 7 training samples, £ nearest neighbours for
every pixel in a large image has to be computed i.e. 7 spectral distances must be
evaluated for each pixel. The above algorithm is summarized as follows:

The variable “unknown” below denotes the number of pixels (count) whose
class is unknown and the variable “misclassified” denotes the number of pixels
which have been wrongly classified.

set count=10
set unknown =0
set misclassified = 0

For all the pixels in the test image

do
{

Get the feature vector of the pixel and increment count by 1.

. From the training set, find the sample feature vector which is nearest

neighbour to the feature vector of the pixel.

3. If nearest neighbors count > 1, then check class labels of all the nearest
sample feature vectors. If class labels are not the same, then increment
unknown by 1 and go to Step 1 to process the next pixel, else go to Step 4.

4. Class label of the image pixel = class label of the nearest sample vector. Go

to Step 1 to process the next pixel.

N =
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2.4 Neural Network (NN)

NN classification has advantages over conventional digital classification algorithms
that use spectral distinctiveness of the pixels to decide class labels. The bulk of
Multi-layer perceptron (MLP) based classification use multiple layer feed-forward
networks that are trained using the back-propagation algorithm based on a recursive
learning procedure with a gradient descent search. A detailed introduction can
be found in literatures (Atkinson and Tatnall, 1997; Duda et al., 2000; Haykin,
1999; Kavzoglu and Mather, 1999; Kavzoglu and Mather, 2003; Mas, 2003)
and case studies (Bischof et al., 1992; Chang and Islam, 2000; Heermann and
Khazenie, 1992; Venkatesh and Kumar Raja, 2003).

To train the network for image classification, there are many algorithms.
A comparative performance of the training algorithms for image classification
by NN is presented in Zhou and Yang, (2010). The MLP in this work is trained
using the error back propagation algorithm (Rumelhart et al., 1986). The main
aspects here are: (i) the order of training samples should be randomised for each
epoch; and (i) the momentum and learning rate parameters are typically adjusted
(generally decreased) with the increase in number of training iterations. Back
propagation algorithm for training the MLP is briefly stated below:

i. Initialize network parameters: Assign low random real values to weights
and biases of the network.

ii. Present input and desired outputs: Input a continuous valued vector, Xp> X;5
..., %,_,, and specify the desired output 4y, 4, ..., d,_,,. If the network is used
as a classifier, the desired outputs are set to zero except for that corresponding
to the class of the input, which is set to 1.

iii. Forward computation: If [x(n), 4(»)] denotes a training example in the
epoch with x(#) as the input vector applied to the input layer of sensory nodes
and d(7) as the desired response vector #(n) presented to the output layer of
computation nodes, then the net internal activity v(n) for the neuron j in
layer /is given by equation (9)

2
= 3wl o
i=0

where 3~ () is the function signal of neuron 7 in the previous layer (/— 1)
at iteration 7, and wﬁf) (7) is the synaptic weight of neuron j in the layer / that
is fed from neuron 7 in layer (/- 1). Assuming the use of sigmoid function as
the nonlinearity, the function (output) signal of neuron j in layer /is given by
equation (10)

yO = L
' 1+ exp[—l/;/)(n)]

(10)

If neuron j is in the first hidden layer (i.e., /= 1), set yﬁ,o) =x ].(n), where xj(n)
is the j* element of the input vector x(7). If neuron j is in the output layer




Classification Models 105

(i.e., [=1), set yi.L) =0, (n) . Hence, compute the error signal ej(n) = a;(n) - oj(n),
where d](n) is the j* element of the desired response vector d(#).

iv. Backward computation: Compute the d% (i.e., the local gradients) of the
network by proceeding backward, layer by layer:

éj./)(n) = ej.l)(n) oj(n)[ 1 - o].(n)], for neuron j in output layer Z,
5 (m =y (W1 = 3, (W]

2521 ) w,(; *D(3), for neuron j in the hidden layer /.
k
Hence adjust the synaptic weights of the network in layer /according to the
generalized delta rule (equation 11):

W (n) = w') + alw(n = V)] + 76 (n) 37" () (11)

where 7 is the learning-rate parameter and @ is the momentum constant.

v. Iteration: Iterate the forward and backward computations as per steps (iii)
and (iv) by presenting new epochs of training examples to the network until
stopping criterion is met.

2.5 Random Forest (RF)

RF are ensemble methods using tree-type classifiers {4 (x, ©), k=1, ...... .} where
the {©, } are i.i.d. random vectors and x is the input pattern (Breiman, 2001).
They are tree predictor combinations where each tree depends on the value of a
random vector sampled independently with identical distribution for all trees in
the forest. It uses bagging to form an ensemble of classification tree (Breiman,
2001; Gislason et al., 2006). RF is different from other bagging methods in the
sense that at each splitting node, a random subset of the predictor variables is
used as potential variables to define split. In training, it creates multiple CART
(Classification and Regression Tree) trained on a bootstrapped sample of the orig-
inal training data, and the search is across randomly selected subset of the input
variables to determine a split for each node. It utilizes Gini index of node impurity
(Breiman, 1998; Breiman et al., 1998) to determine splits in the predictor variables.
Each tree casts a unit vote for the most popular class and a majority vote of the
trees having highest classification accuracy determines the output.

RF is insensitive to noise and does not overfit. The computational complexity
is minimal as trees are not pruned. Therefore, RF can handle high dimensional
data, using a large number of trees in the ensemble. Moreover, random selection
of variables for a split minimises the correlation between trees in the ensemble,
resulting in low error rates that have been compared to those of Adaboost (Freund
and Schapire, 1996), at the same time being much lighter in implementation. For
more details see (Breiman, 2001; Ham, 2005; Joelsson, 2005; Gislason, 2006;
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Prasad, 2006; Walton, 2008; Watts, 2008; Breiman and Cutler, 2010; Na et al.,
2010). Some studies have suggested that RF is unexcelled in accuracy among
current algorithms (Breiman and Cutler, 2005) and have outperformed CART
and similar boosting and bagging-based algorithm (Gislason et al., 2006).

2.6 Contextual Classification using Sequential
Maximum a Posteriori Estimation (SMAP)

A training map (obtained from geo-referenced field data) is used to extract spectral
signature from RS images. Parameters of a spectral class Gaussian mixture distri-
bution model are determined, which are used for subsequent segmentation
(classification) of the data. A class with variety of discrete spectral characteris-
tics is described by a Gaussian mixture. For example, forest, plantation or urban
areas are classes that need to be separated in an image. However, each of these
classes may contain subclasses each with its own distinctive spectral characteristic;
a forest may contain a variety of different tree species each with its own spectral
behavior. Mixture classes improve segmentation performance by modeling each
information class as a probabilistic mixture with a variety of subclasses.

First, a clustering technique is used to estimate the number of distinct
subclasses in each class along with spectral mean and covariance for each subclass.
The number of subclasses is estimated using Rissanen’s minimum description
length (MDL) criteria (Rissanen, 1983). The approximate ML estimates of the
mean and covariance of the subclasses are computed using the expectation maximi-
zation (EM) algorithm (Dempster, 1977; Redner and Walker, 1984).

The image is segmented into regions at various scales or resolutions using the
coarse scale segmentations to guide the finer scale segmentations based on the fact
that neighborhood pixels are likely to have similar class (Bouman and Shapiro, 1992;
Bouman and Shapiro 1994). The algorithm not only reduces misclassification but
also produces segmentation with larger connected regions for a class. However,
if nearby pixels often change class, the algorithm adaptively reduces the amount
of smoothing, ensuring that excessively large regions are not formed (http://grass.
osgeo.org/grass65/manuals/i.smap.html#notes).

2.7 Support Vector Machine (SVM)

SVM are supervised learning algorithms based on statistical learning theory and
heuristics (Kavzoglu, and Colkesen, 2009; Yang, 2011). SVM was originally proposed
by Vapnik and Chervonenkis (1971) and improvised further by Vapnik (1999).
SVM plots input vectors to a higher dimensional space where two parallel hyper
planes are constructed on each side of the separating hyper plane that separates the
data with lower generalization error. The success of the SVM model depends only
on a subset of the training data since training poincs that lie beyond the margin
are unaccounted (Waske and Benediktsson, 2007; Kavzoglu and Colkesen, 2009).




Classification Models 107

The easiest way to train SVM is by using linearly separable classes (Otukei and
Blaschke, 2010).

In order to classify M-dimensional datasets, /-1 dimensional hyper plane is
produced with SVMs. As seen in Figure 1, there are various hyper planes sepa-
rating two classes of data. However, there is only one hyper plane that provides
maximum margin between the two classes (Figure 2), which is the optimum hyper
plane; the points limiting the width of the margin are the support vectors. With
N samples represented by {x , y } (n=1, ..., N), where x € RV, is an M-dimensional
space, and y & {1, +1} is class label, then the optimum hyper plane maximizes the
margin between the classes.

Figure 2 shows the hyper plane that are defined as (w - x, + & = 0) (Kavzoglu
and Colkesen, 2009), where x is a point lying on the hyper plane, parameter
w determines the orientation of the hyper plane in space, & is the bias i.e. the
distance of hyper plane from the origin. For the linearly separable case, a
separating hyper plane can be defined for two classes as:

w-x, +b=2+1foral y=+1 (12)

w-x,+b<-1foraly=-1 (13)
where, these inequalities can be combined into a single inequality:

yw-x,+b)-120 (14)

The training data points on these two hyper planes, which are parallel to the
optimum hyper plane and defined by the functions w - x, + & = %1, are the
support vectors (Mathur and Foody, 2008a). If a hyper plane exists satisfying
(14), then the classes are linearly separable. Therefore, the margin between these
planes is equal to 2/||w|| (Mathur and Foody, 2004). As the distance to the closest
point is 2/[[w}], the optimum separating hyper plane can be found by minimizing
|[w]|> under the constraint (14).
The optimum hyper plane is determined by solving

min (0.5*|»|]») (15)
subject to constraints,
J,(w-x +6)=2-1 and y e{+l,-1} (16)

SVM can function both as a binary classifier and as a multi-class classifier.
Figure 3 shows non-linearly separable data as in the classification of remotely
sensed images using pixel samples. In such cases, SVM can be extended to allow
for non-linear decision surfaces (Cortes and Vapnik, 1995; Pal and Mather, 2003).

In such cases, the optimisation problem is replaced by introducing slack
variable &.
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where C is a regularisation constant providing equilibrium between margin
maximization and error minimization, and & indicates distance of the wrongly
classified points from the optimal hyper plane (Oommen et al., 2008). Larger
the C value, higher is the penalty associated to misclassified pixels (Melgani and
Bruzzone, 2004).

When the data cannot be represented linearly, non-linear mapping functions
(P) are used to map them to a higher dimensional space (H). An input data point
x is represented as @(x) in the high-dimensional space. The expensive compuration of
(@(x) - P(x)) is reduced by using a kernel function (Mathur and Foody, 2008a).
Thus, the classification decision function is

N
Flx) = sign {za”y,,f((x,x”) + 4 (19)

where for each of /V training cases there is a vector (x,) that is the spectral response
with class membership (y). a, (z=1, ....., N) are Lagrange multipliers and K(x, x )
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is the kernel function. The magnitude of a, is decided by C (Mathur and Foody,
2008b). The kernel function spreads the data points so that a linear hyper plane
can be fitted (Dixon and Candade, 2008). Kernel functions commonly used in
SVMs are broadly linear, polynomial, radial basis function and sigmoid. The
choice of kernel functions and their parameters greatly influence the performance
of SV models as we shall observe in this work, where SVM classifier was executed
with two types of kernels: polynomial, and radial basis function (RBE):

Polynomial: X(x, x;) = (}/xiij +7)% >0 (20)
RBF: K (x;x;) = exp(— || %, ~ x,|]*), > 0 (1)

where, y is the gamma term for all kernel types except linear, 4 is the polynomial
degree, and 7'is the bias term. Thecorrect selection of , 4, and 7 significantly increase

the accuracyof SVM (Chang and Lin, 2001; Wu et al., 2004; Hsu et al., 2007).

3. DATA

The idea of implementing the above classifiers (MLC, DT, KNN, NN, RE, SMAP
and SVM) was to investigate their performance on high, medium and low spatial
resolution sensor data with unknown distribution. So, IKONOS MS (4 m), IRS
LISS (Linear Imaging Self Scanner)-IIT MS (23.5 m), Landsat ETM+ (Enhanced
Thematic Mapper Plus) of 30 m spatial resolution and MODIS (Moderate
Resolution Imaging Spectroradiometer) with 7 bands (2 bands at 250 m and
5 bands at 500 m, resampled to 250 m) were chosen in lieu of high, medium
and low spatial resolution data (as given in Table 1) because these are the major
sensors commonly used for numerous applications in LULC mapping and moni-
toring. Training and testing data were collected using pre-calibrated hand held
GPS (Global Positioning System) for each study area during several field visits
and Google Earth data were used to obtain pre-classification information and for
post-classification validation.

4. ALGORITHM IMPLEMENTATION

4.1 IKONOS MS

Figure 4 is the high resolution Google Earth image and Figure § is the false color
composite (FCC) of IKONOS 4 MS bands (700 rows x 700 columns) corre-
sponding to Bangalore City, India. The part of the city shown in scene is highly
urbanized with the central business district. It consists of highly contrasting and
heterogeneous features such as race course (as oval shape in the first quadrant of
the image), bus stand with semi-circular platforms, railway station with railway
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Table 1 Remote sensing datasets used for algorithms implementation

Sl Satellite Sensor ',Dfatefdf , ‘Syizey:’ Spectral “Spatial .

No. oo e acquisition ~~ resolutions  resolution
1 IKONOS MS November 700x 4—Blue(B), 4m
24,2004) 700 Green (G),
Red (R)
and NIR
2 IRS LISS-III  December 1000x R, 235 m
MS 25,2002 1000 G and NIR
3 Landsat ETM + March 14, 2000x Band1tc5 30m
MS 2000 2000 and band 7
(B, G, R,
NIR, MIR-2)
4 AQUA/ MODIS 19-26 532x 7 bands 250 m —
TERRA  composite December, 546 (B, G, R, (Band 1
7 bands 2002 NIR, MIR-2, and 2);
reflectance SWIR) 500 m —
(Band 3 t0 7)
resampled to
250 m

lines in the second quadrant, a park below the race course, dense built up with
concrete roofs, and some buildings with asbestos roofs, blue plastic roofs (one in
the vicinity of the race course and two near the railway lines), tarred roads
with flyovers, vegetation and few open areas (such as a playground, walk ways
and vacant land).

For DT, set of rules were extracted using See5 (http://www.rulequest.com)
with 25% global pruning. These rules were then used to classify IKONOS MS
data. For KNN, number of nearest neighbor was kept 1 in feature space. In case
of conflict, random allocation to LU class was done. In NN based classification, a
logistic function was used along with 1 hidden layer. Output activation threshold
was set to 0.001, training momentum was set to 0.1, training RMS exit criteria
were set to 0.1, training threshold contribution was 0.1, and the training rate was
maintained at 0.2 to achieve the convergence at 465 iterations (Figure 6). KNN
and NN algorithms were coded in C programming language in Linux. RF was
implemented using a random forest package (Liaw and Weiner, 2002), available in
R interface (http://www.r-project.org). SMAP was implemented through free and
open source GRASS GIS (http://wgbis.ces.iisc.ernet.in/grass). SVM was imple-
mented using both polynomial and RBF using libsvm package (http://www.csie.
ntu.edu.tw/~cjlin/libsvin/). A second degree polynomial kernel was used with 1 as
bias in kernel function, gamma as 0.25 (usually taken as 1 divided by the number
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of input bands), and penalty as 1. For RBE gamma was 0.25 and penalty parameter
was set to 1.

Classified images of IKONOS data are shown in Figure 7. The class statistics
are as listed in Table 2 and Table 3 gives the accuracy assessment with highest 4
overall accuracies highlighted in bold.

Fig. 4 Google Earth image corresponding to the IKONOS image

4.2 IRS LISS-lII MS

LISS-IIT MS of 23.5 m X 23.5 m spatial resolution (as shown in FCC in the first
image in Figure 8 — LISS-III FCC) represents a portion of Kolar district, north
of new Bangalore International Airport, India. Training and testing data were
collected separately for agriculture, built up, evergreen/semi-evergreen forest,
plantations/orchards, wasteland/barren/rock and water bodies. Classified image
using the seven algorithms are shown in Figure 8. LU statistics are given in

Table 4 and highest 4 overall accuracies are highlighted in bold in Table 5.




113

Classification Models

% 001 (e1) 9L°18L - mop
9661 ¥0'9S1 yO'IE  8CUHT VA4 17°1C ¢co 6T¥ €Iy €875 (I99) WAS
61°81 0T'Cy1 F1€ T09%C 0S¢ ¥eLT 950 LEY 8T 9% ¥8'19¢ ‘Aaosﬁo& WAS
87°0C 86861 ¥9'6C  1L1€T L0°0 750 65°0 65y ey 9€'98¢ o VS
67°0T 19'8S1 9T°¢¢ 09T ¥2°0 88'1 AA €56 66yy  wLISE . A4
454! TUTIT P8SE LT°08T - - 86°0 69°L €88y  LLT8€ . NN
LL8T €LY LEHE 1L'89T 4S8! 1611 161 LLTT €8¢y yoTYE . NN
80T 1€°6S1 8I'CE  9€6ST Al 98'1 91T £8'91 0%y 9eIHE - 1a
(£ 09°1% 81Ty TL6TE SL0 €8'¢ 1%L 66 LY yEYy  L9°9%E DI
% 'y % oW g HoSry
 (punoiSfed) As_ﬁm %«& . o -
erewdpy w,, . aoﬁuuummu\w .«oo.ﬂ uzwﬁm oimqj . Joo1 so1s3qsy .J00I 2)ODUO]) - sessg))

SIB1JISSE]D padueApe BUISN SW SONOM| WOl S81ewinss N1 Z d[geL




114 Data Mining and Warehousing

Fig.5 FCC of the IKONOS image

Neural network RMS plot

C T T T T T T T T T T f T T T T T T ]

Training RMS

lteration #

Fig. 6 Plot of tréining RMS versus iterations of NN
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SVM (Polynomial)

SVM (RBF)

Vegetation

Concrete roofs Asbestos roofs
[ open area

Blue plastic roofs

Fig. 7 Classification of IKONOS MS data through advanced

classification techniques

Table 3 Accuracy assessment for IKONOS classified data

Algorithm - Class Producer’s - User’s Overall = Kappa
accuraCy  accuracy  accuracy '
(%) (%) (%)
Concrete 69.99 84.01
Asbestos 84.77 87.77
MLC Blue Plastic 84.33 81.17 80.46 0.6900
Vegetation 94.21 87.55
Open area 51.49 69.49
Concrete 84.74 81.00
Asbestos 83.75 79.00
DT Blue Plastic 84.74 80.00 82.22 0.8025
Vegetation 82.00 87.00
Open area 76.92 83.00
Concrete 95.35 95.00
KNN Asbestos 81.23 75.00 79.85 0.7150
Blue Plastic 80.00 79.00

(continued)
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Table 3 Continued

‘Algorithm  Class ~ Producers Users = Overall Kappa
el b b  accuracy acquracy accuracy
(%) (%) (%) =
Vegetation 50.00 75.00
Open area 91.00 76.92
Concrete 52.63 68.50
Asbestos 90.91 50.00
NN Blue Plastic 73.33 71.00 69.84 0.6125
Vegetation 71.43 63.00
Open area 82.61 75.00
Concrete 92.50 89.99
Asbestos 89.15 81.00
RF Blue Plastic 85.00 87.00 85.25 0.8250
Vegetation 85.00 83.00
Open area 76.92 83.00
Concrete 87.21 88.76
Asbestos 89.29 83.00
SMAP Blue Plastic 91.11 88.00 86.92 0.8475
Vegetation 91.00 89.00
Open area 76.92 85.00
Concrete 89.67 55.00
SVM Asbestos 81.33 60.00 |
, Blue Plastic 91.74 85.00 79.97 0.7125 !
(Polynomial)
Vegetation 95.33 91.00
Open area 70.64 80.00
Concrete 89.67 55.00
Asbestos 81.33 60.00
SVM (RBF)  Blue Plastic ~ 91.74 85.00 79.97 0.7125
Vegetation 95.33 91.00
Open area 70.64 80.00

4.3 Landsat ETM+ MS

Landsat ETM+ MS data of Uttara Kannada district, Karnataka state, India and
part of Western Ghats, India (first image in Figure 9 is Google Earth image) were
used for classification. Band 1 to 5 and band 7 of 2000 X 2000 size were classified
using training data collected from field and validated using separate test dara. l
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AR

Polynomial)
Forest

RE P | SN
[ ] Agricuiture 2 Builtup
[ ]Plantation [ ] Waste land

SVM (RBF)

Water bodies

Fig. 8 Classification of RS LISS-lll MS data through advanced
classification techniques

Table 4 Accuracy assessment for RS LISS-Hll classified data

‘Algbﬁthth Class me.ducet’s Users  Overall Kappa
. Jccuracy  accuracy  accuracy
% % ()
Agriculture 91.21 93.87
Builtup 88.33 89.33
MLC Forest 94.80 86.24 86.59 0.8323
Plantation 88.86 85.46
Wasteland 85.20 82.81
Water bodies  68.52 85.10
DT Agriculture 94.72 5747 75.89 0.7148
Builtup 63.04 83.60 ' '

(continued)

1
i
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Table 4 Continued

Algorithm | ‘Class“ o Produc'ie'r’gl« Jser Kappa
T \aécuifac”yf ~ accura
Forest 93.87 70.38
Plantation 95.75 76.15
Wasteland 56.91 78.37
Water bodies 76.38 67.00
Agriculture 89.36 89.44
Builtup 87.54 95.66
KNN Forest 94.90 87.99 89.02 0.8604
Plantation 89.00 88.00
Wasteland 85.01 82.32
Water bodies 85.18 94.00
Agriculture 92.56 81.45
Builtup 81.30 91.63
NN Forest 87.90 88.34 83.66 0.8112
Plantation 83.00 81.00
Wasteland 74.42 81.56
‘Water bodies 78.83 82.00
Agriculture 93.96 74.73
Builtup 67.51 83.65
RF Forest 91.57 85.70 82.29 0.7638
Plantation 80.00 81.00
Wasteland 73.47 84.87
Water bodies 85.09 86.00
Agriculture 91.17 62.46
Builtup 79.49 64.98
SMAP Forest 73.23 87.84 76.17 0.7365
Plantation 75.00 81.00
Wasteland 51.15 72.56
Water bodies 88.18 87.00
Agriculture 75.28 48.04
Builtup 33.63 50.17
SVM Forest 90.55 84.49
. 68.83 0.6647
(Polynomial) Plantation 64.00 68.00
Wasteland 53.71 92.73
Wa'ter bodies 69.35 96.00

(continued)
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Table 4 Continued
Algorithm  Class Producers  User’s Overall Kappa
= accuracy  accuracy  accuracy
(%) (%) (%)
Agriculture 90.49 85.83
Builtup 85.54 89.33
SVM (RBF) forest 9090 8669 gpi8 8534
Plantation 93.14 87.15
Wasteland 82.46 85.51
Water bodies 90.17 91.00

ETM+ FCC

[
SMAP

SVIM (Pdlynomlai)

SVM (RBF)

[ Agriculture

Builtup

1 Forest

Plantation [ ] Waste land Z&] Water bodies

Fig. 9 Classification of ETM+ Plus data‘thréru‘ghkadvahted classification

techniques
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Table 7 Accuracy assessment for ETM+ classified data

Algorithm ~ Class Producer’s ~ User’s Overall Kappa
accuracy  accuracy  accuracy
(%) (%) (%)
Agriculture 82.50 86.66
Builtup 84.00 85.00
MLC Forest 80.85 90.91 85.18 0.8190
Plantation 81.66 83.00
Wasteland 83.00 89.67
Water bodies 90.91 84.00
Agriculture 83.33 86.67
Builtup 95.00 85.00
DT Forest 82.63 80.61 84.54 0.7946
Plantation 85.75 80.00
Wasteland 85.00 84.00
Water bedies 83.33 83.21
Agriculture 84.41 87.00
Buﬂtup 97.00 87.00
KNN Forest 76.43 89.79 86.98 0.8314
Plantation 87.45 86.67
Wasteland 87.00 89.00
Water bodies 87.00 85.00
Agriculiure 83.33 70.00
Builtup 85.00 82.00
NN Forest 62.63 60.61 74.98 0.7142
Plantation 87.85 76.66
Wasteland 77.00 71.00
Water bodies 66.67 77.00
Agriculture 87.44 86.66
Builtup 87.00 82.00
RF Forest 74.26 81.82 83.37 0.7505
Plantation 82.57 84.73
Wasteland 82.00 79.00
Water bodies 90.91 82.00
SMAP Agriculture 85.48 86.66 89.03 0.8596
Builtup 98.00 99.00 ) )

(continued)




Classification Models 123

Table 7 Continued

‘ Algorithm Class Producer’s  User’s Overall Kappa
‘ - accuracy . accuracy — accuracy '
| (%) (%) (%)
Forest 80.65 87.76
Plantation 88.94 89.57
Wasteland 89.00 87.00
Woater bodies 87.33 89.00
Agriculture 87.27 80.00
Builtup 85.00 95.00
SVM Forest 88.70 81.82
, 85.35 0.8324
(Polynomial) Plantation 81.66 85.47 3
Wasteland 85.00 87.00
Water bedies 85.55 81.67
Agriculture 76.25 83.33
Builtup 80.00 93.00
Forest 80.85 80.91
SVM (RBF 83.77 0.
( ) Plantation 81.66 83.33 7977
Wasteland 89.00 85.00
Water bodies 90.91 81.00

The classified images using the seven techniques are shown in Figure 9. Tables 6
and 7 give the LU statistics and accuracy assessment with highest 4 accuracies

highlighted in bold.

4.4 MODIS

MODIS 8-day composite data (7 bands of 250 m X 250 m) were co-registered
with known ground control points — GCPs (RMSE — 0.11) representing Kolar
district in Karnataka having an area of 8238 sq. km. Training data (= 250 m
X 250 m) were collected representing approximately 10% of the geographical
area covering the entire spectral gradient of the classes. Separate test data were
collected for validation. Preliminary survey revealed that there are six major
LU classes in the study area — agriculture, builtup (urban/rural), evergreen/
semi-evergreen forest, plantations/orchards, wasteland/barren rock/stony waste/
sheet rock and water bodies/lakes/ponds/tanks/wetlands) that could constitute
homogencous MODIS pixels. Barren/rock/stone that have very limited ground
area proportions and are unevenly scattered among the major six classes, were
grouped under the wasteland category since they would form mixed pixels.
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The classified images are shown in Figure 10 along with LU statistics (Table 8)
and accuracy assessment (in Table 9).

v e

MLC (IRS LISS-llI MLC

RF SMAP -

[ ] Agriculture [ Builtup | Forest

[ ] Plantation [ | waste land

i
SVM (Polynomial) SVM (RBF)

Fig. 10 Classification of MODIS data through advanced classification
techniques

5. DISCUSSION

The performance of each classifier is discussed in this section, with reference to
IKONOS MS, IRS LISS-III MS, Landsat ETM+ MS and MODIS data.

From visual interpretation and comparison of the IKONOS classified image
with the Google Earth and ground truth data, it was noticed that among the
seven techniques used for classifying IKONOS images, SMAP performed best
with 86.92% overall accuracy followed by RF with 85.25% accuracy (Table 10).
SMAP takes into account the intra class spectral variations and exploits spatial
information among neighboring pixels to improve classification results (Magnussen
et al., 2004). NN was difficult to train before it reached convergence as evident
from the training RMS plot in Figure 6. It has wrongly classified asbestos roof to
concrete built-up and was unable to detect the blue plastic roof (Table 2). SMAP
has aggregated some pixels of similar class types, creating blocky appearance as
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Table 9 Accuracy assessment for MODIS classified data

Algorithm - Class Producer’s  Users  Overall  Kappa
accuracy - accuracy - accuracy
(%) (%) (%)
Agriculture 93.70 70.26
Builtup 44.00 46.32
MLC Forest 80.00 66.22 70.43 0.6721
Plantation 65.90 77.88
Wasteland 68.90 83.33
Water bodies 70.75 75.38
Agriculture 60.24 53.07
Builtup 58.06 63.00
DT Forest 38.02 58.35 59.51 0.4860
Plantation 62.00 54.00
Wasteland 65.19 63.28
Water bodies 71.00 67.85
Agriculture 53.82 95.56
Builtup 48.90 44.33
KNN Forest 65.00 64.00 62.74 0.5801
Plantation - 58.18 63.85
Wasteland 71.31 45.86
Water bodies 70.87 71.29
Agriculture 54.44 76.08
Builtup 48.73 44,33
NN Forest 64.00 63.87 G414 0.5633
Plantation 83.04 75.39
Wasteland 65.00 58.62
Water bodies 68.76 67.44
Agriculture 62.98 88.17
Builtup 59.44 54.33
RF Forest 75.00 79.00 76.21 0.7357
Plantation 92.93 91.03
Wasteland 83.17 72.41
Water bodies 79.00 77.00
Agriculture 67.26 71.69
SMAP Builtup 47.83 54.00 69.44 0.6558
Forest 82.54 75.43
Plantation 61.70 65.72
. (continued)
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Table 9 Continued

Class  Producers Users  Overall

 accuracy iac:;‘:mfac'yf'“ o
Wasteland 78.87 71.17

Water bodies 81.47 75.56
Agriculture 54.44 76.08

Builtup 48.73 44.33
SVM Forest 64.00 61.00
. 64.6 0.56
(Polynomial) Plantation 83.04 85.39 > 2633
Wasteland 67.00 58.62
Water bodies 68.41 64.70
Agriculture ~ 70.26 78.70
Builtup 56.32 57.34
Forest 66.22 73.34
SVM (RBF 70. 0.6921
( ) Plantation 77.88 65.90 7> ?
Wasteland 83.33 68.10
Water bodies 72.43 79.22

evident from the disappearance of the linear tarred road (flyover), merging with
the adjacent concrete built-up. Inside the race course area, asbestos roof is mixed
with open area in MLC classified image, blue plastic roof has been overestimated
in KNN and SVM (Poly), open area is overestimated among the concrete build-
ings especially in race course in SVM (RBF) as seen in Figure 7, bringing down its
user’s accuracy. SVM (Poly) and SVM (RBF) have similar accuracies.

LISS-III data belongs to a region where forest and plantation are mixed because
of degradation of natural forest and afforestation as plantation. Forest has exposed
soil between trees and is therefore not dense to have spectrally significant different
signature compared to plantation. As a result, the two classes often mix and create
confusion in interpreting classification result. The area has dominant wasteland
which has similar reflectance as built up or barren land. Wasteland has often been
misclassified as built up and vice-versa. KNN has classified LISS-III imagery with
maximum accuracy (Table 5). Agriculture is overestimated in SMAP and much
wasteland is misclassified as built up in DT and RF (Figure 8). Plantation class has
increased in DT due to mislabeled forest pixels. SMAP and KINN have problems
in classifying water bodies and have underestimated the same. The second best
classifier followed by KNN (89.02%) in first position is SVM (RBF) with 88%
accuracy. A NN with 4 hidden layers, 0.1 learning rate and 0.1 momentum with
5000 epochs was used for training the network in 14 seconds which was fourth
best classifier with 83.66% overall accuracy after MLC (86.59%) in third position.
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Landsat data having a spatial resolution of 30 m were classified most accurately
using SMAP algorithm (89.03% overall accuracy, Table 7). The area covered by
this image has forested landscape, dominated by evergreen and semi-evergreen
flora. KNN, SVM (Poly) and MLC gave higher overall accuracies of more than
85%. Plantation was overestimated in DT and NN which had 4 hidden layers
with 0.2 learning rate and 0.2 momentum with 20000 epochs, took 77 seconds
to train. A second degree polynomial function with gamma as 0.167 was used in
SVM (Poly), which gave lower accuracies in detecting water bodies in comparison
to other seven techniques. DT, NN, RF and SVM (RBF) showed abnormal trends
and have classified mountain ridges as narrow water channels (Figure 9). Wasteland
are often mixed with fallow land due to seasonal differences in crop practices, and
it also reflects similar to sand on the sea shores/sea beaches (as depicted in first
picture in Figure 9: Google Earth image of UK, India with Arabian sea on the
west portion of the image), which were prominent in DT classification.

Due to coarse spatial resolution of MODIS pixels (250 m), misclassifica-
tion seems to be obvious because of mixed pixel problem that was unavoidable.
With pixilated and patchy appearance of classified images, overall classification
accuracy ranged from 59.5% (DT) to 76.21% (RE). When compared with the
ground truth and resampled LISS-III MS classified image at 25 m spatial resolu-
tion, (Figure 10), RF has performed best in classifying LU categories, followed
by SVM (RBF), MLC and SMAP. DT has underestimated plantation, while NN
has classified many wasteland pixels as built up in the northern part of study area.
Whatever be the performance of each technique, the classified MODIS images
are not useful in obtaining accurate LULC information at regional level. Table
10 provides the best four classification techniques for various resolution data
depending on their performance and overall accuracies. :

Table 10 illustrates that SMAP, KNN, SVM and RF are applicable at regional
level LULC mapping using medium to high spatial resolution data. RE has
outperformed DT and is also reported by Gislason et al., (2006). RE are increas-
ingly being merged with other techniques such as object oriented approaches
for achieving better classification accuracy (Watts and Lawrence, 2008), for

Table 10 Best performing classification algorithms for different sensors

Rank IKONOS OA* LISSUI OA* ETM OA* MODIS OA*

1 SMAP 86.92 KNN 89.02 SMAP 89.03 RF 76.21
2 RF 85.25 SVM 88.18 KNN 86.98 SVM 70.75
(RBF) (RBE)
3 DT 82.22 MIC 86.59 SVM  85.35 MLC 70.43
(Poly)
4 MLC 80.46 NN 83.66 MLC 85.18 SMAP 69.44

*OA — Overall Accuracy (%)
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hyperspectral data classification (Ham et al., 2005; Joelsson et al., 2005), for
ecological prediction (Prasad et al., 2000), etc.

However, the results obtained here are contrary to Otukei and Blaschke,
(2010), who indicated that DT was better than SVM and MLC. SVM has
provided promising results in LULC classification (Watanachaturaporn, et al,,
2004; He et al., 2005; Kavzoglu and Colkesen, 2009; Watanachaturaporn, et al.,
2007, 2008). In spite of many advanced classifiers that do not depend on the
underlying data distribution, MLC, which works on the assumption of normality,
has performed better than many other techniques.

This analysis showed that overall classification accuracy of the IKONOS images
were between 69.84 and 86.92%. The highest overall accuracy obtained from
SMAP (86.92%) with IKONOS bands is still lower than highest overall accuracy
from IRS LISS-III (89.02%) using KNN, and 89.03% from SMAP with ETM+
image classification. One reason is that urban areas contain highly contrasting
features that exhibit similar reflectance’s, creating spectral confusion between
classes, such as building roofs of different types. Even with very high resolution
data such as IKONOS MS, classification is not always easy and leads to poor
accuracy in areas with mixture of land uses. ETM+ image classification ranged
between 74% and 89% which are comparable to LISS-III image classification with
reasonably good accuracies for mapping LU dynamics at a regional scale. These
results are parameter specific and may not give similar output when the parameters
are altered or adjusted. Classification errors in MODIS have occurred since the
signal of the pixels are ambiguous or perhaps as a result of spectral mixing in
pixels. Also, as the pixel resolution becomes coarser (in this case 250 m), the chance
of high accuracy as the product of random assignment of values also declines. On
similar lines, Quattrochi and Goodchild (1997) suggest that a fine-scale classification
system is needed for a classification at local level. Thus high spatial resolution data
such as IKONOS and SPOT 5 HRG are helpful. At a regional scale, medium
spatial resolutions such as Landsat TM/ETM+, Terra ASTER are most frequently
used data. At a continental or global scale, coarse spatial resolution darta such
as AVHRR, MODIS, and SPOT Vegetation are preferable. However, a recent
study by Eva et al., (2010) demonstrates the usage of medium spatial resolution
satellite imagery (Landsat-5 TM and SPOT-HRV) for monitoring forest areas
from continental to territorial levels. Inter-sensor comparison between Resourc-
esat, LISS-III, LISS-IV and AWIiFS with reference to coastal LULC (mudflat,
mangroves, vegetated dune, coastal water, etc.) were carried out on the basis of
DN values, converting radiance and reflectance values of each sensor (Chauhan
and Dwivedi, 2008). The study revealed that LISS-IV can be used in place of
LISS-III or it can be merged (LISS-III MS + PAN). Comparison of AWiFS and
LISS-IV did not show good correlation as with LISS-III, because of the large
difference in spatial resolutions.

Spatial resolution is an important factor that affects classification details and
accuracy (Chen et al., 2004; Velpuri et al., 2009) and influences the selection of
classification approaches (Atkinson and Aplin, 2004), since the size of ground
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objects relative to the spatial resolution of a sensor is directly related to image
variance (Woodcock and Strahler, 1987). When the object in the scene becomes
increasingly smaller relative to the pixel resolution, they are no longer regarded
as individual objects. In such cases, reflectance is treated as a sum of interactions
among various classes as weighted by their relative proportions (Strahler et al.,
1986). Therefore, medium spatial resolution data such as IRS LISS-TII and
Landsat are useful at a regional scale but not appropriate at a local level.

For fine spatial resolution data, although mixed pixels are reduced, the spectral
variations within classes decrease the classification accuracy (Lu and Weng, 2007).
Therefore, selection of a suitable data mining algorithm must consider important
factors such as aim of classification, classification accuracy, algorithm performance,
computational resources and effective separation of classes. Lu et al., (2004) and
South et al., (2004) argue that in many cases, contextual-based classifiers,
per-field approaches, and machine-learning approaches provide a better classifi-
cation result than MLC, although some tradeoffs exist in classification accuracy,
time consumption, and computing resources. A combination of multi-sensor data
with varying image characteristics, considering the economic conditions, are also
important factors that affect the selection of RS data, classification technique and
time affecting the quality of classification results.

Uncertainties involved in different stages of classification procedures influence
classification accuracy, as well as the area estimation under different LULC classes
(Dungan, 2002). Understanding relationships between classification stages,
identifying the probable factors influencing the accuracy and improving them
are essential for successful image classification. For example, spatial or radio-
metric resolution constraints, geometric rectification of multi-sensor data and
the atmospheric condition during image acquisition time causes uncertainty. On
the other hand, the algorithm used for calibrating atmospheric or topographic
effects may cause radiometric errors (Lu and Weng, 2007). Dungan (2002) listed
five types of uncertainties in RS data processing such as positional, supporrt,
parametric, structural (model) and variables. Fried] et al., (2001), emphasises on
three sources of errors, namely, image acquisition process, during data processing
and the interaction between resolution and the scale of ecological processes. Yu et
al., (2008) has discussed the factors affecting spatial variation of classification
uncertainty in an image object-based vegetation mapping. Such errors have to be
considered while handling coarse resolution data such as MODIS, due to existence of
many mixtures among LULC classes. In such cases, geocomputation (Beekhuizen
and Clarke, 2010), geo-visualisation and interactive visualisation techniques
(Lucieer and Kraak, 2004) have proved to be useful.

Spectral characteristic of RS data needs to be considered during classification
using data mining algorithms. As spatial resolution increases, texture or contextual
information play vital role and turn out to be decisive factors. Classification
approaches may vary with varying RS data. For instance, with high spatial
resolution data such as IKONOS, the impact of shadow resulting from topog-
raphy and trees and wide spectral variation within the LU classes may outweigh the
advantages of high spatial resolution during classification (Lu and Weng, 2007),
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where contextual based classification such as SMAP may be better as evident from
the present study (Table 3). In this case, a combinatorial approach of spectral
and textural information can reduce the problem. For medium to coarse resolu-
tion data, however, spectral information is more important than spatial where
per-pixel classification may not be appropriate. In such cases, image fusion or
sub-pixel classification would be more suitable. For a particular study, it is often
difficult to identify the best classifier due to lack of a guideline for selection, and
the availability of suitable classification algorithm. Comparative study of different
classifiers such as the one conducted here, would certainly add to the already
existing information on spatio-spectral image classification. Next, we discuss a
new Hybrid Bayesian Classifter.

6. HYBRID BAYESIAN CLASSIFIER (HBC)

HBC is based on linear unmixing and Bayesian classifier, to assign a class label to
each pixel in a high spatial-low spectral resolution (HS-LSR) MS data (Kumar et al,,
2011). The prior probabilities of the different classes in the Bayesian classifier to
classify each pixel in the HS-LSR data such as IRS LISS-IIT MS and IKONOS
MS are obtained from abundance estimates by unmixing low spatial-high spectral
resolution (LS-HSR) MS data such as MODIS and Landsat ETM+ respectively.
The terms HS-LSR and LS-HSR are relative, depending upon the spatial resolution
of the images. For instance, MODIS bands are referred as LS-HSR and IRS LISS-
III MS bands are HS-LSR data, while Landsat ETM+ bands are LS-HSR and
IKONOS MS bands are HS-LSR data. The reason for selecting MODIS and
Landsat ETM+ images as LS-HSR supplement data is because of their economic
viability and high temporal frequency that enables their procurement for any part
of the globe, throughout the year corresponding to any HS-LSR data. However,
the technique in general, can be applied on any other LS-HSR (such as hyperspectral
bands) and HS-LSR (such as multispectral bands) data classification. The novelty
of this approach lies in the fact that low spatial-high spectral and low spectral-
high spatial resolution MS data are combined to improve the classification results
which can be thought of as a fusion process, in the sense, that information from
two different sources (sensors) are combined to arrive at an improved classified
image by systematically exploiting the relevant information from both the sources
as shown in Figure 11.

In the following section, linear unmixing using Orthogonal Subspace Projection
(OSP) and Bayesian classifier are discussed. Next, HBC is discussed with
experimental results and validation. '

6.1 Linear Unmixing
With M spectral bands and N classes (C,, .., C}), each pixel has an associated

M-dimensional pixel vector y = (y,, ..., 7, whose components are the pixel
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Fig. 11 Hybrid bayesian classifier

intensities corresponding to the M spectral bands. Let E= le,s ... e,], where, for
n=1,..., NV, e isa M X 1 column vector representing the end member spectral
signature of the 7" target material. For a pixel, let @ denote the fraction of the
nh target material signature, and a = (@), ..., a,) denote the N-dimensional
abundance column vector. The linear mixture model for y is given by

y=Ea+n (22)

where, 7 = (,, ..., 1), are i.i.d. MO, 62) (Kumar et al., 2008). Equation (22)
represents a standard signal detection model where Ea is a desired signal vector to
be detected. Since, OSP detects one target at a time, we divide a set of V targets into
desired (C) and undesired (Cs... C,_,C ;... C,) targets. A logical approach
is to eliminate the effects of undesired targets that are considered as “impeders” to
C, before detecting C, To estimate a,, the desired target material is ¢ ,. The term Fa

in (22) can be rewritten to separate the desired spectral signature ¢ ,:
y=e¢o +Rr+y (23)

wherer=(a,, ... a, ,a,+,...,a)and R=[e,...¢, e+, ..., e,] Thus the

interfering signatures in R can be removed by the operator,

P=(I- R(R"R'R") (24)
which is used to project y into a space orthogonal to the space spanned by the
interfering spectral signatures, where 7 is the X' X K identity matrix (Change,

2005). Operating on y with P, and noting that PR =0,

Py="Pea, + Py (25)
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After maximizing the SNR, an optimal estimate of a_ is

T pT
y Py

4= T (26)
e, P Pe,

Note that 1 2 ¢, 2> 0 and thus (a,, ..., @,) can be taken as proportional probabilities

of the NV classes i.e. P(C) < @, .

6.2 Bayesian Classifier

Associated with any pixel, there is an observation y With N classes (C, ..., C,),
Bayesian classifier calculates the posterior probability of each class conditioned on

y (Hahn and Kamber):

P(y|C,) P(C
PC,| y) = (_y'[)_()ﬁﬁ__) 27)

In (27), since P(y) is constant for all classes, only P(y|C ) P(C) is considered. P(y |C)
is computed assuming class conditional independence, so, P(y |C) is given by

P(yIC) = T P(y,|C,) (28)

6.3 Hybrid Bayesian Classifier (HBC)

HBC uses the abundance of each class obtained from LS-HSR data by linear
unmixing as prior probability while classifying the HS-LSR data using Bayesian
classifier of the same geographical area and time frame. That is, given the
observation vector y for a pixel, it is classified to fall in class /if /= Arg Max P(y | C)
P(C), where P(y| C) is as in (28) calculated using the HS-LSR data and P(C) o< a,
calculated using the LS-HSR data. The assumptions are: (i) if there are r HS-LSR
pixels contained in one LS-HSR pixel, i.e. resolution ratio is (»: 1), the prior
probabilities for all the r HS-LSR pixels are equal corresponding to the same
LS-HSR pixel, and (ii) the two data types have a common origin or upper left
corner, i.e. the edges of the » X » HS-LSR pixels overlaps exactly with the
corresponding LS-HSR pixel. The limitations are: (i) (K-1) should be 2 M in
LS-HSR data and (ii) M in HS-LSR should be £ M in LS-HSR data.

6.4 Experimental Results

Two separate experiments were carried out. In the first experiment, LISS-IIT MS
data (3 bands of 23.5m x 23.5m spatial resolution resampled to 25m, acquired
on December 25, 2002) of 5320 x 5460 size and MODIS 8-day composite data
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(7 bands of 250m X 250m, acquired from 19-26 December, 2002) of 532 X 546
dimension were co-registered with known ground control points (RMSE - 0.11).
Training data were collected from the ground representing approximately 10% of
the study area covering the entire spectral gradient of the classes. Separate test data
were collected for validation.

LISS-IIT MS classified image using conventional Bayesian classifier is shown
in Figure 12(a). Assuming that there are six (fixed) number of representative
endmembers (pure pixels), the entire image was modeled in terms of those spectral
components, extracted using N-FINDR algorithm (Winter, 1999) from MODIS
images. In the absence of pure pixels, alternative algorithms (Plaza et al., 2004)
can be used for endmember extraction, which is a limitation of N-FINDR. It may
be noted that some objects (for example buildings with concrete roofs, tiled roofs,
asphalt, etc.) exhibit high degrees of spectral heterogeneity representing variable
endmembers. This intra-class spectral variation with variable endmembers can
be addressed through techniques discussed in (Bateson et al., 2000; Song, 2005;
Foody and Doan, 2007).

Abundance values were estimated for each pixel through unmixing and used
as prior probabilities in HBC to classify LISS-IIT MS data [Fig. 12 (b)]. Table 11 is
the class statistics and Table 12 indicates the producer’s and user’s accuracies. The
overall accuracy and Kappa for HBC (93.54%, 0.91) is higher than Bayesian classi-
fier (87.55%, 0.85). For any particular class, if the reference data has more pixels
with correct label, the producer’s accuracy is higher and if the pixels with the
incorrect label in classification result is less, its user’s accuracy is higher (Mingguo
etal., 2009). Bayesian classifier wrongly classified many pixels belonging to waste/
barren/fallow as builtup. Forest class was over-estimated and plantation was under-
estimated by Bayesian classifier. The only minority class in the study area is water
bodies. Classified image using conventional Bayesian classifier had 1.08% (8854
ha) of water bodies in the study area. After the ground visit, we found that there
are not many water bodies and the extents of most individuals were < 2000m2.
Therefore, only a few water bodies that had spatial extent > 62500 m2, could be
used as endmembers. The minimum detected water class was 5% using unmixing
of LS-HSR data. It may have happened that the prior probability was unlikely for
this class while classifying the LISS-III MS data using HBC. The classified image
obtained from HBC showed 0.81% (66.20 ha) of water bodies. A few pixels were
wrongly classified using HBC, therefore, the producer’s accuracy decreased from
90.91 (in conventional Bayesian classifier) to 88.18% (in HBC).

However, given the same set of training pixels for classification, the user’s accuracy
has increased from 88.89 to 97%. Producer’s accuracy increased for agriculture
(2.6%), builtup (4.3%), forest (7%), plantation (11.5%) and waste land (10.6%)
and user’s accuracy increased for agriculture (8%), built up (16.6%), forest (7.6%)
and water bodies (8%) in HBC output. On the other hand, producer’s accuracy
decreased (2.7%) for water bodies and user’s accuracy decreased (~0.7%) for plan-
tation and waste land classes in agreement with the similar observations reported
in Mingguo et al. {2009). HBC was intended to improve classification accuracies
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Fig. 12 LISS-ll MS classified images: (a) Bayesian classifier, (b) HBC

Table 11 Class statistics from Bayesian and HBC for LISS-IIl data

Agriculture 155,451 19.04 142931 17.51

Buileup 139,759 17.12 79280 9.71
Forest 93,241 11.42 55721 6.83
Plantation 89,493 10.96 176132 21.58
Waste land 329,473 40.36 355587 43.56
Water bodies 8854 1.08 66.20 0.81

by correctly classifying pixels which were likely to be misclassified by Bayesian
classifier. Therefore a cross comparison of the two classified images located the
pixels that were assigned different class labels at the same location. These wrongly
classified pixels when validated with ground data revealed a 6% (~1742832 pixels)
improvement in classification by HBC.

In the second experiment, IKONOS MS data (4 bands of 4 m, acquired
on November 24, 2004) of 700 X 700 size and Landsat ETM+ data (6 bands
excluding Thermal and Panchromatic, of 30m, acquired on November 22, 2004)
of 100 x 100 dimension were co-registered (RMSE — 0.09). Landsat pixels were




136 Data Mining and Warehousing

Table 12 Accuracy assessment for LISS-il data

Classifiers 5  Bayesianclassifer ~ HBC

Class \L o PA* UA* s - UA*
Agriculture 87.54 87.47  90.15 T 95.56 T
Builtup 85.11  81.68  89.39 T 98.33 T
Forest 8571  88.73  92.61 T 96.36 T
Plantation 84.44  91.73  95.95 T 91.03 d
Waste land 88.03  90.37  98.67 T 89.66 d
Water bodies 9091  88.89  88.18 1 97.00 T
Average 86.96  88.15  92.49 T 94.66 T

*PA — Producer’s Accuracy; UA — User’s Accuracy.

resampled to 28 m so that 49 IKONOS pixels would fit in 1 Landsat pixel. The
scenes correspond to Bangalore city, India near the central business district having
race course, bus stand, railway lines, parks, built up with concrete roofs, asbestos
roofs, blue plastic roofs, coal tarred roads with fiyovers and a few open areas (play-
ground, walk ways, vacant land, etc.). Class proportions from Landsat image
pixels were used as prior probabilities to classify the IKONOS MS images using
HBC (Figure 13 (b)). The overall accuracy and Kappa for HBC (89.53%, 0.87)
is higher than Bayesian classifier (80.46%, 0.69). Producer’s accuracy increased
by 17% for concrete, asbestos, blue plastic roof and open area and decreased by
7% for vegetation in HBC (Table 14). User’s accuracy increased by ~5.5% for all
the classes in HBC. Bayesian classifier wrongly classified and overestimated many
pixels belonging to open area as asbestos roof (Table 13). Vegetation was over-
estimated by 9% using Bayesian classifier and open arca was underestimated by
~15%. A cross comparison of the two classified images showed that 95733 pixels
(0.33% of the study area) were differently classified by the two classifiers. Validation

Table 13 Class statistics for IKONOS data

; Classifiers ..9 o ‘VBay‘e‘s,ian;class‘iﬁet . k HBC
Concrete roof 346.67 44.34 356.18 45.56
Asbestos roof 47.99 7.41 6.79 0.87
Blue plastic roof 5.83 0.75 0.21 0.03
Vegetation 329.72 42.18 260.01 33.26
Open area T 41.60 5.32 158.58 20.28
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of these pixels showed an improvement of 9% by HBC, higher than accuracies

reported in (Janssen and Middelkoop, 1992; Cetin et al., 1993; Strahler, 1980).

vt

Concrete roofs l_—__l Asbestos roofs Blue plastic roofs
Vegetation D Open area

Fig. 13 IKONOS classified images: (a) Bayesian classifier, (b) HBC

Table 14 Accuracy assessment for IKONOS data

Classifiers > BaYeSian dasskiﬁe:’k - "HBC

ael o mw . owm o s
Concrete roofs 69.99 84.01 76.49 T 93.89 T
Asbestos roofs 8477  87.77  91.89 T 94.46 T
Vegetation 9421  87.55  87.24 { 89.13 T
Blue plastic roof ~ 84.33 81.17  97.00 T 85.60 T
Open area 51.49 6949  95.00 T 74.22 T
Average 76.96 81.99 89.52 T 87.46 T

7. CONCLUSION

In the first part of this chapter, seven advanced classifiers were tested and their
performance analyses were carried out on multi-sensor data of varying spatial
resolutions from IKONOS 4 m, IRS LISS-IIT MS 23.5 m, Landsat ETM+ 30 m to
MODIS 250 m data. SMAP was best for IKONOS and ETM+ data classification,
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KNN was superior to other techniques for LISS-III, and RF could classify
MODIS data with maximum accuracy. In general, the performance of SMAD,
KNN, SVM and RF are suitable for classification based exploratory data analysis
using medium to high resolution sensor data. Due to the intrinsic scale of MODIS
spatial resolution, spectral mixing cannot be avoided and ignored. In such cases,
per-pixel classification do not provide much useful results and the low spatial
resolution data need to be fused or merged with higher spatial resolution image
(such as Panchromatic) through image fusion which increases the spatial as well as
spectral property of data. However, improvements in spatial resolution of data do

“not alone suffice in producing accurate thematic maps. In such cases, classifying

a complex landscape still remains a challenge and requires consideration of many
other factors during classification and interpretation. RS data integrated with
other ancillary geographical data such as elevation, aspect, temperature, texture,
etc. can further improve the classification accuracy and may provide individual
strategies for different landscape types such as highly mountainous regions (e.g. the
Himalayas) to highly urbanized landscapes (such as Greater Bangalore City).

In the second part, a new Hybrid Bayesian Classifier was discussed. The major
contribution of this technique lies in the fact that abundance estimates from low
spatial-high spectral resolution data were utilized as prior probabilities to classify
high spatial-low spectral resolution data using a Bayesian classifier, improving the
overall accuracy by 6% and 9% with IRS LISS-III MS and IKONOS MS data
respectively, as compared to conventional Bayesian classifier, demonstrating the
robustness of the approach.
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