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“ipstract— Many shallow fandslides are triggered by heavy
infall on kil siopes resulting in enormous casualties and huge
scopomic losses in mountainous regions. Hill slope failure
Jsually occurs as soil resistance deteriozates in the presence of
shie acting stress developed due fo a pumber of reasons such as
increased soil moisture content, change in land wse causing
ape instability, etc. Landslides triggered by rainfall can
ssibly be foreseen in real time by jointly using rainfall
intensity-dur ation and information related to Iand surface
usceptibility. Terrain analysis applications using spatial data
such as aspect, slope, flow direction, compound topographic
jidex, etc. along with information derived from remotely

nsed data such as land cover / land use maps permit us to
guantify and characterise the physical processes governing the
landslide occurrence phenemenon, In this work, the probable
landstide prone areas are predicted using two different
algorithms — GARP  (Genetic  Algorithm  for Rule-set
Prediction) and Support Yector Machine (SYM) in a free and
6pen source software package - openModeiler. Several
environmental layers such as aspect, digital elevation data,
flow accumulation, flow direction, slope, land cover, compound
fopographic index, and precipitation data were used in
modelling. A comparison of the simufated cutputs, validated by
““gverlaying the actual landslide occurrence points showed 92%
‘geeuracy with GARP and 96% accuracy with SYM in
predicting landslide prone areas considering precipitation in
~the wettest month whereas 91% and 94% accuracy were
obtained from GARP and SVM considering precipifation in
‘the wettest quarter of the year.

© Index Terms—Landslide, GARP, SVM, openModeller

I INTRODUCTION

andslides are one of the most widespread natural
hazards on Earth causing casualties and property loses.
They are sudden hydrogeomorphic events due to the
ombination of 1) predisposing factors (e g. lithology and
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morphology), i) triggering factors (e g excessive and
intense precipitations) and iii) accelerating factors (eg
human activities altering natural slope stability) [1] Among
landslide typologies, shallow Jandsliding is common on
steep topographies covered by colluvial or residual soils
whose texture can vary from sand to clayey silt [2], playing
a significant role in hill slope denudation and catchment
sediment dynamics The possible time and locations where
landslides are likely to occur should thus be identified in
advance in order to avoid or reduce the harm In this regard,
establishing a landslide warning system which provides
information for evacuation and hazard mitigating is a top

priority.

Prediction of rainfall-triggered hill slope disasters has relied
mostly on the valley slope [3 and 4], rainfall intensity and
duration that can cause hill slope failure [5, 6, 7 and §]
Recently, theoretical models have been developed to predict
landslide susceptibility based on watershed topographic,
geologic and hydrological variables as well as changes in
landuse {9, 10, 11, 12, 13 and 14] The rapidly growing
availability of relatively detailed digital elevation data,
coupled with simple slope-instability mechanism and hill
slope hydrological models, has led to advances in
physicalty-based modeling of shallow landslide hazard [9,
15]. Casadei et al, [16] proposed a landslide warming
system using a2 slope-instability analysis and a hydrological
model to predict the time and location of landslides that
were verified using historical data of landslide events for
Montara Mountains of California from 19531998 [17]

Given the complex spatial dynamics of the process, most of
the hazard evaluation tools make use of Geographical
Information Systemns (GIS), capable of geospatial and
multitemporal data integration. The availability of digital
elevation models (DEMs) and precipitation data at higher
spatial and temporal resolution [1] encourage the
development of more sophisticated techniques for shallow
landslide hazard modelling [9, 15, 18, 19, 20, 21 and 13]
Several of these methods are based on the infinite slope
stability equation [22] coupled with hydrological models
{e.g. [9, 15 and 13)), extensively applied for the estimation
of spatially variable soil wetness {e.g [23, 24 and 25]).
SHALSTARB [9 and 26] is one of these models. Various
models have been developed in order to assess landslide
incidence potential [27, 28, 29 and 30] Among these
techniques, deterministic, heuristic and statistical methods
are the most common ones. Deterministic methods deal with
the estimation of quantitative values of stability variables,
over a defined area where the landslide types are simple
with homogeneous intrinsic properties [31] The required
data include soil strength, depth below the terrain surface,
soil layer thickness, slope angle and water pressure. These
methods have been employed in translational landslides



studies [32] and are applicable at large scale over small
areas. One of the main drawbacks of these methods is their
high degree of oversimplification when the datz are
incomplete Another problem is that the data requirements
for deterministic models can be prohibitive, and frequently
it is impossible to acquire the input data necessary to use the
model effectively,

In this context, the present study explores the suitability of

paitern recognition techniques to predict the probable
distribution of Jandslide occutrence points based on several
environmental layers along with the known points of
occurrence of landslides. The aims of the study are:

i) to apply and evaluate Genetic Algorithm for Rule-
set Prediction and Support Vector Machine based
models for predicting landslides;

ii.} to compare and assess the results of these analyses;

iii) to suggest management strategies for preventing
potential losses

The model utilises precipitation and six site factors
itcluding aspect, DEM, flow accumulation, flow direction,
stope, land cover, compound topographic index and
historical landslide occurrence points Both precipitation in
the wettest month and precipitation in the wettest quarter of
the year were considered separately to analyse the effect of
rainfall on hifl slope failure for generating scenarios to
predict landslides.

II. METHODS

A. Genetic Algorithm for Rule-set Prediction (GARP):
GARP is based on genetic algorithms originally meant to
generate niche models for biological species In this case,
the models describe environmental conditions under which
the species should be able to maintain populations. GARP is
used in the current work here to predict the locations
susceptible for landslides with the known Ilandslide
occurrence points.

For input, GARP uses a set of point localities where the
landslide is known to occur and a set of geographic layers
representing the environmental parameters that might limit
the landslide existence. Genetic Algorithms (GAs) ate a
class of computational models that mimic the natural
evolution to solve problems in a wide variety of domains
GAs are suitable for solving complex optimisation problems
and for applications that require adaptive problem-solving
strategies. They are also used as search algorithms based on
mechanics of natural genetics that operates on a set of
individual elements (the population) and a set of
biologically inspired operators which can change these
individuals. Tt maps strings of numbers to each potentiai
solution and then each string becomes a representation of an
individual. Then the most promising in its search is
manipulaied for improved solution [33] The model
developed by GARP is composed of a set of rules. These set
of rules is developed through evolutionary refinement,
testing and selecting rules on random subsets of training
data sets Application of a rule set is more complicated as
the prediction system must choose which rule of a number
of applicable rules to apply. GARP maximises the
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significance and predictive accuracy of tules wi
overfitting. Significance is established through 5 42 tesy
the difference in the probability of the predicieg Valon.
before and after application of the rule G le
envelope rules, GARP rules, atomic and logi mle;lsles'
envelope tule, the conjunction of ranges for g of 4,

variables is a climatic envelope or profile, indicati;_
geographical regions where the climate is Suitable for thy F
entity, enclosing values for each parameter A GARP py, ) g
similar to an envelope rule, except that variables cqp be
irrelevant An irrelevant variable is one where Ppointg may.

fall within the whole tange An atomic rule is a conjunctig, -
of categories or single values of some variabies Logit ryjg,
are an adaptation of logistic regression models to rules g
logistic regression is a form of regression equation where
the output is transformed into a probability [34]

B. Support Vector Machine (SVM): SVM are superviseg «
learning algorithms based on statistical learning theory,
which are considered to be heuristic algorithms [35] svm
map input vectors to a higher dimensional space where 3
maximal separating hyper plane is constructed Two parall|
hyper planes are constructed on each side of the hyper plane
that separates the data. The separating  hyper plane
maximises the dJistance between the two parallel hype;
planes. An assumption is made that the larger the margin or
distance between these paralle] hyper planes, the better the
generalisation error of the classifier will be The mode
produced by support vector classification only depends on g
subset of the training data, because the cost function for
building the model does not take into account training
points that lie beyond the margin [35]

In order to classify #-dimensional data sets, n-7 dimensional
hyper piane is produced with §VMs As it seen from Fig 1
[35), there are various hyper planes separating two classes
of data However, there is only one hyper plane that
provides maximum margin between the two classes [35}
(Fig. 2), which is the optimum hyper plane. The points that
constrain the width of the margin are the support vectors

In the binary case, SVMs locates a hyper plane that
maximises the distance from the members of each class to
the optimal hyper plane If there is a training data set
containing m number of samples represented by {x;, i}
(=1, ..., m), where x & RY, is an N-dimensional space, and
y & {-1, +1} is ciass label, then the optimum hyper planc
maximises the margin between the classes As in Fig 3, the
hyper plane is defined as (w.x; + b = 0) [35], where x is &
point iying on the hyper plane, parameter w determines the
orientation of the hyper plane in space, b is the bias that the
distance of hyper plane from the origin. For the linearly
separable case, a separating hyper planc can be defined for
two classes as:

w. X +b2>+] forall y=+1
w xtb< -lforally=-I

(I
2

These inegualities can be combined into a single inequality:
Yilw. x+b)—120 3)

The training data points on these two hyper planes, which
are parallel to the optimum hyper plane and defined by the




functions W. x; + b = =1, are the support vectors [36] If a
ﬁ er plane exists that satisfies (3), the classes are linearly
separzble. Therefore, the margin between these planes is
equa[ to Z/fwi] [37] As the distance to the closest point is
2w, the’ opt;mum separating hyper plane can be found by
mm]leIIlg lw]* under the constraint (3).

| Suppert Vectors -

Flg 1 (a) Hyper planes for Ilnearly separable data, (b} Optlmum hypcr
plane and support vectars [353
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Fig 2 Support vectors and optimum hyper plane for the binary case of
linearly separable data sets [35]

Thus, determination of optimum hyper plane is required to
solve optimisation problem given by:

min(0 5*|jwi*) “
subject to constraints,
yiltw xi+b)>-1 andy; e {+1,-1} (5}

As illustrated in Fig. 3 (a) [35], nonlinearly separable data is
the case in various classification problems as in the

classification of remotely sensed images using pixel
samples In such cases, data sets cannot be classified into
two classes with a linear function in input space. Where it is
not possible to have a hyper plane defined by linear
equations on the training data, the technique can be
extended to allow for nontinear decision surfaces [38, 39]

Hypor 'J‘i'aw;
w4 fmxd
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Fig 3 (a) Separation of nonlinear data sets, (b) Generalisation of the
solution by introducing slack variable for nonlinear data [35)

Thus, the optimisation problem is replaced by introducing £
slack variable (Fig 3(b))

mm[”w” +c2g} ©

i=l
subject to constraints,
yi(wx, +b)21-E,€ >0,i=1, N (N

where C is a regularisation constant or penalty parameter.
This parameter allows striking a balance between the two
competing criteria of margin maximisation and error
minimisation, whereas the slack variables £ indicates the

distance of the incorrectly classified points from the optimal
hyper plane [40]. The larger the C value, the higher the
penalty associated to misclassified samples [41].

When it is not possible to define the hyper plane by linear
eguations, the data can be mapped into a higher dimensional
space (H) through some nonlinear mapping functions (&).
An input data peint x is represented as O(x) in the high-
dimensional space. The expensive computation of
(@) Pix)) is reduced by using a kernel function [36].
Thus, the classification decision function becomes:

f{x)=sign (iociyiK(x', X+ b] (8)

where for each of ¢ training cases there is a vector (x;) that
represents the spectral response of the case together with a
definition of class membership (y).a 0 = 1, .., #) are
Lagrange multipliers and K(x, x;) is the keme! function The
magnitude of o; is determined by the parameter C [42]. The
kernel function enables the data points to spread in such a
way that a linear hyper plane can be fitted [43] Kemel
functions commonly used in SVMs can be generally
aggregated into four groups; namely, linear, polynomial,
radial basis function and sigmoid kernels The performance
of SVMs varies depending on the choice of the kemel



function and its parameters. A free and open source
software — openModeller [44] was used for predicting the
probable landslide areas. openModeller
(http://openmodeller sourceforge.net/y is a flexible, user
friendly, cross-platform environment where the entire
process of conducting a fundamental niche modeiing
experiment can be carried out It includes facilities for
reading landslide occurrence and environmental = data,
selection of environmental layers on which the model
should be based, creating a fundamental niche model and
projecting the medel into an environmental scenario using a
number of algorithms as shown in Fig 4

III STUDY AREA AND DATA

The Uttara Kdnnada district lies 74°9 to 75°10 east
longitude and 13°55 to 15°31 north latitude, extending over
an area of 10, 291 km” in the mid-western part of Karnataka
state (Fig 5) It accounts for 537 % of the total area of the
state with a population above 1.2 million [45] This region
has gentle undulating hills, rising steeply from a narrow
coastal strip bordering the Arabian sea to a plateau at an
altitude of 500 m with occasional hifls rising above 600-860
m This district with 11 taluks, can be broadiy categorised
into three distinct regions — coastal lands (Karwar, Ankola,
Kumta, Honnavar and Bhatkal taluks), mostly forested
Sahyadrian interior (Supa, Yellapur, Sirsi and Siddapur
taluks) and the eastern margin where the table land begins
(Haliyal, Yellapur and Mundgod taluks) Climatic
conditions range from arid to humid due to physiographic
conditions ranging from plains, mountains to coast

Survey of India (SOL) toposheets of 1:50000 and 1:250000
scales were used to generate base layers — district and taluk
boundaries, water bodies, drainage network, etc. Field date
were collected with a handheld GPS Environmental dais
such as precipitation of wettest month and precipitation in
the wettest quarter were downloaded from WorldClim —
(Global Climate Data [http://Awww worldclim org/bioclim]

{1) Precipitation (atmospheric water phenomena) is any
product of the condensation of atmospheric water
vapor that is pulled down by gravity and deposited on
the Earth's surface such as rain,

Land_s]ide occurrence
- points

Ratnfal
Environmental Layers

4

Other environmental layers used in the model wereiobtained
from USGS Earth Resources Observation and Sciene
(EROS) Center based HydrolKdatabage
[htip://eros.usgs gov/#/Find_Data/Products_and_Data_Avaj]
able/gtopo30/hydro/asia] which are as follows:

{2) Aspect - describes the direction of maximum rate of
change in the elevations or the siope direction. It i
measured in positive integer degrees from 0 to 360,
clockwise from north. Aspects of cells (pixels) of zerg
slope (flat areas) are assigned values of -1.

DEM — is a digital representation of ground surface
topography or terrain represented as a raster (& grid of
squares) or as a triangular irregular network. DEMg
are commonly built using remote sensing techniques
or from land surveying

3)

Flow accumulation (FA) - defines the number of
pixels which flow into each downslope pixel. Since
the pixel size of the HYDROIk data set is 1 km, the
flow accumulation value translates directly into
upstream drainage areas in square kilometers. Values
range from 0 at topographic highs to very large
numbers {on the order of millions of square
kilorneters) at the mouths of large rivers

{4

(5) TFlow direction (FD) - defines the direction of flow
from each cell to its steepest down-siope neighbor
derived from the hydrologically correct DEM Values

of flow direction vary from 1 to 255

Slope - describes the maximum change in the
elevations between cach pixel and its eight neighbors
expressed in integer degrees of slope between O and

(6

(7

Compound Topographic Index (CTID) - commonly
referred to as t;})le etness Index, is a function of the
upstream contributing area and the slope of the
landscape. It is calculated using the flow accumulation
(FA) layer along with the slope as:

FA

s 9
tan(slope) ®

CII= In(

J

" Land Gover
DEM

Slope

oy )

Probability Distribution

e

Fig 4 Methodology used for landslide prediction in cpenModeller
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Fig 5 Uttara Kannada district, Karnataka, India

In areas of no slope, a CIT value is obtained by substituting
a slope of 0.001. This value is smaller than the smallest
slope obtainabie from a2 1000 m data set with a 1 m vertical
resolution

8} The global land cover change maps were obtained from
Global Land Cover Facility, Land Cover Change
[http://glef.umiacs umd. edu/services/landcoverchange/l
andcover.shtml; http://www.landcover org/services/land
coverchange/landcover shtml]

The spatial resolution of all the data were 1 km. Google
Earth data {http://earth google com) served in pre and post
classification process and validation of the results 125
landslide occurrence points of low, medium and high
intensity were recorded using GPS from the field and
published reports.

TV. RESUL 1S AND DISCUSSION

Iwo different precipitation layers were used to predict
landslides — precipitation of wettest month and precipitation
in the wettest quarter of the year along with the seven other
layers as mentioned in section ITL Figure 6 (a) and (b) are
the landslide probability maps using GARP and SVM on
precipitation of wettest month The landslide occurrence
points were overlaid on the probability maps to validate the
prediction as shown in Figg 7 The GARP map had an
accuracy of 92% and SVM map was 96% accurate with
respect to the ground and Kappa values 0.8733 and 0 9083
respectively. The corresponding ROC curves are shown in
Fig. 8 (a) and (b). Total area under curve {(AUC) for Fig. &
(a) is 0.87 and for Fig. 8 (b) is 0.93 Figure 6 (c} and (d) are
the landslide probability maps using GARP and SVM on
precipitation of wettest quarter with accuracy of 91% and
94% and Kappa values of 0 9014 and 0 9387 respectively.

89

Low Medi Probiabiity o Figh
R o .04 .
f "~ " 1 degrees

_ Fig 6 Probability distribution of the landslide prone areas

ROC curves in figure 8 (c) and (d) show AUC as 0.90 and
0 94 Various measures of accuracy were used as per [46] to
agsess the outputs Table T presents the confusion matrix
structure indicating true positives, false positives, false
negatives and true negatives,

Fig 7 Validation cf the probability distribution of the landslide prone
areas by overlaying landslide ocourrence points

Confusion matrices were generated for each of the 4 outpuis
(Table II) and different measures of accuracy such as
prevalence, global diagnostic power, correct classification



NG @
Fig. 8 ROC curves for landslide prone maps (a} GARP {b) SVM on
precipitation of wettest month; {c) GARP and (d) SVM on precipitation of
wettest quarter

rate, sensitivity, specificity, omission and commission error
were computed as listed in Table IIT

The results indicate that the output obtained from SVM
using precipitation of the wettest month was best among the
4 scenarios. It maybe noted that the outputs from GARP for
both the wettest precipitation month and quarter are close to
the SVM in term of accuracy Qne reason is that, most of
the areas have been predicted as probable landslide prone
zones (indicated in red in Fig 6 (a) and (c)) and the terrain
is highly undulating with steep slopes that are frequently
exposed to landslides induced by rainfall Obviously, the
maximum number of landslide points occurring in the
undulating terrain, collected from the ground will fall in
those areas indicating that they are more susceptible to
landslides compared to north-eastern part of the distriot
which has relatively flat terrain.

Another case study of Kerala state, India was carried out
with the same environmental layers along with 10 landslide
occurrence points as shown in Fig. 9. The predicted output
Tor precipitation in the wettest month is shown in Fig 10
and precipitation in the weitest quarter is shown in Fig 11
with an overall accuracy of 60%. The Kappa values for two
cases were 0.966335 and 0.96532 The ROC curves are
shown in Fig 12 (a) and (b) with 0 97 AUC for both the
cases respectively The confusion matrix and statistics are
presented in Table IV and V. The reason for low accuracy is
the presence of only 10 occurrence points throughout the
state. Also, the coarse resolution of the pixel may be
attributed for poor accuracy. However, the Kappa value and
the AUC are high which indicate that the probability
distribution of the predicted points fall well within the
occurrence points. It is another matter that the intensity of
these landslide points may vary from low to medium to
high. One potential limitation of the above data is their
spatial resolution — 1 km It is highly unlikely that landslides
of this magnitude can occur in the study area. However,
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TABLE]
CONFUSION MATRIX STRUCTURE

G TRUES = L TRUE.

|7 PRESENCE | ABSENCE
~PREDICTED PRESENCE A B
" PREDICTED ABSENCE .- C D

Key: A — True Positive, B — False Positive, C — False
Negative, D — True Negative

given the environmentai layers along with the occurrence
points, the probable areas of occurence can be mapped with
great certainty

T'he movement of a slope is complex and it is induced or
perturbed by many other [actors besides ramfall such ag
groundwater data, soil moisture information, etc. which
were not used in the prediction It is known that there are
accelerations of slope movements after intense rainfal],
however, to what extent rainfal! affects the slope movement
remains unknown and the correlation between rainfall and
the slope movement could be ambiguous in absence of
detailed observations Timely rainfall, soil moisture, grain-
size, lithology, geological structure, seismological
observations and the {onger time intervals for which data are
available can improve the accuracy of the model Beyond
their key role in identifying and mapping the landsiides, the
choice of the variables (environmental layers) used for the
prediction are also closely involved. Some limitations of the
data set cannot be overcome In this study for example, no
hydrological field data were available. However, significant
results were obtained in the study because the variables
most influential on landslide were used

Natural disasters have drastically increased over the last
decades National, state and local government including
NGOs are concerned with the loss of human life and
damage to property caused by natural disasters The trend of
increasing incidences of landslides occurrence is expected
to continue in the next decades due to urbanisation,
continued anthropogenic activities, deforestation in the
name of development and increased regional precipitation in
landslide-prone areas due to changing climatic patterns [47].
The application of modemn technologies required to control
the effects of natural hazards including landslides must
consider three significant factors - prediction, monitoting
and conservation. In fact, the promotion of accessibility to
urban facilities, such as homes and new roads in
mountainous areas is difficult to achieve without
considering geological and geotechnical factors to ensure
that the development is pleasant and safe Therefore, it is
desired to have a notion about the main factors controlling
the slope instability, assessing its severity, disctiminating
areas with presence/absence of landslides, updating and
interpreting landslide data and determining areas that are
prone to [andslides. Tn this regard, the present work may be
a contribution to the beginning of such disaster and
mitigation studies.
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Fig. 9 Landslide occurrence points in Kerala

TABLEII
CONFUSION MA TREX FOR GARP AND SVM OUTPUTS FOR UTTARA KANNADA

TRUE TRUE NUMBER | NUMBER
"""""" PRESENCE | ABSENCE OF OF
USABLE USABLE
TRk IRINNALE: PRESENCE | ABSENCE
- GARP.WITH. .| PREDICTED 120 0
PRECIPIZATION:| PRESENCE 125 0
-OF WETTEST 1 PREDICTED 5 0
(o MONTHE ) AmsEncE
~SVMWITH: | PREDICTED 118 ]
- PRECIPITATION.| PRESENCE . 125 0
FWETTEST. . | PREDICTED 7 | _ 0 -
il PRESENCE
: GARPWITH: | PREDICTED 118 0
PRESENCE 125 0
PREDICTED 7 0
R PRESENCE
‘SVMWITH, "] PREDICTED 117 ¢
;PRECIPITATION | PRESENCE 125 0
1 OFWETTSST. | prgnicren 8 0
< QUARTER | prrsencE
TABLEII
STATISTICS OF GARP AND SVM QUTPUTS FOR UTTARA KANNADA
ERUET :GLOBAL, .| ... CORRECT ' - | SENSITIVITY | -SPECIFICITY | OMISSION:; | - COMMISION .
L UTTIARA - % | ‘DIAGNOSTIC | CLASSIFICATION |1 i o ERROR 52 ERROR
KANNADA - - POWER 4 |57 RATE. 003 - e
- AN
GARP WITH
PRECIPITATION . . 096 0.96 - 0.04 -
OF WETTEST
MONTH
SVM WITH
FRECIPITATION ) - 0.94 094 - 006 -
OF WETTEST
MONTH
GARP WITH
PRECIPITATION _ . 0.94 094 - 006 -
OF WETTEST
QUARTER
SVM WITH
PRECIPITATION R . 0.94 094 - 0.06 -
OF WETTEST
QUARTER

* Xey: A — True Positive, B — False Positive, C — False Negative, D — True Negative, N — Number of Samples
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Fig 10 .Probability distribution of the landslide prone areas in Kerala Fig 11 Probability distribution of the landslide prone eress in Kerala
using precipitation in the wettest month data using precipitation in the wettest quarter data

Fig. 12 ROC curves for the predicted landslide prone maps of Kerala
(a} wsing precipitation of the wettest month, (b} using precipitation of the wettest quarter

¢ TABLEIV
CONFUSION MATRIX FOR GARP OUTPUTS FOR KERAL A
TRUE TRUE NUMBER NUMBER
PRESENCE | ABSENCE OF OF
USABLE USABLE
: S e LT : PRESENCE | ABSENCE
. GARP WITH": | PREDICTED 6 0
PRECIPITATION PRESENCE 1 0 0
OF WETTEST -1 PREDICTED 4 0 '
- MONTH = ABSENCE
GARPWITH | PREDICTED 6 0
PRECIPITATION | PRESENCE
:0F WETTESL: | pranIcTED 4 0 10 0
o QUARTER: | g s ENCE
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) TABLEV
STATISTICS OF GARP QUTPUTS FOR KERALA

PREVALENCE | GLOBAL CORRECT . | SENSITIVITY | SPECIFICITY | -OMISSION: | - COMMISION
R - - | DIAGNOSTIC | CLASSIFICATION : o | ErRROR- | " ERROR..
KERALA _ - POWER : RATE . : I R V] ERE
(A+C)N | (B+DYN | (A+D)YN | ANA+C) | D/B+D) ‘| CHA+C) | B/B+D)
GARP WITH
PRECIPITATION . _ 0.6 06 - 0.4 -
OF WETTEST
MONTH
GARP WITH
PRECIFITATION . . 06 0.6 . 04 R
OF WETTEST
QUARTER

YV CONCLUSION

Landslides occur when masses of rock, earth or debris
move down a slope Mudslides, debris flows or
mudflows, are common type of fast-moving landstides
* that tend to flow in channels. These are caused by
¢ disturbances in the natural stability of a slope, which are
. triggered by high intensity rains. Mudslides usually begin
" on steep slopes and develop when water rapidly collects
in the ground and results in a surge of water-soaked rock,
i earth and debris. Causes may be of two kinds: 1
Preparatory causes & 2: Trigpering causes. Preparatory
- causes are factors which have made the slope potentially
. unstable The triggering cause is the single event that
" finally initiated the landslide. Thus, canses combine to
make a slope vulnerable to failure, and the trigger finally
initiates the movement Thus a landslide is a complex
dynamic  system An  individual ‘landslide’
characteristically involves many different processes
operating together, often with differing intensity during
successive years.

The primary criteria that influence landslides are
precipitation intensity, slope, soil type, elevation,
vegetation, and land cover type The present study
demonstrated the effectiveness of two pattern recognition
techniques: Genetic Algorithm for Rule-set Prediction
and Support Vector Machine The landslide hazard
prediction study conducted in Uttara Kannada and Kerala
have shown that small datasets can yield landslide
susceptibility maps of significant predictive power. The
efficiency of the model has been demonstrated by the
successful validation. However, when the predicted
features may have different immediate causes, one should
carefully avoid including triggering factors among the
predictor variables since they restrict the scope of the
prediction map and convey often a poorly constrained
time dimension Beyond the sample size, the reliability of
the susceptibiiity map fundamentally depends on a good
knowledge of which environmental variables act to
determine landslides, and on the availability and the
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* Key: A —True Positive, B — False Positive, C — False Negative, D — True Negative, N —- Number of Samples

quality of the data To be reliable or simply useful, the
prediction map must also be appropriately validated. The
analysis showed that SVM applied on precipitation data
of the wettest month with 96% accuracy was close to
reality for Uttara Kannada district and GARP applied on
precipitation data of the wettest quarter was more
successful in identifying the landslide prone areas in
Kerala
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