References

  1. Adams, J.M.M., Toop, T.A., Donnison, I.S., Gallagher, J.A., 2011. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol. 102, 9976–9984.
  2. Aitken D, Bulboa C, Faundez A G, Gomez J L T, Antizar-Ladislao B A, 2014. Lifecycle assessment of macroalgae cultivation and processing for biofuel production. J CleanProd (75):45–56.
  3. Agadi, V. V., 1985. Distribution of marine algae in the littoral zone of Karnataka coast, In: V. Krishanmurthy and A. G. Untawale (Eds.) Marine Plants. SRUA, p. 35-42.
  4. Aresta, M., Dibenedetto, A., & Barberio, G., 2005. Utilization of macro-algae for enhanced CO 2 fixation and biofuels production: development of a computing software for an LCA study. Fuel processing technology86(14), 1679-1693.
  5. Bastianoni S, Coppola F, Tiezzi E, Colacevich A, Borghini F, Focardi S., 2008.  Biofuel potential production from the orbetello lagoon macroalgae: a comparison with sunflower feedstock. BiomassBioenergy (32):619–28.
  6. Bixler, H.J., Porse, H., 2011. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23, 321–335
  7. Bopaiah, B. A. and B. Neelakantan, 1982. Ecology of tidal pond in Mavinahole estuarine creek, Karwar. Mahasagar, 15(1): 29-36.
  8. Chennubhotla, V.S.K, N. Kaliaperumal and S. Kalimuthu, 1978 Culture of Gracilaia edulis in the inshore waters of Gulf of Mannar (Mandapam). Indian J. Fish, 21 (1 & 2):228 – 229
  9. Dominguez-Faus, R., Powers, S.E., Burken, J.G., Alvarez, P.J, 2009. The water footprint of biofuels: a drink or drive issue? Environ. Sci. Technol. 43, 3005–3010.
  10. Erasmus, J.H., Cook, P.A., Coyne, V.E., 1997. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 155, 377–386.
  11. FAO (Food and Agriculture Organization of the United Nations), 1997. Renewable Biological Systems for Alternative Sustainable Energy Production (FAO Agricultural Services Bulletin-128). Available from: <http://www.fao.org/ docrep/w7241e/w7241e00.htm#Contents>.
  12. FAO, 2010. The State of World Fisheries and Aquaculture 2010.FoodandAgricultural Organization of the United Nations; Rome, Italy, pp.19–20.
  13. FAO, 2013 Year book of fishery statistics summary tables. 〈ftp://ftp.fao.org/fi/stat/ summary/default.htm〉
  14. Ge, L., Wang, P., Mou, H., 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew. Energy 36, 84–89.
  15. Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M., 2016. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews54, 473-481.
  16. Guiry, M.D., 2012. The Seaweed Site: Information on Marine Algae. Available from: <http://www.seaweed.ie/algae/index.html>.
  17. Jang, J.-S., Cho, Y., Jeong, G.-T., Kim, S.-K., 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35, 11–18.
  18. Jin BB, Duan PG, Xu YP, Wang F, Fan Y C, 2013. Co-liquefaction of micro-and macroalgae in subcritical water. Bioresour Technol (149):103–10.
  19. Kaliaperumal, N., M.S.Rajagopalan and V.S.K Chennubhotla, 1992. Field cultivation of Gracilaria edulis (Gmelin) Silva in Minicoy lagoon (Lakshadweep). Seaweed Res. Utlin., 14 ( 2 ) : 103 – 107.
  20. Kaliaperumal, N., S. Kalimuthu and K. Muniyandi, 1996. Experimental cultivation of Gracelaria edulis at Valinokkam Bay. Proc. Nat!. Symp. Aquaculture for 2000 AD. Madurai Kamaraj University. pp. 221-226.
  21. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H.  2011. Kappaphycus alvarezii as a source of bioethanol. Bioresour Technology 2012; 103:180-5; PMID:22050835; http://dx.doi..org/10.1016/j.biortech.2011.10.015.
  22. Kim, S.R., Ha, S.-J., Wei, N., Oh, E.J., Jin, Y.-S., 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. (30): 274–282.
  23. Kjellman, F.R., 1891. Phaeophyceae (Fucoideae). In: Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen unter Mitwirkung zahlreicher hervorragender Fachgelehrten, Teil 1, Abteilung 2. (Engler, A. & Prantl, K. Eds), pp. 176-181. Leipzig: Verlag von Wilhelm Engelman
  24. Lee, S.-M., Lee, J.-H., 2012. Ethanol production from Laminaria japonica: effect of metal ion adsorption. J. Ind. Eng. Chem.. http://dx.doi.org/10.1016/ j.jiec.2012.03.002.
  25. Lobban, C.S., Harrison, P.J., Duncan, M.J., 1985. The Physiological Ecological of Seaweed. Cambridge University Press.
  26. McHugh, D.J., 2003. A Guide to the Seaweed Industry. Available from: <http:// www.fao.org/docrep/006/y4765e/y4765e00.htm#Contents>.
  27. Meinita, M., Hong, Y.-K., Jeong, G.-T., 2012. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. (35): 93–98.
  28. NAAS, 2003. Seaweed Cultivation and Utilization. National Academy of Agricultural Sciences, Policy.
  29. Nguyen M T, Choi S P, Lee J H ,Sim S J, 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol (19):161–6.
  30. Kaladharan P, 1P. U. Zacharia and 2K. Vijayakumaran, 2011. Coastal and marine floral biodiversity along the Karnataka coast  J. Mar. Biol. Ass. India, 53 (1) : 121 – 129.
  31. Park, J.-H., Hong, J.-Y., Jang, H.C., Oh, S.G., Kim, S.-H., Yoon, J.-J., Kim, Y.J., 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol (108): 83–88.
  32. Pascher A. 1914. Über Flagellaten und Algen. Berichte der deutsche botanischen Gesellschaft (32): 136–16.
  33. Percival E, McDowell RH., 1967. Chemistry and enzymology of marine algal polysaccharides. London: Academic press
  34. Ramachandra T V., Durga Madhab Mahapatra, Karthick B., Richard Gordon, 2009. Milking Diatoms for Sustainable Energy: Biochemical Engineering vs Gasoline Secreting Diatom Solar Panels, Ind. Eng. Chem. Res., Article ASAP, 10.1021/ie900044j
  35. Ross, A.B., Jones, J.M., Kubacki, M.L., Bridgeman, T., 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. (99): 6494–6504
  36. Sudhakar M P, 2013, Seaweeds to liquid fuels, Renewable energy, Akshay urja,volume 6 issue 5 & 6
  37. Suryanath U Kamath, 1985. Uttara Kannada District, Gazetteer of India, V B Soobaiah and sons.
  38. Sze, P., 1993. A Biology of the algae, second ed. Wm. C. Brown Publishers.
  39. Untawale, A. G., C. K. R. Reddy and G. V. Deshmukhe. 1989. Ecology of intertidal benthic algae northern Karnataka coast. Indian J. Mar. Sci., 18: 73-81.
  40. Venkataraman, K. and M. Wafar. 2005. Coastal and marine biodiversity of India. Indian J. Mar. Sci., 34(1):57-75
  41. Wegeberg, S., Felby, C. 2010. Algae Biomass for Bioenergy in Denmark: Biological/ Technical Challenges and Opportunities. Available from: <http://www. bio4bio.dk/~/media/Bio4bio/publications/Review_of_algae_biomass_for_energy_SW_CF_April2010.ashx>.
  42. Yanagisawa M, Ojima T, Nakasaki K, 2011. Bioethanol from sea lettuce with the use of crude enzymes derived from waste. J Mater Cycles Waste Manag (13): 321-6; http://dx.doi.org/10.1007/s10163-011-0026-9.