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Abstract—Over the last few decades, there has been a significant 
land cover (LC) change across the globe due to the increasing 
demand of the burgeoning population and urban sprawl. In order 
to take account of the change, there is a need for accurate and up-
to-date LC maps. Mapping and monitoring of LC in India is 
being carried out at national level using multi-temporal IRS 
AWiFS data. Multispectral data such as IKONOS, Landsat-
TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. 
have adequate spatial resolution (~ 1m to 56m) for LC mapping 
to generate 1:50,000 maps. However, for developing countries and 
those with large geographical extent, seasonal LC mapping is 
prohibitive with data from commercial sensors of limited spatial 
coverage. Superspectral data from the MODIS sensor are freely 
available, have better temporal (8 day composites) and spectral 
information. MODIS pixels typically contain a mixture of various 
LC types (due to coarse spatial resolution of 250, 500 and 1000 
m), especially in more fragmented landscapes. In this context, 
linear spectral unmixing would be useful for mapping patchy 
land covers, such as those that characterise much of the Indian 
subcontinent. This work evaluates the existing unmixing 
technique for LC mapping using MODIS data, using end-
members that are extracted through Pixel Purity Index (PPI), 
Scatter plot and N-dimensional visualisation. The abundance 
maps were generated for agriculture, built up, forest, plantations, 
waste land/others and water bodies. The assessment of the results 
using ground truth and a LISS-III classified map shows 86% 
overall accuracy, suggesting the potential for broad-scale 
applicability of the technique with superspectral data for natural 
resource planning and inventory applications. 

 
Index Terms—Remote sensing, digital image processing, 

superspectral, Geographic Information System.  

I. INTRODUCTION 

and cover (LC) relates to the discernible Earth surface 
expressions, such as vegetation, geology, and hydrologic 

or anthropogenic features, and thus describes the Earth’s 
physical state in terms of the natural environment and the man-
made structures. Essentially, LC can have only one class or 
category at a given time and location, and can be mapped 
using suitable image data with spectral signatures. Land use is 
an expression of human uses of the landscape, e.g. for 

residential, commercial, or agricultural purposes, and has no 
spectral basis for its unique identification. Thus it can not be 
explicitly derived from image data, but only inferred by visual 
interpretation or assessed in the framework of object-based 
contextual analysis. It involves both the manner in which the 
biophysical attributes of the land are altered and the intent 
underlying that alteration, and the purpose for which the land 
is used. LC changes induced by human and natural processes 
play a major role in global as well as at regional scale patterns 
of the climate and biogeochemistry of the Earth system. 
Variations in topography, vegetation cover, and other physical 
characteristics of the land surface influence surface-
atmosphere fluxes of sensible heat, latent heat, and momentum 
of heated air particulates caused by conduction, convection 
and radiation, which in turn influence weather and climate [1].  

 

Many remote areas of the world are now being opened to 
exploration and development, generating a growing demand 
for up-to-date knowledge of topography, LC and other geo-
spatial information. By using as many data sources as possible, 
a more complete and accurate knowledge of a landscape can 
be obtained. Therefore, users are seeking to integrate a 
multitude of spatially referenced information into their 
management and decision-making systems, a step that is 
facilitated by the standardisation of digital formats and the 
rapidly expanding market of GIS (Geographic Information 
System). There is a growing need for a global standardised LC 
and land use mapping system, similar to the CORINE 
approach. Many classification systems and innumerable map 
legends exist, but in most cases even from the same country, 
they are incompatible with each other. This system would 
enable a variety of end-users to use the results for their 
specific application (e.g. from rural planning to energy 
planning) and would enable intercomparison of existing data 
and a harmonised approach of data collection in areas where 
this information is not available or obsolete, whilst minimising 
the data and processing cost. Therefore, LC mapping remains 
an important research field, one what has grown more 
sophisticated with more recent technical developments in 
object oriented analysis or ontology [2], [3], [4].  

L
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LC features such as vegetation, water, and soil are important 
components in regional planning and management for 
monitoring the dynamics associated with the Earth. LC 
changes induced by human and natural processes play a major 
role in the climate, hydrology and biogeochemistry at global as 
well as regional scales. LC features can be classified using 
remotely sensed satellite imagery of different spatial, spectral 
and temporal resolutions. Recently, LC mapping of the entire 
territory of China was done at a 1:1 million scale to understand 
the LC change, based on existing LC maps, field surveys, 
NOAA’s (National Oceanic and Atmospheric Administration) 
AVHRR (Advanced Very High Resolution Radiometer) 
imagery and aerial photos. The CORINE LC map of the 
European Union includes 44 LC classes divided into 5 main 
categories (agricultural areas, artificial surfaces, forests & semi 
natural areas, wetlands and water bodies). It is based primarily 
on Landsat TM (Thematic Mapper bands 4, 5 and 7) data of 
different vegetation periods with additional information in the 
form of topographic maps and orthogonal photos [5], [6]. 

 
In India, spatial accounting and monitoring of LC have been 
carried out at a national level at 1:250,000 scale, using multi-
temporal IRS AWiFS (Indian Remote Sensing Satellite 
Advanced Wide Field Sensor) with 4 bands (Green, Red, NIR 
and SWIR) at 56 m resolution to address the spatial and 
temporal variability in cropping patterns and other LC classes. 
A decision tree classifier method was adopted to account for 
the variability of temporal datasets [7].  
 
The above attempts are based on monotemporal remote 
sensing (RS) data with the analysis being done on an annual 
basis. Monitoring LC dynamics with time series satellite data 
would not be economical for regional or national level 
mapping with commercial data such as IRS LISS (Linear 
Imaging Self Scanner)-III, LISS-IV, SPOT or Landsat 
TM/ETM+ (Enhanced Thematic Mapper plus). This imposes a 
major limitation on the use of such data despite their high 
spatial resolution. RS data such as ASTER (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer) are 
inexpensive and have a better spatial resolution, but are not 
regularly available for whole regions. MODIS (Moderate 
Resolution Imaging Spectroradiometer) data, with a spatial 
resolution of 250m to 1 km, have better spectro-temporal 
resolution (7 bands, and composite-data with Level 3 
processing and 36 bands every 8 days, or every 1-2 day 
availability with Level 1B processing) can be downloaded 
freely and may be suitable for regional mapping and planning 
activities in many developing countries. Their frequent 
availability is especially useful to account for seasonal 
variations and changes in LC pattern.   
 
In order to obtain these LC types, remotely sensed data are 
classified by identifying the pixels according to user-specified 
categories, by allocating a pixel to the spectrally maximally 
“similar” class, which is expected to be the class of maximum 
occupancy within the pixel [8]. MODIS based LC mapping 

addresses large area coverage but is limited to classification of 
whole pixels [9], [10]. A variety of other classification 
methods exist, including spectral matched filter [11], mixture 
tune matched filtering and spectral angle mapper [12], which 
are appropriate when pixels do not contain mixtures of 
materials with correlated spectra, especially in higher spatial 
resolution data. However, MODIS pixels generally have the 
problem of spectral mixing. The mixed pixel problem is 
normally found at boundaries between two or more mapping 
units, or along gradients, etc. when the occurrence of any 
linear or small subpixel object takes place, and is usually dealt 
with by subpixel classifiers that assume either linear or non-
linear mixtures [8] and [13]-[16]. It is often the case in RS that 
one wants to deal with identification, detection and 
quantification of fractions of the target materials for each pixel 
for diverse coverages in a region using unmixing approaches 
to discern the proportion of heterogeneity. A suitable way of 
extracting information is to estimate the composition of each 
pixel (proportion of the category contents) by spectral 
unmixing, i.e. soft classification techniques. The concepts of 
spectral unmixing emerged in the early 1970’s [17], [18] and 
gained more prominence in 80’s and 90’s [8], [13]-[16] and 
[19]. During the last two decades, methods have been 
proposed ranging from modelling the component mixtures to 
solving the linear combinations to obtain abundances. Later, a 
number of techniques were developed to estimate and extract 
endmembers from the scenes or use spectral libraries. 
  
In the present study, constrained linear spectral unmixing 
(CLSU) technique is applied on MODIS data to assess the 
suitability of the method for regional LC mapping with six LC 
classes. Linear Mixture Model (LMM), also known as a macro 
spectral mixture model, assumes no interaction between 
materials, and a pixel is treated as a linear combination of 
signatures resident in the pixel with relative concentrations 
[14]. This approach is different from the Spectral Angle 
Mapper (SAM) technique, where for the identification of pixel 
signature spectra only the angular information is used, which 
is based on the idea that an observed reflectance spectrum can 
be considered as a vector in a multidimensional space, and 
where the number of dimensions equals the number of spectral 
bands. 

II. OBJECTIVE 
 

Objectives of this study are: (i) LC mapping at regional 
level using superspectral MODIS data and (ii) to evaluate the 
suitability of CLSU to identify endmembers and generate 
abundance maps with MODIS (250 m spatial resolution).  

III. ENDMEMBER EXTRACTION 
 

Before modelling the linear mixture for unmixing, 
endmembers for the given study area have to be extracted. 
Various techniques, such as the Pixel Purity Index (PPI), 
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Orasis (Optical real-time Adaptative Spectral Identification 
System), N-FINDR, Iterative Error Analysis (IEA), Convex 
Cone Analysis (CCA), Automated Morphological Endmember 
Extraction (AMEE) and Simulated Annealing Algorithm 
(SAA) have been developed to extract endmember spectra 
automatically from remotely sensed data [16], [20]-[23]. In 
general, each algorithm finds appropriate spectra for end-
members. Orasis is capable of rapidly determining 
endmembers and unmixing large scenes. The N-FINDR 
method finds the set of pixels that define the simplex with the 
maximum volume potentially inscribed within the dataset. In 
the IEA algorithm, a series of constrained unmixing operation 
is performed, each time selecting as endmembers the pixels 
that minimize the remaining error in the unmixed image. CCA 
is based on the fact that some physical quantities, such as 
radiance and reflectance, are nonnegative. AMEE uses a 
morphological approach where spatial and spectral 
information are equally employed to derive endmembers. SAA 
is a method for constructing a simplex from a partition of the 
facets of the convex hull of a data cloud. The endmember 
extraction techniques used in this study are: 

A. 

B. 

C. 

Pixel Purity Index (PPI) 
This involves a dimensionality reduction using the 

Minimum Noise Fraction (MNF) transformation and the 
calculation of the PPI for each point in the image cube. This is 
accomplished by randomly generating lines in the N-
dimensional space comprising a scatter plot of the MNF 
transformed data. All points in the space are then projected 
onto a line. After many repeated projections to different lines, 
those pixels above a certain threshold are declared “pure”. 
There can be many redundant spectra in the pure pixel list. The 
actual endmember spectra are selected by a combination of 
review of the spectra themselves and through N-dimensional 
visualization. This provides an intuitive means to understand 
the spectral characteristics of materials [20]. 

Scatter Plot 
A scatter plot with the set of scene spectra shows the 

endmember spectra occurring at the extremities (at the corners 
of the plot) [20]. In two dimensions, pure endmembers fall at 
the two ends of the mixing line, while in the case of a three 
endmember mix, mixed pixels fall inside a triangle, four 
endmembers fall inside a tetrahedron, etc. 

N-Dimensional Visualization 
Pixels from the spectral bands are loaded into an n-

dimensional scatter plot and rotated on the visualization tool 
until points or extremities on the scatter plot are exposed. 
These projections are marked using a region of interest (ROI) 
tool and are repeatedly rotated in lesser dimensions to 
determine if their signatures are unique. Mean spectra are then 
extracted for each ROI to act as endmembers for spectral 
unmixing. These endmembers are then used for subsequent 
classification and other processing. 

IV. LINEAR SPECTRAL UNMIXING 
 
Models designed to estimate class proportions (rather than a 

single class label) for individual pixels, while addressing the 
problem of mixed pixels and considering the spectral response 
from a mixture of classes, are referred to as mixture models 
[24], [25]. Such spectral mixture (SM) modelling was used on 
resampled 25 m Landsat-7 ETM+ data for a subpixel 
classification that achieved 87% accuracy for DN (Digital 
Number) values and 93% for radiance values [26]. The 
technique is useful for discerning information from data with 
low spatial resolution, and would thus be ideal for free 
MODIS data with large ground coverage [27]. The spectral 
radiance measured by the MODIS sensor consists of the 
radiances reflected by all materials present, thus the radiance 
can be summed in proportion to the sub-pixel area covered by 
each material, given that the endmembers are the reference 
spectra of each of the individual pure materials, and under the 
condition that these spectra are linearly independent. The sites 
of pure LC for each class (or component) of interest are 
identified, and their spectra are used to define endmember 
signatures as discussed in section III. The position of the 
spectral signature of an input pixel along this continuum 
indicates directly the percentage cover for each component 
[14]. Constrained Least-Squares method (CLSM) aids in 
computing n-1 variables with n simultaneous equations [19]. 
In the case of MODIS, seven bands were designed for LC 
mapping [28] and hence the maximum number of LC 
categories that can be obtained is only six. 

 
Linear unmixing (and its variants - Multiple Endmember 

Spectral Mixture Analysis) has been used earlier for LC 
mapping using MODIS surface reflectance data of 250 m and 
500 m spatial resolutions of Northern Africa [29] and the 
unmixed results were compared with high resolution classified 
maps that gave an overall classification accuracy of 54% with 
significant confusion between alluvial surfaces and regs 
(surface covering of coarse gravel/pebbles or boulders from 
which all sand and dust have been removed by wind and 
water; a stony desert), and between sandy and clayey surfaces 
and dunes. A second validation using 20 Landsat images in a 
stratified sampling scheme gave a classification accuracy of 
70%, with confusion between dunes and sand sheets.  

 
LC fractions derived from MODIS 1 km resolution data and 

MISR (Multi-angle Imaging SpectroRadiometer) using SM 
have been compared to results of a Bayesian-regularized 
artificial neural network (ANN), as well as with 30 m 
reflectance data, yielding a quantitative improvement over 
spectral unmixing of single-angle, multispectral data (Landsat-
7/ETM+) [30]. 
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C. 

A. 

V. MATERIALS AND METHODS 

A. 

B. 

Data 
 

MODIS data with atmospheric corrections, also known as 
the “MOD 09 Surface Reflectance 8-day L3 global” product at 
250 m (band 1 and 2) and 500 m (bands 3 to 7) in Hierarchical 
Data Format (HDF), were downloaded from the Earth 
Observing System Data Gateway [31]. They are 
radiometrically corrected, fully calibrated and geolocated 
radiances at-aperture for all MODIS spectral bands and are 
processed to Level 3G. The spectral range is from 0.45 to 2.15 
µm [28]. IRS - 1C/D LISS-III MSS (Multi Spectral Scanner) 
data in 3 bands (G, R and NIR, 0.52 to 0.86 µm) with a spatial 
resolution of 23.5 m were purchased from NRSA (National 
Remote Sensing Agency), Hyderabad. 

 

Study area 
 

The Kolar district in Karnataka State, India, located in the 
southern plain regions (semi arid agro-climatic zone) and 
extending over an area of 8238 km2 between 77°21’ to 78°35’ 
E and 12°46’ to 13°58’ N, was chosen for this study (Fig. 1). 
Kolar is divided into 11 taluks for administration purposes. 
Rainfall occurs mainly during southwest and northeast 
monsoon seasons. The average population density of the 
district is about 209 persons/km2 [32]. The study area is 
mainly dominated by agricultural land, built up (urban/rural), 
evergreen/semi-evergreen forest, plantations/orchards, waste 
lands and water bodies. There are a few other LC classes 
(barren/rock/stone/others) that have very limited ground area 
proportions and are unevenly scattered among the major six 
classes, and were grouped under the waste land category. 

 

 
 

Fig. 1. Study area – Kolar district, Karnataka State, India. 
 

 

Methods 
 

The study involved creation of base layers, such as district, 
taluk and village boundaries, road network, etc. from the 
Survey of India (SOI) topographic maps of scale 1:250000 and 
1:50000. The LISS-III bands were geo-registered using ground 
control points (GCPs). LISS-III bands were resampled to 25 
m, which helped in pixel level comparison of abundance maps 
obtained by unmixing MODIS data with LISS-III classified 
map. This was followed by cropping and mosaicing of data 
corresponding to the study area from the image scenes. 
Supervised classification was performed on LISS-III MSS data 
using a Gaussian Maximum Likelihood Classifier (GMLC) 
followed by accuracy assessment. The MODIS data were geo-
corrected with an error of 7 meters with respect to LISS-III 
images. The 500 m resolution bands 3 to 7 were resampled to 
250 m using nearest neighbourhood technique (with Polyconic 
projection and Evrst 1956 as the datum). Minimum Noise 
Fraction (MNF) components were derived from the 7 bands to 
reduce noise and computational requirements for subsequent 
processing. Endmembers were extracted directly from the data 
without using existing spectral libraries through: (a) Pixel 
Purity Index (PPI) with the MNF components, (b) Scatter Plot, 
(c) N-Dimensional Visualization and (d) Collected training 
data - training polygons (≥ 250 x 250 m) of homogenous 
patches corresponding to MODIS pure pixels were collected in 
the study area, thus enabling direct selection of assumed pure 
pixels from the images. The spectral characteristics of the 
endmembers were analysed by plotting them and analysing 
their separability using a Transformed Divergence matrix. It 
shows that the endmembers selected for the analysis are 
separable and can be distinguished from each other. The 
abundance maps were generated via constrained linear 
unmixing of MODIS data. Accuracy assessment was done for 
the abundance maps: LC percentages were compared at 
boundary level and at pixel level with a LISS-III classified 
map and also with ground truth data which is discussed later 
(Accuracy assessment). 

VI. RESULTS 

LC analysis using LISS-III MSS data 
 
The class spectral characteristics for six LC categories using 
LISS-III MSS bands 2, 3 and 4 were obtained from the 
training pixels spectra to assess their inter-class separability 
and the images were classified with training data uniformly 
distributed over the study area collected with pre calibrated 
GPS (Fig. 2). This was validated with the representative field 
data (training sets collected covering the entire district and a 
detailed validation in Chikballapur Taluk covering ~ 15% of 
the study area) and the LC statistics are given in Table I. 
Producer’s, user’s, and overall accuracy computed are listed in 
Table II. A  
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TABLE I 

LAND COVER DETAILS USING LISS -III MSS 
 
Class Area (%) 
agriculture  19.03 
built up land (urban/rural)  17.13 
evergreen /semi-evergreen forest  11.41 
plantations/orchards  10.96 
wasteland/others: barren/rocky/stony  40.39 
water bodies  01.08 
Total (%) 100.00 

 
TABLE II 

ACCURACY OF LC CLASSIFICATION USING LISS-III MSS FOR 
CHIKBALLAPUR TALUK 

 
Category Producer’s 

Accuracy (%) 
User’s 

Accuracy (%) 
Overall 

accuracy  
agriculture 94.21 84.54 
built up 96.47 83.11 
forest 94.73 96.20 
plantation 92.27 91.73 
waste land/others 97.49 89.88 
water bodies 96.13 98.33 

 
 

95.63% 
 
 

 
kappa (k) statistics of 0.95 was obtained indicating that the 
classified outputs are in good agreement with the ground 
conditions to the extent of 95%. 
 
Classification errors can occur when the signal of a pixel is 
ambiguous, perhaps as a result of spectral mixing, or due to 
overlap of spectral reflectance (as in the case of certain 
agriculture and horticulture crops) or when the signal is 
produced by a cover type that is not accounted for in the 
training process. Another possible source of error may be due 
to the temporal difference in training data collection and image 
acquisition. 

B. 

ie+

Spectral unmixing of MODIS data 
 
Here each pixel spectrum of an image is modeled as a linear 
combination of a finite set of known components (or 
endmembers) given by (1) 
   

1
( )

n

i ij ij
j

r a x
=

= ∑                            (1)

         
where, ri = Spectral reflectance of a pixel in ith spectral band 
containing one or more components; aij = Spectral reflectance 
of the jth component in the pixel for ith spectral band; xj = 
Proportion value of the jth component in the pixel; ei = Error 
term for the ith spectral band; j = 1, 2, 3, ... n (Number of 
components assumed; in this study n=6); i = 1, 2, 3, ... m 
(Number of spectral bands for the sensor system; in case of 
MODIS m=7). In principle, according to constrained 
assumptions, the proportions of abundance for each class 
range between 0 and 1, are non-negative and add to one as 
give by (2).    

  
 

Fig. 2. Supervised classification of high resolution LISS-III image. 
 
   

1
( ) 1

n

j
j

x
=

=∑                                         (2) 

 
Visual inspection as well as accuracy assessment of abundance 
images corresponding to each endmember showed that the 
CLSU algorithm maps LC categories spatially and 
proportionally similar to supervised classified image of LISS-
III. The proportions of the endmembers in these images (Fig. 
3) range from 0 to 1, with 0 indicating absence of the 
endmember and increasing value showing higher abundance. 
 
Bright pixels represent higher abundance of 50% or more 
stretched from black to white. Errors were found due to 
confusion between agriculture and horticulture (plantation) in 
the central regions and built up and wasteland in northern 
regions of the district. Overall, the distribution and abundance 
values of other classes are comparable within ±6 % to the 
classified outputs of LISS-III. There are many areas where 
proportions of agriculture are properly identified, mainly in the 
western central portion of the study area. However, there is 
also underestimation of agriculture in the south-central region 
due to errors of commission and omission. 

C. Accuracy assessment 
 

1) Comparison with LISS-III MSS: Table III provides the 
difference in LC percentage between the abundance maps 
generated taluk wise using CLSU and classified LISS-III 
data. Hence, further analysis was carried out at pixel level 
to understand the sources of these differences. 

 
2) Pixel level assessment: A pixel of MODIS (250 m) 
corresponds to a kernel of 10 x 10 pixels of LISS-III 
spatially (Fig. 4). Endmembers generated along with 
abundance maps were validated pixel by pixel with the 
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Fig. 3. Gray scale abundance maps for agriculture, built up, evergreen/ 

semi-evergreen forest, plantations/orchards, wasteland and water bodies. 
 

TABLE III 
 LC AREA DIFFERENCE (IN %) BETWEEN FRACTION IMAGES 

OBTAINED FROM MODIS DATA AND LISS-III DATA 
 

Taluk agri- 
culture  

built 
up  

forest  plantation  waste 
land  

water 
bodies  

1 +0.4 -4.3 +0.2 +1.4 -1.5 +3.7 
2 +0.2 0.0 -2.4 -0.3 +0.2 +2.1 
3 -2.8 +0.4 -0.7 +0.5 +0.8 +1.5 
4 -4.4 -4.2 +3.3 0.0 +4.2 +1.2 
5 -0.9 -0.7 +0.2 +2.0 -3.6 +3.0 
6 -3.5 +1.9 +3.7 +2.4 -5.9 +1.4 
7 +3.4 -3.8 +4.1 -2.4 -4.1 +2.8 
8 -0.4 -2.5 +0.8 +0.8 0.0 +1.1 
9 -1.0 +1.4 +1.9 +0.6 -3.4 +0.5 
10 -2.9 -0.7 +1.5 +1.5 -1.9 +2.3 
11 +1.2 -0.4 -2.7 +2.9 +3.4 +3.2 
District -2.0 -1.3 -1.8 -1.7 +4.8 +2.0 
 
1. Bagepalli, 2. Bangarpet, 3. Chikballapur, 4. Chintamani, 5. Gauribidanur,   
6. Gudibanda, 7. Kolar, 8. Malur, 9. Mulbagal, 10. Sidlaghatta, 11. Srinivaspur 

classified LISS-III image for Chikballapur taluk. 
Endmember for a particular category was considered as 
pure when its abundance value was greater than 90%.  

 
 

Fig. 4. 10 x 10 pixels of LISS-III equals to 1 x 1 pixel of MODIS spatially. 
 
A total of 51 pixels with respect to the six LC classes were 
verified, and the result is tabulated in Table IV. The 
validation indicates that 35 pure and 14 mixed were 
correctly classified. Two pixels were misclassified; belong 
to water bodies which constitute < 1% of the total area. 

 
3) Assessment based on the field data of proportion LC: 
The abundance maps were also verified through field 
investigations using calibrated (with known benchmarks 
and digital SOI topographic maps) GPS. In the case of 
mixed pixels, proportional LC were mapped and overlaid 
on the abundance map, and producer’s and user’s accuracy 
(Tables V and VI), overall accuracy and the kappa 
statistics were computed. 

VII. DISCUSSION 
 
Sustainable management of natural resources entails spatio-

temporal information related to various surface features such 
as vegetation, water, and soil. In this regard, LC mapping 
using temporal RS data helps in capturing the dynamics 
associated with these LC components [33]. In principle, LC 
mapping can be done with any multispectral dataset, but 
currently available data have limitations such as poor spatial 
and temporal resolutions, or high spatial but low spectral 
resolution (IKONOS PAN, CARTOSAT-II) or moderate 
spatial and spectral resolutions (IRS LISS-III/IV, SPOT, 
Landsat TM/ETM+) as well as limited coverage, reduce the 
suitability of the available data types. Most of these RS data 
are commercial and many scenes would be required if 
mapping is to be carried out for larger regions. Even though 
some of the data (such as ASTER) are free, they are not 
available for all parts of the world and at variable temporal 
resolution. In this context, high temporal resolution MODIS 
data are freely available and are useful in providing insights 
into LC dynamics. 
 
The present study evaluated the scope of CLSU technique for 
LC mapping using low spatial resolution MODIS data. 
Endmembers and abundance maps for the six LC categories 
were generated using MODIS data through linear unmixing. 
The proportion of the classes in each pixel of MODIS was 
computed and compared with the classified image of better 
spatial resolution and also through field data.   
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TABLE IV 
VALIDATION OF LC CLASSES IN CHIKBALLAPUR 

 
Class Number of 

pixels 
identified 

Pure 
pixels 

Mixed 
pixels 

Wrongly 
classified 

agriculture 23 18 5 0 
built up 6 4 2 0 
forest 2 1 1 0 
plantation 11 7 4 0 
waste land  6 4 2 0 
Water 3 1 0 2 
Total 51 35 14 2 

 
TABLE V  

PRODUCER’S ACCURACY (IN PERCENTAGE) 
 

Percentage  
Classes 

20 % 40 % 60 % 80 % 100 % 

agriculture 50 83 100 100 100 
built up 100 50 - - 100 
forest 100 100 100 - 100 
plantation 63 88 100 100 100 
waste land 33 100 33 100 100 
water bodies 100 100 - - 100 

 
TABLE VI 

USER’S ACCURACY (IN PERCENTAGE) 
 

Percentage  
Classes  

20 % 40 % 60 % 80 % 100 % 

agriculture 66 100 100 100 100 
built up 50 100 - - 100 
forest 60 75 100 - 100 
plantation 63 88 100 100 100 
waste land 50 75 100 100 100 
water bodies 100 100 - - 100 

Overall Accuracy = 86 % 
Kappa (KHAT value) = 85 % 
The results show that five of the six identified classes exhibit 
high interclass variability, allowing linear spectral unmixing. 
The variability of the pixels that represent the local pure 
classes is also responsible for the uncertainity of the mixture 
proportions. Probability density functions and parametric 
representation of the constituent pure classes did represent 
local conditions evident from the post classification validation. 
Assigning the categories to endmembers in consultation with 
the field data proved to be critical as it helped to discern the 
adjacency effect that exists between contrasting features such 
as forest and plantation, agriculture and plantation, etc. [34], 
[35]. This highlights that LMM, with improved estimates of 
proportional abundance values, has greater scope compared to 
other hard classification techniques in handling coarse spatial 
resolution data. The spectra of the different endmembers were 
modelled by linear equations. This introduces another form of 
quality assurance, as these equations can be inverted, taking 
the endmember spectra to reconstruct the spectra of each pixel 
from the original image. Divergences between the original and 
reconstructed image then give idea of the goodness of fit of the 
model, and provide insights to which bands add more to the 

errors. When no more recognizable patterns are found and the 
error is overall small, it can be deduced that a near perfect 
model has been reached.  
 
Nevertheless, even though the number of spectral bands in 
MODIS is higher compared to LISS-III, with the CLSM [36], 
only six categories can be discerned (number of bands 
available minus one). The condition of identifiability (the 
number of classes should be one less than the number of 
bands) can be solved by a two step process provided that many 
spectral endmembers are available. A subset with a prefixed 
number of endmembers that optimally decompose the 
candidate pixel is first selected by a Gram-Schmidt 
orthogonalisation process [37]. This restricted subset is then 
used in conventional LMM. The final result is the 
decomposition of the scence into all end-members considered 
while reducing the residual errors. Also, this approach fails in 
heavily fragmented landscapes or small isolated areas of high 
contrasting nature. This can be addressed through image 
fusion techniques [38] of low spatial resolution (MODIS) with 
high resolution (LISS-III/Landsat-TM/ETM+). To account for 
contributions from the neighbourhood pixels at the same time, 
non-linear mixture models are suitable for unmixing of coarse 
spatial resolution data.  

VIII. CONCLUSION 
Spectral linear mixture analysis provides an efficient 

mechanism for the classification of superspectral RS data (e.g. 
from MODIS). It aims to identify a set of reference signatures 
(endmembers) that can be used to model the reflectance 
spectrum at each pixel of the original image. These 
endmembers are extracted from the images using techniques 
such as PPI or scatter plots. Thus, the modelling is carried out 
as a linear combination of a finite number of ground 
components and their reflectance spectra. An abundance map 
helps in estimating the proportion of each endmember in a 
pixel. The performance of linear unmixing technique for 
identification of endmembers, interclass variability and 
presence of adjacency effect using 250-500 m MODIS data 
was evaluated. MODIS LC outputs are comparable to LISS-III 
classification results, evident from validation, as most 
endmembers were correctly classified while mixed pixels were 
within 10-15% of the values obtained in LISS-III 
classification. The MODIS data tested here have an advantage 
over alternative high or medium resolution datasets, given 
their coverage, high temporal resolution, cost-free availability, 
and utility for LC mapping as shown in this study. The 
challenges associated with this data type are (i) georegistration 
of the pixels when no or limited identifiable GCPs exist, (ii) 
misclassification of pixels due to LC mixtures, and (iii) 
mapping of LC in heavily fragmented areas with highly 
contrasting nature. One way of overcoming problems (ii) and 
(iii) is to use MODIS data with high spatial resolution images. 
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Even, in case MODIS ceases to function, the technique would 
still be applicable for datasets with low spatial resolution. 
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