

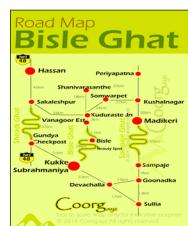
## PTERIDOPHYTES OF THE BISLE GHAT FORESTS, SOUTH WESTERN GHATS, KARNATAKA

Harshith Kumar\*, Chinmaya.P\*, Vijendra Prasad\* and Deviprasad.K.N\*\*

\*I BSc Students, Vivekananda College Puttur. D.K. Karnataka

\*\* Associate Professor Vivekananda College Puttur. D.K. Karnataka

[deviprasad.botany@gmail.com](mailto:deviprasad.botany@gmail.com) + 91 9845197996


**Abstracts**— Pteridophytes constitute a significant component of the terrestrial ecosystem. They are the important part of the ground vegetation in many forest communities and also an important component of many epiphytic plant communities. The present paper concerns the documentation of pteridoptyes distributed in the Bisle Ghat region of south Western Ghats. The survey of rain forest was carried out between June 2016 and October 2016 to document the pteridoptyes. The collected plants were identified with the help of reference books and the subject experts. The study has resulted in the documentation of 51 species belonging to 34 different genera and 19 different families were recorded. But if the same trend of low rainfall of this year continues for the next few years, there might be some real challenges for the existence of these unique and diverse species. However, while widening the road, both sides of the road there is habitat destructions and various anthropogenic activities may adversely affect the growth and distribution of this valuable group of plants. Effort should be made for research, further study on habitat ecology, species richness for the management of ecosystem of this unique group of plants.

### INTRODUCTION:

The pteridophytes constitute a significant part of the earth's plant diversity and being the second largest group of vascular plant communities. Pteridophytes may comprise a significant component of the terrestrial ecosystem. Pteridophytes have an important role in the earth's biodiversity. Pteridophytes have economic significance as they are used as food,

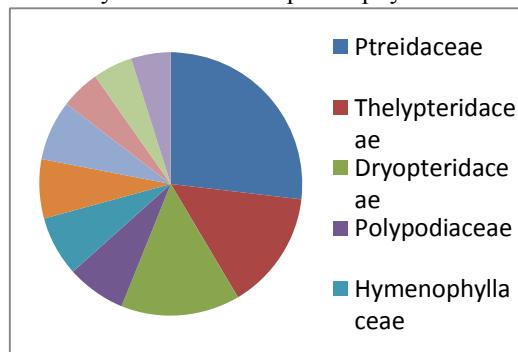
fodder, medicine and many other ethno botanical uses. They are the important part of the ground vegetation in many forest communities and also an important component of many epiphytic plant communities. Many species attracts many plant lovers for their graceful, fascinating and beautiful foliage. Of the 12,000 or so pteridophyte species enumerated in the world, around 1000 species from 70 families and 192 genera occur in India. The major centers for pteridophytes diversity in India are Eastern and Western Himalayas, Western Ghats, Eastern Ghats, Central India and Andaman and Nicobar Islands. The Western Ghats constitute one of the 35 global biodiversity hotspots along with Sri Lanka. Western Ghats are a unique mountain range that harbours an incredible diversity of flora and fauna. Bisle ghat is a part of the Western Ghats of Karnataka. It is located in Hassan district's Sakaleshpur taluk. It is the meeting point of the mountain ranges of three districts Dakshina Kannada, Kodagu and Hassan. Bisle ghat is the natural link between Pusphagiri and Kudremukh wildlife sanctuaries. Bisle Ghat has some of India's most spectacular rain forests. Dense forest of Bisle Ghat makes it a rich place for biodiversity. The subtropical climate and heavy rain during rainy season create an environment where several unique species of pteridophytes flourish. The present paper documents pteridoptyes distributed in the Bisle Ghat region of south Western Ghats. The objectives of the study are to survey pteridoptyes found in the Bisle forest and to prepare a check-list of the pteridoptyes found in the Bisle forest.

### METHOD

|                                                                                     |                                                                                     |                                                                                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|  |  |  |
| Karnataka                                                                           | Study site                                                                          | Fern forest                                                                           |

The reserve forests of Bisle ghat spreads over 3,135 hectares, to the east is the Bisle village. The present investigation was carried out during May to November 2016 for the documentation of pteridophytes in the forests of Bisle Ghat. The documented plants were identified with the help of reference book "Pteridophytes of Karnataka State, India (P.K.Rajgopal and K.Gopalkrishna Bhat)". During the field visits, pteridophytes specimen were collected for herbarium. The herbarium collections are deposited in the Department of Botany, Vivekananda College Puttur.D.K.

### RESULT:


**Table-1: List of documented Pteridophytes**

| Sl.No. | Scientific name                                         | Family name      | Habitat                             | Habit                   |
|--------|---------------------------------------------------------|------------------|-------------------------------------|-------------------------|
| 1      | <i>Adiantum latifolium</i> Lam.                         | Ptreidaceae      | Shady places                        | Small size              |
| 2      | <i>Adiantum philippense</i> L.                          | Ptreidaceae      | On the road side walls              | Small size              |
| 3      | <i>Angiopteris heliferiana</i> C.                       | Marattiaceae     | Near waterfalls                     | Very large size         |
| 4      | <i>Arachniodes sledge</i> Fraser-Jenk.                  | Dryopteridaceae  | Terrestrial                         | Medium size             |
| 5      | <i>Asplenium aethiopicum</i> Bech.                      | Aspleniaceae     | Terrestrial                         | Medium size             |
| 6      | Asplenium species                                       | Aspleniaceae     | Terrestrial                         | Medium size             |
| 7      | <i>Athyrium hohenackerianum</i> T.Moore:                | Athyriaceae      | Terrestrial                         | Medium size             |
| 8      | <i>Blechnum orientale</i> L.                            | Blechnaceae      | Terrestrial                         | Medium size             |
| 9      | <i>Bolbitis appendiculata</i> K.Iwats.                  | Dryopteridaceae  | Terrestrial                         | Small size              |
| 10     | <i>Bolbitis presliana</i> Ching.                        | Dryopteridaceae  | Terrestrial                         | Small size              |
| 11     | <i>Bolbitis subcrenatoides</i> Fraser-Jenk.             | Dryopteridaceae  | Terrestrial                         | Medium size             |
| 12     | <i>Ceratopteris thalictroides</i> Brongn                | Ptreidaceae      | Marshy soil                         | Small size              |
| 13     | <i>Cyathea gigantia</i> Holttum.                        | Cyatheaceae      | Near the stream inside dense forest | Tree fern<br>Large size |
| 14     | <i>Cyclosorus dentatus</i> Ching.                       | Thelypteridaceae | Terrestrial                         | Medium size             |
| 15     | <i>Cyclosorus papilio</i> Ching.                        | Thelypteridaceae | Terrestrial                         | Medium size             |
| 16     | <i>Cyclosorus parasiticus</i> Farw.                     | Thelypteridaceae | Terrestrial                         | Medium size             |
| 17     | <i>Cyclosorus terminans</i> K.H.Singh.                  | Thelypteridaceae | Terrestrial                         | Medium size             |
| 18     | <i>Dicranopteris linearis</i> Underw. (Gleichenia sps.) | Gleicheniaceae   | open area in damp soil              | Creeper like            |
| 19     | <i>Doryopteris concolor</i> Kunh.                       | Ptreidaceae      | Terrestrial Road side               | Small size              |
| 20     | <i>Drymaria quercifolia</i> J.Sm.                       | Polypodiaceae    | Epiphyte                            | Small size              |
| 21     | <i>Dryopteris cocleata</i> C.Chr.                       | Dryopteridaceae  | Terrestrial                         | Small size              |
| 22     | <i>Dryopteris sparsa</i> Kunntze                        | Dryopteridaceae  | Terrestrial                         | Small size              |
| 23     | <i>Huperzia hamiltonii</i>                              | Lycopodiaceae    | Epiphyte, hanging                   | Small size              |
| 24     | <i>Huperzia phylantha</i> Holub.                        | Lycopodiaceae    | Epiphyte hanging,                   | Small size              |
| 25     | <i>Huperzia squarrosa</i> Trevis.                       | Lycopodiaceae    | Epiphyte, hanging                   | Small size              |

The study region is rich in Pteridophytes. The study has resulted in the documentation of 51 species of Pteridophytes belonging to 34 different genera and 19 different families were recorded. Family Pteridaceae with 11 species is the first dominant family followed by Dryopteridaceae and Thelypteridaceae with 6 species each and 9 families represented by only one species. Among the total 51 species documented, two species are large sized (one species is the tree fern), 21 species are medium sized and 20 species are small sized. Habitat-wise 6 species are epiphytes, one species is creeper, 2 species are climbers and 28 species are terrestrial. We observed reproductive stages in 23 species.

|    |                                      |                  |                                       |                             |
|----|--------------------------------------|------------------|---------------------------------------|-----------------------------|
| 26 | Hymenophyllum exsertum Wall.         | Hymenophyllaceae | On the rocks of stream                | Small size                  |
| 27 | Hymenophyllum sps                    | Hymenophyllaceae | On the tree trunks in very cool place | Small size                  |
| 28 | Lepisorus nudus Ching.               | Polypodiaceae    | Epiphyte, erect                       | Small size                  |
| 29 | Lindsaea heterophylla Dryand.        | Lindsaeaceae     | Terrestrial                           | Small size                  |
| 30 | Lycopodiella cernua Piv. Serm.       | Lycopodiaceae    | On the marshy walls                   | Creeper like                |
| 31 | Lygodium flexuosum Sw.               | Lygodiaceae      | Terrestrial                           | Climbing fern               |
| 32 | Lygodium microphyllum R.Br.          | Lygodiaceae      | Terrestrial                           | Climbing fern               |
| 33 | Macrothelypteris toresiana Ching.    | Thelypteridaceae | Terrestrial                           | Medium size                 |
| 34 | Microlepia speluncae T. Moore.       | Dennstaedtiaceae | Terrestrial                           | Medium size                 |
| 35 | Microsorum zippelii Ching            | Polypodiaceae    | Epiphyte, erect                       | Small size                  |
| 36 | Nephrolepis multyiflora C.V. Morton. | Nephrolepidaceae | Exposed marshy area                   | Medium size                 |
| 37 | Odontosoria tenuifolia J. Sm.        | Lindsaeaceae     | Terrestrial                           | Small size                  |
| 38 | Osmunda hugeliana C. Presl.          | Osmundaceae      | Bank of stream                        | Medium size                 |
|    | Pityrogramma calomelanos Link.       | Pteridaceae      | Forest slopes                         | Medium size                 |
| 39 | Pseudocyclosorus caudipinnus Ching.  | Thelypteridaceae | Terrestrial                           | Medium size                 |
| 40 | Pteridium revolutum Nakai.           | Dennstaedtiaceae | Open space                            | Medium size                 |
| 41 | Pteris biaurita Fraser.              | Pteridaceae      | Terrestrial                           | Medium size                 |
| 42 | Pteris cameroonian Kuhn.             | Pteridaceae      | Terrestrial                           | Medium size                 |
| 43 | Pteris confuse T.G. Walker           | Pteridaceae      | Terrestrial                           | Medium size                 |
| 44 | Pteris vittata L.                    | Pteridaceae      | Terrestrial                           | Medium size                 |
| 45 | Selaginella delicatula Alston.       | Selaginellaceae  | On walls in shady place               | Small size                  |
| 46 | Selaginella proniflora Baker.        | Selaginellaceae  | Under growth                          | Small size                  |
| 47 | Selaginella tenera Spring.           | Selaginellaceae  | Forest floor                          | Small size                  |
| 48 | Tectaria gemmifera Alston            |                  | Terrestrial                           | Medium size                 |
| 49 | Tectaria polymorpha Copel.           | Tectariaceae     | Terrestrial                           | Medium size with broad leaf |
| 50 | Cheilanthes tenuifolia               | Pteridaceae      | slopy Open area                       | Small size                  |
| 51 | Cheilanthes bicolor Sw.              | Pteridaceae      | slopy Open area                       | Small size                  |

Fig 1 showing family wise species diversity of documented pteridophytes




## CONCLUSION

Pteridophytes are habitat specific, shade and moisture loving. The possible threats to this eco-sensitive group are clear responsibility to conserve them. Therefore, the conservation measures should be extended for *ex situ* conservation for the pteridophytes. Since there are no mining sites or hydroelectric project sites at Bisile Ghat, the habit has remained unspoiled and undisturbed because which we can still find such diverse species. But if the same trend of low rainfall of this year continues

for the next few years, there might be some real challenges for the existence of these unique and diverse species. However, while widening the road, both sides of the road there is habitat destructions and various anthropogenic activities particularly tourism may adversely affect the growth and distribution of this valuable group of plants. Effort should be made for research on habitat ecology, species richness for the management of ecosystem of this unique group of plants.

**Plate-1: Pteridophytes of the study region**

| <i>Blechnum orientale L.</i>                                                        |                                                                                     | <i>Angiopteris heliferiana C.</i>                                                    |                                                                                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|    |    |    |    |
| <i>Dicranopteris linearis</i><br>Underw                                             | <i>Tectaria gemmifera</i><br>Alston                                                 |                                                                                      | <i>Tectaria polymorpha</i> Copel.                                                     |
|  |  |  |  |
| <i>Drynaria quercifolia</i> J Sm.                                                   | <i>Pteridium revolutum</i><br>Nakai.                                                | <i>Ceratopteris thalictroides</i><br>Brongn                                          | <i>Adiantum philippense</i> L.                                                        |
|  |  |  |  |
| <i>Cyathia gigantia</i> Holttum.                                                    | <i>Asplenium species</i>                                                            | <i>Selaginella tenera</i> Spring.                                                    | <i>Nephrolepis multiflora</i><br>C.V.Morton                                           |
|  |  |  |  |

| <i>Microsorum zippelii</i><br>Ching. | <i>Lycopodiella cernua</i><br>Piv. Serm. | <i>Huperzia squarrosa</i><br>Trevis. | <i>Lygodium microphyllum</i><br>R.Br. |
|--------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|
|                                      |                                          |                                      |                                       |

## REFERENCES

1. P.K.Rajgopal and K.Gopalkrishna Bhat. Pteridophytes of Karnataka state, India 2016
2. Dixit R.D. (1984) A census of Indian Pteridophytes. Flora of India, Ser.4, Botanical Survey of India, Calcutta.
3. Ghosh S.R., Ghosh B., Anjali Biswas and Ghosh R.K. (2004) The Pteridophytic Flora of Eastern India. Publ. Botanical Surevy of India, Kolkata.
4. Mahabale T.S. (1987) Maharashtra State Gazetteer : Botany and Flora of Maharashtra. Gazetteers Department, Govt. of Maharashtra.
5. Manickam V.S. and Irudayaraj V. (1992) Pteridophyte Flora of the Western Ghats-South India , B.I Publications Pvt. Ltd. New Delhi.
6. Nimphy S. and Madhusoodhanan P. V. (1998) The Fern Flora of South India :Taxonomic Revision of Polypodoid Ferns, Daya Publishing House, Delhi
7. Dudani SN, Mahesh MK, Subash Chandran MD and Ramachandra TV (2013). Fern diversity in the sacred forests of Yana, Uttara Kannada, Central Western Ghats. *Indian Fern Journal* 30 61-68