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ABSTRACT

Land cover (LC) describes the physical state of the earth’s surface in terms of the natural
environment (vegetation, waterbodies, etc.) and the human-made structures (built up). These features
can be extracted from RS data of different spatial (Cartosat, IKONOS PAN, etc ), spectral (Multispectral,
superspectral and hyperspectral) and temporal resolutions. LC mapping can be performed by processing
these data into different themes or classes using supervised and unsupervised classification approaches
Robust algorithms are available for classifying multispectral data However, classification of coarse
spatial resolution data such as superspectral for discerning LC entities requires different strategies. This
communication evaluates the suitability of algorithms such as Spectral Angle Mapper (SAM) and Gaussian
Maximum Likelihood classifier (GMLC) for L.C mapping using (i) MODIS 7 land bands product, (ii}
Principal component and (iii) Minimum Noise Fraction components, of the MODIS 36 bands of 250 m
to 1 km spatial resolution. The accuracy assessment shows that GMLC on MODIS bands 1 to 7 and
SAM on the same 7 bands performed well (with 76% and 70% accuracy) in LC mapping compared to
others. Validation reveals utility of these techniques for .C mapping from superspectral data at regional
scale

Keywords: Land cover, Superspectral, MODIS, Spectral Angle Mapper, Gaussian Maximum Likelihood
Classifier, GRDSS

1.0 INTRODUCTION

Remote sensing (RS) techniques have been widely used since past four decades for inventorying,
mapping and monitoring of natural resources. Diverse earth resources could be discriminated due to the
dissimilarity among their spectral reflective properties. Recent trends in RS technologies have lead to
the improvements in sensor design, which have helped in acquiring the data with better spatial and
spectral resolutions. These data could be analysed using either visual interpretation or automated digital
processing techniques Visual interpretation is based on interpretation keys such as tone, texture, shape,
size and context, Compared to this, each individual pixel in an image is classified or grouped based on
the spectral information in the digital image classification approaches. The supervised and unsupervised
classification algorithms have been widely used for land use mapping exercises.

Algorithms based on supervised classification techniques, classify pixels considering the training
site signatures as is done in Gaussian Maximum Likelihood classification (GMLC). This approach is
based on probability density function associated with a particular signature (training site signatures).
Pixels are assigned to most likely class based on a comparison of the posterior probability that it belongs
to each of the signatures being considered. In contrast to this approach, Spectral Angle Mapper (SAM)
compares each pixel in the image with every endmember for each class and assigns a ponderation value
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between 0 (low resemblance) and 1 (high resemblance). Endmembers are taken directly from the image
and compared with signatures based on field experiments In this paper, we evaluate the suitability of
superspectral data (different MODIS products) for LC mapping using GMLC and SAM techniques at a

regional scale.

GMLC and SAM algorithms for classification of vegetation in southern Finland using AISA
airborne imaging spectrometer of 1.1 m spatial resolution with 17 visual and near infrared bands data
(Lumme, ] H., 2004) show GMLC classifier led to better results with an overall accuracy of 91%, but
the results deteriorated under varying illumination and required more computation time. SAM was
comparatively faster and they led to good classification results in poor illumination. Similar analysis
with the hyperspectral data of 1 m spatial resolution and 20 spectral bands acquired by the AISA airborne
imaging spectrometer onboard the NOMAD GAF-27 aircraft (Shafii, H. Z. M. er al, 2007) show the
relative performance of GMLC and SAM as 86%, and 49% respectively. The role of different spatial
resolutions in vegetation studies using MIVIS airborne hyperspectral data (102 spectral channels: 20
channels in the VIS-NIR wavelength range (0.43-0.83 pm), 8 channels in the near-infrared (1.15-155
um), 64 channels in the mid-infrared (1.98-2.47 um) and 10 in the thermal infrared (8 18-
127 um}} in the forest area at different altitudes of 2000 m and 5000 m in Central italy (Salvatori, R.,
2003) revealed that GMLC has a better distinction-among different vegetation units (with 99.4% on 4
m and 99.6% on 10 spatial resolution), while SAM had an overall accuracy of 69% with 4 m and 84 %
on 10 m spatial resolution

This endeavour evaluates the suitability of GMLC and SAM algorithms for LC (agriculture,
built up (urban/rural), forest, plantation/orchard, waste land/barren rock/sheet rock and water bodies)
mapping using superspectral data (MODIS) with spatial resolutions ranging between 250 m to 1 km
and spectral resolution ranging from 7 to 36 bands with wavelength spread from 405 nm to 14,385 pm
(covering visible and IR). This analysis was done using GRDSS {Geographic Resources Decision Support
System) free and open source software (GRASS mirror site in India is at http://wgbis. ces.iisc etnet in/
grass). It has the capabilities to capture, store, process, display, organize, and prioritize spatial and
temporal data It serves as a decision support system for decision making and resource planning, with
functionalities for raster analysis, vector analysis, modelling and visualization (Ramachandira T V &
Kumar, Uttam., 2004, Ramachandra T. V. et @/, 2004).

1.1 Spectral Angle Mapper (SAM)

In ¥ dimensional multi-(or super) spectral space a pixel vector x has both magnitude (length)
and an angle measured with respect to the axes that defines the coordinate system of the space (Richards
et al , 1996). Only the angular information is used for identifying pixel spectra in the SAM technique
based on the assumption that an observed reflectance spectrum is a vector in a multidimensional space,
where the number of dimensions equals the number of spectral bands. It permits rapid mapping by
calculating the spectral similarity between the image spectrums to reference spectra (Yuhas et af , 1992;
Kruse et al., 1993; Van der Meer et al, 1997; Crosta ez al., 1998; De Carvalho ef al, 2000; Schwarz er
al , 2001; Hunter ef a/., 2002). It takes the arccosine of the dot product between the test spectrum “t” to

a reference spectrum “r” as in equation 1.
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where,
nb = the number of bands, t = test spectrum, r; = reference spectrum

To compare two spectra, such as an image pixel spectrum and a library reference spectrum, the
multidimensional vectors are defined for each spectrum and the angle between the two vectors is
calculated. Smaller angles represent closer matches to the reference spectrum. If this angle is smaller
than a given tolerance level, the spectra are considered to match, even if one spectrum is much brighter
than the other (farther from the origin) Pixels farther away from the specified maximum angle threshold
are not classified (Lillesand ef af., 2002). This is an easy and rapid method for mapping the spectral
similarity of image spectra to reference spectra SAM represses the influence of shading effects to
accentuate the target reflectance characteristics (De Carvalho et al , 2000) and hence considered a very
powerful classification method and functions well even with scaling noise. SAM is invariant to unknown
multiplicative scalings, and consequently, is invariant to unknown deviations that may arise from different
illumination and angle orientation (Keshava, ef al, 2002). There is a high likelihood that angular
information alone will provide good separation, when the pixel spectra from the different classes are
well distributed in feature space However, the spectral mixture or mixed pixels pose problems due to
the assumption that endmembers represent the pure spectra of a reference material. This could happen
even with the medium spatial resolution (30 m) images. SAM technique fails if the vector magnitude is
important in providing discriminating information, which happens in many instances (Richards et o/,
1996).

Girouard et af , (2004) validated SAM for geological mapping in Central Jebilet Morocco and
compared the results between high and medium spatial resolution sensors, such as Quickbird and L andsat
TM, respectively. The result showed that SAM of TM data can provide mineralogical maps that compare
favourably with ground truth and known surface geology maps. Even though, Quickbird has a high
spatial resolution compared to TM; its data did not provide good results for SAM because of low

spectral resolution.
1.1 Gaussian Maximum Likelihood algorithm (GMLC)

Gaussian maximum likelihood classifier assumes that the distribution of the cloud of points
forming the category training data is Gaussian (normally distributed) and classifies an unknown pixel
based on the variance and covariance of the category spectral response patterns. This classification is
based on probability density function associated with a particular signature (training site). Pixels are
assigned to most likely class based on a comparison of the posterior probability that it belongs to each
of the signatures being considered Under this assumption, the distribution of a category response pattern
can be completely described by the mean vector and the covariance matrix. With these parameters, the
statistical probability of a given pixel value being a member of a particular LC class can be computed
(Lillesand ef al., 2002) GMLC can obtain minimum classification error under the assumption that the
spectral data of each class is normally distributed. It considers not only the cluster centre but also its
shape, size and orientation by calculating a statistical distance based on the mean values and covariance
matrix of the clusters A major drawback of this classifier is that large number of computations is
required to classify each pixel. This is particularly true when either a large number of spectral channels
are involved or a large number of spectral classes are to be differentiated. In such cases, the GMLC is
much slower computationally than other algorithms In addition, it is required to have the number of
pixels per training set be between 10 times and 100 times as large as the number of sensor bands, in
order to reliably derive class-specific covariance matrices

An extension of the maximum likelihood approach is the Bayesian classifier, which applies
two weighting factors to the probability estimate. First, the a priori probability, or the anticipated
likelihood of occurrence for each class in the given scene is determined, Secondly, a weight associated
with the cost of misclassification is applied to each class. Together, these factors act to minimize the
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cost of misclassification, resulting in a theoretically optimum classification. Most maximum likelihood
classifications are performed assuming equal probability of occurrence and cost of misclassification for
all classes If suitable data exist for these factors, the Bayesian implementation of the classifier is
preferable

1.2 Endmember selection

The reflected spectrum of a pure feature is called a reference or endmember spectrum. Various
techniques, such as the Pixel Purity Index (PPI), Scatter plot, Orasis (Optical real-time Adaptative
Spectral Identification System), N-FINDR, Iterative Erfor Analysis (IEA), Convex Cone Analysis
(CCA), Automated merphological endmember extraction (AMEE) and Simulated Annealing Algorithm
(SAA) have been developed to extract endmember spectra automatically from remotely sensed data
(Bateson, C A , 2000; Boardman, )., 1995; Plaza, A , 2004; Winter, M. E. and Winter, E. M, 2000).

The spectra are the points in an n-dimensional scatter plot, where » is the number of bands. The
coordinates of the points in n-space consist of ‘n’ values that are simply the spectral reflectance values
in each band for a given pixel The distribution of these points in n-space was used to estimate the
number of spectra and their spectral signatures, and provided an intuitive mean to understand the spectral
characteristics of the land cover types. The spectral characteristics of the endmembers were analysed by
plotting the endmembers and obtaining the transformed divergence matrix which showed a clear
separability between the endmembers These endmembers were then rotated using the n-dimensional
visualiser Snapshots of the visualisation are shown in Figure 1. The endmembers are marked using
white circles. It shows that the endmembers selected for the analysis are well separable and can be

distinguished ftom each other

Figure 1;: Three dimensional visualisation of the endmembers.
2.0 Materials and methods

2.1 Study area

The study area, Kolar is located in Karnataka state, India. It lies in the plain regions (semi arid
agro-climatic zone) extending over an area of 8238 sq km. between 77°21" to 78°35° E and 12°46 to
13°58’ N (shown in figure 2) For administrative purposes, it is divided into 11 taluks (or administrative
boundaries /blocks/units). The distribution of rainfall is during southwest and northeast monsoon seasons.
The average population density of the district is about 2 09 persons/hectare The district forms part of
northern extremity of the Bangalore plateau. The area is often subjected to recurring drought The
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rainfall is both scanty and erratic in nature The district is devoid of significant perennial surface water
resources leading to limited ground water potential The terrain has a high runoff due to less vegetation
cover contributing to erosion of top productive soil layer leading to poor crop yield Out of about
280,000 hectares of land under cultivation, 35% is under well and tank irrigation (Ramachandra et al .,

2005).
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Figure 2: Study area — Kolar district, Karnataka State, India,

2.2 Data

MODIS data were downloaded from the Earth Observing System (EQOS) Data Gateway (http:/
/edcimswww, cr.usgs. gov/pub/imswelcome/). These data sets are known as “MOD 09 Surface Reflectance
8-day L.3 global” product with spatial resolutions 250 m (bands I and 2) and 500 m (bands 3 to 7). The
MODIS Surface-Reflectance Product (MOD 09) is computed from the MODIS Level 1B land bands 1,
2,3,4, 5,6, and 7 (centered at 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm,
respectively). The product is an estimate of the surface spectral reflectance for each band as it would
have been measured at ground leve!l if there were no atmospheric scattering or absorption (http://
modis gsfc nasa gov/data/dataprod/dataproducts. php? MOD NUMBER=09}. Each MODIS Level-1B
data product (Guenther et a/, 1998), contains the radiometrically corrected, fully calibrated and
geolocated radiances at-aperture for all 36 MODIS spectral bands at 1 km resolution http://
daac.gsfc.nasa gov/MODIS/ Aqua/product_ descriptions_modis.shtmi#rad_geo). These dataare broken
into granules approximately 5-min long and stored in Hierarchical Data Format (HDF). Bands 1 to 36
MODIS data “MOD 02 Level-1B Calibrated Geolocation, Data Set” were downloaded from EQOS Data
Gateway (http://edcimswww. cr.usgs. gov/pub/imswelcome/). The Level 1B data set contains calibrated
and geolocated at-aperture radiances for 36 bands generated from MODIS Level 1A sensot counts
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(MOD 01) The radiances are in W/(m? pm sr). In addition, Earth BRDF may be determined for the
solar reflective bands (1-19, 26) through knowledge of the solar irradiance (e.g , determined from MODIS
solar-diffuser data and from the target-illumination geometry). Additional data are provided, including
quality flags, error estimates, and calibration data (http://modis gsfc nasa gov/data/dataprod/
dataproducts php? MOD_NUMBER=02). The Indian Remote Sensing (IRS) Satellites-1C/1D LISS-II
(Linear Imaging Self-Scanning Sensor I1I) MSS (Multi Spectral Scanner) having 3 bands (G, R and
NIR) data with a spatial resolution 23 5 m were procured from NRSA, Hyderabad. The main sources of
primary data are from field (using GPS), the Survey of India (SOI) toposheets of 1:50,000, 1:250,000
scale and the secondary data were collected from the government agencies (Directorate of census
operations, Agriculture department, Forest department and Horticulture department) etc.

2.3 Methods

The methods adopted in the analysis involved:

1. Creation of base layers like district boundary, district with taluk and village boundaries, road
network, drainage network, mapping of water bodies, etc. from the SOI toposheets of scale
1:250000 and 1:50000.

2 Identification of ground controt points (GCP’s) and geo-correction of MODIS (MOD 09 Surface
Reflectance 8-day L3 global Products) band 1 and 2 (spatial resolution 250 m)and bands 3to 7
(spatial resolution 500 m) and MOD 02 Level-1B Calibrated Geolocation Data Set band 1 to
band 36 (spatial resolution 1 km}.

3. Resampling of MODIS bands 3 to 7 (MOD 09 product) and MODIS bands 1 to 36 (MOD 02
product) to 250 m using nearest neighbourhood technique for easy processing, overlaying and
comparison for analysis consistency.

4  Reprojection from Sinusoidal projection to Polyconic projection with Evrst 1956 as the datum,
followed by masking of the study area

5. Principal Component Analysis (PCA) of the MODIS 36 bands and derivation of Principal
Compenents

6. Derivation of Minimum Noise Fraction (MNF) of the MODIS 36 bands. Ithelped in to determine
the inherent dimensionality of the data, to reduce noise and computational requirements for
subsequent processing.

7 Classification of MODIS data using SAM and GMLC

8  Extraction of high resolution LISS-111 bands from NRSA dataset (which were in BIL. format),
identification of ground control points (GCP’s) and geo-correction of the bands through
resampling followed by cropping and mosaicing of data corresponding to the study area.

9  Generation of FCC (False Colour Composite) and identification of training sites (heterogeneous
patches) on FCC. Heterogeneous patches correspond to various land features Training sites are
chosen so as to represent all land categories and uniformly spread all over the study area

10  Collection of attribute information from field corresponding to the chosen training sites using
GPS.

11. The training polygons collected from the field were overlaid on the FCC of the image and a
region of interest (ROI) was created, thus enabling direct selection of assumed pure pixels
(endmembers)

12, Scatter plots of bands helped in locating some of the purest endmembers by taking the extreme
corner pixels. Finally, these spectra obtained by different methods (ROI and scatter plots) were
merged into six classes

13 Supervised Classification of LISS-IIl MSS data using GMLC

14 Accuracy Assessment of LISS-III MSS classified data.

15. Accuracy assessment of MODIS classified data (using SAM and GMLC) and compatison with
MSS classified data (pixel by pixel).
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3.0 RESULTS AND DISCUSSION
3.1 Classification of MODIS data using SAM

Class spectral characteristics plot for the six classes across the first seven bands, PC’s and
MNF components of the 36 bands showed distinct pattern for respective categories. The similar pattern
was observed in the transformed divergence matrices The MODIS data were classified using SAM
technique. At an angle of 0.5 radians, the classified output of the MODIS bands 1 to 7 represented the
6 land cover classes. The first five PC’s were then classified using SAM (the spectral angle set for
classes are: 5 for agriculture, 5 for built up, 0.05 for forest, 0.02 for plantation, 3 for forest and 0.02 for
water bodies) after iterations of tuning the angle between the class spectra and the reference spectra to
avoid misclassifications. The five MNF components were also classified using the SAM. Atan angle of
5 radians, all the classes represented the land cover classes well (except water, which was classified at an
angle of 0.2 radians). The classified maps obtained using SAM are as shown in figure 3 (C), (D), and 4 (A).
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Figure 3: (A) Distribution of training data set over the district (B) MLC on LISS-1II MSS
(C) SAM on MODIS bands 1 to 7 (D) SAM on PCs.
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Figure 4: (A) SAM on MNF components (8) MLC on MODIS bands 1 to 7
(C)MLC on PC’s (D) MLC on MNF components.




Endmembers discrimination in MODIS 9

3.2 Classification of MODIS data using GMLC

FCC was created using MODIS bands 4 (Green), 1 (Red) and 2 (NIR). The heterogeneous
patches were identified in the FCC as training regions for attribute data collection

MODIS bands 1 to 7 were classified by GMLC. At a threshold of 0.001, these 7 bands gave a
good representation of the land cover classes. Similarly, PC’s of 36 bands were classified by GMLC
maintaining a threshold of 0 001. The pixels in the MNF components were not very distinct and were
clustered into sub groups (comprising of two or three pixels). Though, the class separation was possible,
yet it was difficult to classify each pixel based on signature, since the image was slightly pixelated The
MNF compenents were also classified at a threshold of 0 001 as shown in figure 4 (B), (C) and (D)

3.3 Classification of LISS-III MSS data

The class spectral characteristics for the six land cover classes considering LISS-III MSS
bands 2, 3 and 4 were generated to see separability among classes. The transformed divergence matrix
also helped in distinguishing different classes. FCC was generated from the LISS-II1 MSS data. The
heterogeneous patches {training polygons) were chosen for the ficld data collection. This data with
other ancillary data were used for classifying LISS-II1 MSS data using GMLC Care was taken to see
that these training sets are uniformly distributed representing / covering the study area as shown in
figure 3 (A). The supervised classified image shown in figure 3 (B} was validated by field visit and by
overlaying the training sets used for classification. The land cover statistics are listed in table I Classified
LISS-III data aided as a reference high resolution image (with a spatial resolution of 23.5 m). Table 1
provides a comparative statistics of land cover using MODIS and LISS data with different classification
approaches

Table 1: Comparative analysis of LC classes (%) obtained from LISS-1II MSS (using MLC)

and MODIS classification on Surface Reflectance Bands (1 to 7), Principal Components and MNF
components of MODIS bands 1 to 36 using SAM and MLC.

MODIS Surface MODIS
LISS- | Reflectance |[MODIS derived! derived MINF
Classes - bands PCs (36 bands) | Components

(Bands 1to 7) (36 bands)

SAM | MLC | SAM | MLC | SAM | MLC
Agriculture (%) . 19.03 | 17.88 1 20.76 ] 19.78 | 25.93 | 19.55 | 26.63
Built up (Urban/Rural) (%0) 17.13 1 2055 15.54 ) 11.46 | 16.66 | 12.20 | 14.33
Evergreen/ Semi-Evergreen Forest (%)) 11.41 837 | 10.41 | 10.73 | 10.78 | 14.30 7.29
Plantation/ orchards (%) 10.96 | 11.81 ] 13.19 13.16 8.85 | 13.07 { 11.12
Waste land/Barren Rock / Stony waste (%) | 40.39 | 40,92 | 39.11 | 4447 | 37.16 | 40.21 | 40.27
Water bodies (%) 1.08 | 004710099 040 0.62 | 00.67 | 00.36
Total (%) 100.00 }100.00 |100.00 {100.00 1100.00 [100.00 |100.00

3.4  Accuracy Assessment
3.4.1 Accuracy Assessment of LISS-III classified map

The accuracy assessment was done by collecting field data for Chikballapur taluk (which
constitutes 10% of'the study area — Kolar district) The producer’s, user’s accuracy and overall accuracy
corresponding to the various categories were computed, along with the error matrices for supervised
classified MSS data of LISS-III, which is summarised in table 2, 3 and 4. The LISS-III supervised
classification accuracy assessment gave a kappa (k) value of 095 indicating that an observed classification
is in agreement to the order of 95 percent.
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Table 2: User’s Accuracy of classified LISS-III and MODIS Data of Chikballapur taluk.

Algorithms | Agriculture Built Forest | Plantation |Waste land Wat.er
up badies
LISS-III (MLC) 94.21 96.47 94.73 92,27 97.49 96.13
SAM (Bl to B7) 46.63 71.71 84.05 61.18 87.53 45.61
SAM (PCA) 5344 65.31 38.32 5497 | 7399 61.45
SAM (MNF) 57.45 49.94 53.22 63.07 81.05 70.34
MLC (B! to B7) 84.01 84.77 9421 51.33 84.33 51.49
MLC (PCA) 71.22 69.99 89 05 86.48 67.33 64.41
MLC (MNF) 43.33 61.02 91.23 61.22 85.11 41.22
Table 3: Producer’s Accuracy of LISS-I1I and MODIS classified Data of Chikballapur
Algorithms | Agriculture Built Forest | Plantation [ Waste land War:er
. up , bodies
LISS-II (MLC) 84.54 83.11 96.20 91.73 89.88 98.33
SAM (Bl to B7) 63.49 81.53 71.42 27.99 51.61 70.01
SAM (PCA) 86.79 86.21 24.52 67.05 33.09 44.07
SAM (MNF) 47.656 31.89 31.42 51.01 45.51 67.22
MLC (Bl to B7) 76.49 81.66 73.64 36.31 76.82 89.35
MLC (PCA) 33.21 69.78 . 4826 69.91 92.20 9111
MLC (MNF) 71.66 56.77 45.35 66.13 45,77 99.00
Table 4: Overall Accuracy.
Technigques Overall Accuracy
MLC on LISS-II 95.63
SAM on MODIS Surface reflectance bands (B! to B7) - 69.41
SAM on MODIS derived PCs (36 bands) - 3522
SAM on MODIS derived MNF Compenents (36 bands) © 4927
MLC on MODIS Surface reflectance bands (B1 to B7) 75.99
MLC on MODIS derived PCs (36 bands) 30.44
ML.C on MODIS derived MNF Components (36 bands) 4222

3.4.2 Accuracy Assessment of MODIS classified Maps

Accuracy assessments of classified data were done 1) using field data, 2) comparing LC
percentage area for different taluks across various techniques and data, and 3) pixel to pixel comparison
with the classified LISS-]1I data

3.4.2.1 Accuracy Assessment using field data

User’s, producer’s and overall accuracy assessment of the MODIS classified maps were done
with the field data and the results are listed in tables 2, 3 and 4 respectively Accuracy assessment of
MODIS classified maps were also performed at two spatial scales — at the administrative boundary
level (taluk) and at the pixel level
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3.4.2.2 Comparison based on land cover class percentage area

LC statistics were computed for all taluks pertaining to each classification algorithm and is
given in table 5 The analysis showed that MLC on MODIS band 1 to 7 was better than all other
techniques for mapping agriculture followed by SAM on MNF components whereas SAM on MODIS
B1 to B7 performed poorly on this class. MLC on MODIS band 1 to 7 is also good for mapping built
up areas, forest, plantation and waste land On the other hand, MLC on PC’s was good for mapping
water bodies

Table 5: Land cover statistics for Chikballapur.

Algorithms | Agriculture Built Forest | Plantation |Waste land | Yater

up bodies
MLC (LISS-III) 28.07 11,51 17.06 11.56 31.04 0.76
SAM (Bl to B7) 48.16 21.38 12.97 14.91 3538 0.5
SAM (PCA) 174 8.28 15.37 14.96 43.82 0.i6
SAM (MNF) 30.73 0 28.74 4,02 36.21 0.3
MLC (Bl to B7) 2831 11.71 16.35 10.4 32.72 0.51
MLC (PCA) 40.27 7.09 13 06 4.89 34.01 0.68
MLC (MNF) 23.72 3.48 14.62 16.1 41.87 0.21

3.4.2 . Pixel to pixel analysis with LISS-3 MSS classified image

Classified data of MODIS and LISS-III MSS were compared on a pixel by pixel basis for
accuracy assessment of pure (homogenous) pixels One pixel of MODIS spatially corresponds to 121
pixels (that is approximately equal to 258.5 m) of LISS-III (figure 5). The error matrix was generated
with user’s accuracy, producer’s accuracy and overall accuracy for the taluk and is listed in table 6, 7

and 8.

11x1 1x1
" J N
. B
Alwlw
LISS3 (23.5 m} MODIS (250 mj}

Figure 5: 11 x 11 pixels of LISS-III compares spatially to 1 x 1 pixel of MODIS

Table 6: User’s Accuracy obtained from pixel to pixel analysis with LISS-III image comparison for
Chikballapur taluk

Algorithms | Agriculture Built Forest | Plantation |Wasteland [ Vater
SAM (Bl to B7) 37 29 75 64 61 _ 49
SAM (PCA) 17 31 71 64 79 51
SAM (MNF) 21 45 39 61 88 33
MLC (B1 to B7) 69 39 72 65 85 51
MLC (PCA) 36 24 50 43 82 49
MLC (MNF) 40 45 53 69 92 55
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Table 7. Producer’s Accuracy obtained from pixel to pixel analysis with LISS-III image comparison

for Chikballapur taluk
Algorithms Agriculture Built Forest Plantatior | Waste land Wat'er
up bodies .
SAM (Bl to B7) 41 55 31 54 59 41
SAM (PCA) 21 41 29 66 74 37
SAM (MNF) 29 55 45 61 61 42
MLC (Bl to B7) 45 56 66 73 66 55
MLC (PCA) 65 . 49 32 61 66 39
MLC (MNF) 58 57 41 57 60 48
Table 8: Overall Accuracy.

Techniques Overall Accuracy

SAM on MODIS Surface reflectance bands (B to B7) 56.66

SAM on MODIS derived PCs (36 bands) 51.38

SAM on MODIS derived MNF Components (36 bands) . 47.38

MLC on MODIS Surface reflectance bands (Bl to B7) 65.77

MLC on MODIS derived PCs (36 bands) 53.02

MLC on MODIS derived MNF Components (36 bands) 41.55

Further, within the LC parametet, errors are generated either due to commission or omission when the
signal of a pixel is ambiguous, perhaps as a result of s ectral mixing, or when the signalis produced by
a cover type that is not accounted for in the training pr :cess. With respect to a particular class, errors of
omission occur when pixels of that class are assigne: . wrong labels; errors of commission occur when
other pixels are wrongly assigned the label of the cla s considered These errors are a normal part of the

classification process, which can be minimized.

4.0  DISCUSSION

Hard classification technique perform- well when the actual ground cover is heterogeneous
with high spatial resolution data (i e LISS-III}.SS data) However, classification accuracies depend on
adequate number of training sites, their distri;ution, and overlap of season (if not day) of training data
collection and RS data acquisition. MODIF classified image with coarse spatial resolution had many
pixels that were misclassified as is clear £ om the Accuracy Assessment (table 2, 3 and 4)

Classification accuracy at dif zrent spatial scales (administrative boundary level and pixel
level) revealed that GML C on MODIS bands 1 to 7 is superior to other techniques for mapping agriculture
as well as built up followed by SAM on MNF for mapping agriculture. Also, a certain algorithm may be
good for mapping a “particular class” but at the same time may not be equally good for mapping “all
other classes” — GMLC on MODIS band 1 to 7 could map agriculture, built up, forest, plantation and
waste land well However, water bodies could be well mapped with GMLC on PC’s compared to other
techniques.

Pre-processing techniques such as PCA and MNF on MODIS data had different effects on the
accuracy of the hard classification algorithms. SAM and GMLC performed badly on the PC’s and the
MNF components when assessing accuracy with ground truth. Though, the class separability was very
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good, yet it was difficult to classify each pixel based on signature, since the image was slightly pixelated
Howevet, at the pixel level, the two techniques performed moderately better on PC’s but relatively poor
on MNF components maintaining the same level of accuracy as obtained by accuracy assessment using
ground truth in the range of 42% to 49%. The pixels in the MNF components were not very distinct and
were clustered into sub groups comprising of two or three pixels, leadingto inaccurate classification
resnlts. The interesting point here is that both the techniques performed well at vaiious spatial scales on
MODIS band 1 te 7 products. This reveals that highly preprocessed MOD 09 data (level 3} takes care
of all the atmospheric disturbances whereas the 36 band data, MOD 02 at level 1B requires further
preprocessing to actually represent a good estimate of the surface spectral reflectance as it would have
been measured at ground level without atmospheric scattering or absarption.

The accuracy assessment showed that GMLC on MODIS bands 1 to 7 has higheét overall
accuracy followed by SAM on the same 7 bands (table 4). However, some errors may have occurred
since the signal of the pixel is ambigurous, perhaps as a result of spectral unmixing, or when the signal
is produced by a cover fype that has not been accounted for in the training process. Also, with coarser
resolution, due to mixed pixels, chances of high accuracies in hard classifications decline.

50 CONCLUSIONS

This paper evaluates SAM and GMLC algorithms for classifying two different products of the
MODIS data (MOD 09 surface reflectance and MOD 02 Level-1B Calibrated Geolocation Data Set).
Accuracy assessment was done using ground truth obtained from field, at a administrative boundary
level and was also compared with the high resolution LISS-III classified map on a pixel by pixel basis
The results obtained from accuracy assessment showed that MLC on MODIS 7 bands was good for
land cover mapping at regional scate followed by SAM on the same 7 bands.

ACKNOWLEDGEMENT

We thank the Ministry of Science and Technology, Gevernment of India and Indian Institute of
Science for the financial assistance and infrastructure support.

REFERENCES

BATESON, C A, ASNER, G P, AND WESSMAN, C. A, (2000}, Endmember Bundles: A New
Approach to Incorporating Endmember Variability into Spectral Mixture Analysis. IEEE
Transactions on Geoscience and Remote Sensing, 38(2): 1083-1094.

BOARDMAN, 1, (1995), Analysis, understanding and visualization of hyperspectral data as a convex
set in n-space. Intemnational SPIE symposium on Imaging Spectrometry, Orlando, Florida,
pp. 23-36.

" CROSTA, A P,SABINE, C. AND TARANIK, J. V, (1998). Hydrothermal Alteration Mapping at Bodie,

California, using AVIRIS Hyperspectral Data, Remote Sensing of Environment, 65:309-
319.

DE CARVALHO, O.A  AND MENESES, PR., (2000). Spectral Correlation Mapper (SCM); An
Improvement on the Spectral Angle Mapper (SAM): Summaries of the 9th JPL Airborne
Earth Science Workshop, JPL Publication, 18, pp. 9.

GIROUARD, G, AND BANNARI, A., HARTI, A. E, AND DES ROCHERS, A, (2004). Validated
Spectrai Angle Mapper Algorithm for Geological Mapping: Comparative Study between
Quickbird and Landsat-TM. www.isprs.org/istanbul2004/comm4/papers/432 p df.



14 Uttamt Kumar and T V. Ramachandra

GUENTHER, B., GODDEN, G. D, (1998). Pre-launch aigorithm and data format for level 1 calibration
products for the EQOS-AMI1 MODIS, IEEE Transaction on Geoscience and Remote

Sensing, 36(4):1142-1151
HUNTER, E.I. ANDPOWER, C H, (2002) An Assessment of Two Classification Methods for Mapping
Thames Estuary Intertidal Habitats Using CASI Data, International Journal of Remote

Sensing, 23{15):2989-3008.

KESHAVA, N. ANDMUSTARD, I F, (2002) Spectral Unmixing, IEEE Signal Processmg, 19(1): 44 57.

KRUSE, FA., BOARDMAN, J. W, LEFKOFF, A B, HEIDEBRECHI, K B., SHAPIRO, AT,
BARLOON, P.J,AND GOETZ, A F H, (1993). The Spectral Image Processing System
(SIPS) — Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote
Sensing of Environment, 44:145-163.

LILLESAND, TM. AND KIEFER, R. W, (2002}. Remote Sensing and Image Interpretation, Fourth
Edition, John Wiley and Sons, ISBN 9971-51-427-3.

LUMME, | H, (2004), Classification of Vegetation and Soil using Imaging Spectrometer data
Proceedings of the XXth ISPRS Congress, 12-23 July 2004 Istanbul, Tutkey, URL: http:/
Mwww. isprs. org/istanbul2004/index html

PLAZA, A, MARTINEZ, P, PEREZ, R, AND PLAZA, ], (2004), A Quantltatlve and Comparative
Analysis of Endmember Extraction Algonthms From Hyperspeciial Data. IEEE
Transactions on Geoscience and Remote Sensing, 42(3); 650-663

RAMACHANDRA, 1.V, AND KUMAR, UTTAM,, (2004) Geographic Resources Decision Support
System for Landuse/Landcover dynamics analysis: GRASS Free and Open Source
Software conference proceedings, Bangkok, Thailand http://gisws media osaka-cu ac jp/
grass04/viewabstract php?id =5

RAMACHANDRA, T V, KUMAR, UTTAM , PRASAD, S. N, AND VAISHNAV B., (SEPTEMBER-
OCTOBER, 2004). Geographic Resources Decision Support System — an open source
GIS, Geospatial Today: 52-59.

RICHARDS, T A, AND JIA, X, (1996). Remote Sensing Digital Image Analysis - An Introduction,
Third Edition, Springer.

SALVATORI R., GRIGNETTI, A, CASACCHIA, R, AND MANDRONE, S., (2003), The Role of
Spatial Resolution in Vegetation Studies by Hyperspectral Airborne Images. Acts -
Workshop on Airtborne Remote Sensing for geophysical and environmental applications,
Rome from 14 to 16 April 2003 URL: www.epa.gov/esd/land-sci/srsv/images/salvatori-
casacchia pdf

SCHWARZ,J AND STAENZ, K., (2001). Adaptive Threshold for Spectral Matching of Hyperspectral
Data, Canadian Journal of Remote Sensing, 27(3):216-224.

SHAFRI, H Z M., SUHAILI, A, AND MANSOR, S, (2007), The Performance of Maximum
Likelihood, Spectral Angle Mapper, Nenral Network and-Decision Tree Classifiers in
Hyperspectral Image Analysis. Journal of Computer Science, 3(6): 419-423,

VAN DER MEER, F, VASQUEZ-TORRES, M, AND VAN DIJK, PM, (1997). Spectral
Characterization of Ophiolite Lithologies in the Troodos Ophiolite Complex of Cyprus
and its Potential in Prospecting for Massive Sulphide Deposits, International Journai of
Remote Sensing, 18(6):1245-1257.

WINTER, M E,, AND WINTER, E M, (2000), Comparison of Approaches for Determining End-
members in Hyperspectral Data. IEEE Transaction on Geoscience and Remote Sensing,
3: 305-313.

YUHAS, R H,GOETZ,A F H,AND BOARDMAN, J W _(1992). Discrimination Among Semi-Arid
Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithmn Surnmaries

of the 4th JPL Airborne Earth Science Workshop, JPL Publication, 92(41):147-149,




